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Non injectivity of the q-deformed von Neumann algebra
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Abstract. In this paper we prove that the von Neumann algebra generated by q-gaussians is
not injective as soon as the dimension of the underlying Hilbert space is greater than 1. Our
approach is based on a suitable vector valued Khintchine type inequality for Wick products.
The same proof also works for the more general setting of a Yang-Baxter deformation. Our
techniques can also be extended to the so called q-Araki-Woods von Neumann algebras recently
introduced by Hiai. In this latter case, we obtain the non injectivity under some asssumption
on the spectral set of the positive operator asociated with the deformation.
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1 Introduction

Let HR be a real Hilbert space and HC its complexification. Let T be a Yang-Baxter operator
on HC ⊗ HC with ‖T‖ < 1. Let FT (HC) be the associated deformed Fock space and ΓT (HR)
the von Neumann algebra generated by the corresponding deformed gaussian random variables,
introduced by Bozejko and Speicher [4] (also see [3]). In addition, we will assume that T is
tracial, i.e that the vacuum expectation is a trace on ΓT (HR) (cf [4]). Under these assumptions,
it was proved in [4] that ΓT (HR) is not injective as soon as dim HR > 16

(1−q)2
, where ‖T‖ = q.

Since then the problem whether ΓT (HR) is not injective as soon as dim HR ≥ 2 had been left
open. We emphasize that this problem remained open even in the particular case of the q-
deformation, that is when T = qσ, where σ is the reflexion : σ(ξ ⊗ η) = η ⊗ ξ. Recall that
the free von Neumann algebra Γ0(HR) (corresponding to T = 0) is not injective as soon as
n = dim HR ≥ 2, for Γ0(HR) is isomorphic to the free group von Neumann algebra V N(Fn) (cf.
[18]). The main result of this paper solves the above problem.

To explain the idea of our proof we first recall the main ingredient of the proof of the
non injectivity theorem in [4]. It is the following vector-valued non-commutative Khintchine
inequality. Let (ei)i∈I be an orthonormal basis of HR. Let K be a complex Hilbert space
and B(K) the space of all bounded operators on K. Then for any finitely supported family
(ai)i∈I ⊂ B(K)

max

{

‖
∑

i∈I

a∗
i ai‖

1

2

B(K), ‖
∑

i∈I

aia
∗
i ‖

1

2

B(K)

}

≤
∥

∥

∥

∥

∥

∑

i∈I

ai ⊗ G(ei)

∥

∥

∥

∥

∥

≤ 2√
1 − q

max

{

‖
∑

i∈I

a∗
i ai‖

1

2

B(K), ‖
∑

i∈I

aia
∗
i ‖

1

2

B(K)

}

where G(e) = a∗(e) + a(e) is the deformed gaussian variable associated with a vector e ∈ HR.
Using this Khintchine inequality and the equivalence between the injectivity and the semi-
discreteness, one easily deduces the non-injectivity of ΓT (HR) as soon as dim HR > 16

(1−q)2
.

The proof of our non-injectivity theorem follows the same pattern. We will first need to
extend the preceding vector-valued non-commutative Khintchine inequality to Wick products.
It is well known that for any ξ, a finite linear combination of elementary tensors, there is a
unique operator W (ξ) ∈ ΓT (HR) such that W (ξ)Ω = ξ. Instead of the previous inequality, the
main ingredient of our proof is the following. Let n ≥ 1. Let (ξi)|i|=n be an orthonormal basis
of H⊗n

C
and (αi) ⊂ B(K) a finitely supported family. Then

max
0≤k≤n

{‖
∑

|i|=n

αi ⊗ R∗
n,kξi‖} ≤ ‖

∑

|i|=n

αi ⊗ W (ξi)‖ ≤ (n + 1)Cq max
0≤k≤n

{‖
∑

|i|=n

αi ⊗ R∗
n,kξi‖} (1)

where the norms in the left and right handside have to be taken in B(K) ⊗min H⊗n−k
c ⊗h H⊗k

c

(see Theorem 1 below for the precise statement). Inequality (1) is the vector-valued version of
Bozejko’s ultracontractivity inequality proved in [2] and thus it solves a problem posed in [2].
Using (1) and a careful analysis on the norms of Wick products on a same level, we deduce our
non-injectivity result.

The plan of this paper is as follows. The first section is devoted to necessary definitions and
preliminaries on the deformation by a Yang-Baxter operator and the associated von Neumann
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algebra. In this section, we also include a brief discussion on the simplest case, the free case,
i.e. when T = 0. All our results and arguments become very simple in this case, for instance,
inequality (1) above is then easy to state and prove. The proof of the non-injectivity of Γ0(HR)
can be done in just a few lines. The reason why we have decided to include such a discussion
on the free case is the fact that it already contains the main idea for the general case. In the
second section we will establish (1) and prove the non-injectivity of ΓT (HR). The last section
aims at proving the non-injectivity of the Araki-Woods factors Γq(H, Ut) introduced by Hiai in
[12]. Note that Hiai proved a non-injectivity result with a condition on the dimension of the
spectral sets of the positive generator of Ut, which is similar to that of [4]. The problem is left
open whether the dimension can go down to 2. Although we cannot completely solve this, our
method permits to improve in some sense the criterion for non-injectivity given in [12].

2 Preliminaries

Recall that the free Fock space associated with HR is given by

F0 (HC) =
⊕

n≥0

H⊗n
C

where H⊗0
C

is by definition CΩ with Ω a unit vector called the vacuum.
A Yang-Baxter operator on HC ⊗ HC is a self-adjoint contraction satisfying the following

braid relation :
(I ⊗ T )(T ⊗ I)(I ⊗ T ) = (T ⊗ I)(I ⊗ T )(T ⊗ I)

For n ≥ 2 and 1 ≤ k ≤ n − 1 we define Tk on H⊗n
C

by

Tk = IHk−1

C

⊗ T ⊗ IHn−k−1

C

Let Sn be the group of permutations on a set of n elements. A function ϕ is defined on Sn by
quasi-multiplicative extension of :

ϕ(πk) = Tk

where πk = (k, k + 1) is the transposition exchanging k and k + 1, 1 ≤ k ≤ n − 1. The

symmetrizator P
(n)
T is the following operator defined on H⊗n

C
by :

P
(n)
T =

∑

σ∈Sn

ϕ(σ)

P
(n)
T is a positive operator on H⊗n

C
for any Yang-Baxter operator T and is strictly positive if T

is strictly contractive (cf. [4]). In the latter case we are allowed to define a new scalar product
on H⊗n

C
(for n ≥ 2) by :

〈ξ, η〉T = 〈ξ, P (n)
T η〉

The associated norm is denoted by ‖.‖T . The deformed Fock space associated with T is then
defined by

FT (HC) =
⊕

n≥0

H⊗n
C

where H⊗n
C

is now equipped with our deformed scalar product for n ≥ 2. From now on we will
only consider a strictly contractive Yang-Baxter T and ‖T‖ ≤ q < 1.
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For f ∈ HR, a∗(f) will denote the creation operator associated with f , and a(f) its adjoint
with respect to the T-scalar product :

a∗(f)(f1 ⊗ · · · ⊗ fn) = f ⊗ f1 ⊗ · · · ⊗ fn

For f ∈ HR the deformed gaussian is the following hermitian operator :

G(f) = a∗(f) + a(f)

Throughout this paper we are interested in ΓT (HR) which is the von Neumann algebra
generated by all gaussians G(f) for f ∈ HR :

ΓT (HR) = {G(f) : f ∈ HR}′′ ⊂ B(FT (HC))

Let (ei)i∈I be an orthonormal basis of HR and set

tsrij = 〈es ⊗ er, T (ei ⊗ ej)〉

Then the following deformed commutation relations hold :

a(ei)a
∗(ej) −

∑

r, s∈I

tirjsa
∗(er)(es) = δij

Moreover if the following condition holds

〈es ⊗ er, T ei ⊗ ej〉 = 〈er ⊗ ej , T es ⊗ ei〉

which is equivalent to the cyclic condition :

tsrij = t
rj
si

then the vacuum is cyclic and separating for ΓT (HR) and the vacuum expectation is a faithful
trace on ΓT (HR) that will be denoted by τ . If this cyclic condition holds we say that T is
tracial, and from now on we will always assume that T has this property.

We will denote by Γ∞
T (HR) the subspace ΓT (HR)Ω of FT (HC). Since Ω is separating for

ΓT (HR), for every ξ ∈ Γ∞
T (HR) there exists a unique operator W (ξ) ∈ ΓT (HR) such that

W (ξ)Ω = ξ

W is called Wick product.
The right creation operator, a∗

r(f), is defined by the following formula :

a∗
r(f)(f1 ⊗ · · · ⊗ fn) = f1 ⊗ · · · ⊗ fn ⊗ f

We will also denote by ar(f) the right annihilation operator, which is its adjoint with respect to
the T-scalar product, by Gr(f) the right gaussian operator, and by ΓT,r(HR) the von Neumann
algebra generated by all right gaussians. It is easy to see that ΓT,r(HR) ⊂ ΓT (HR)′. Actually,
by Tomita’s theory, we have

ΓT,r(HR) = SΓT (HR)S = ΓT (HR)′

4



where S is the anti linear operator on FT (HC) (which is actually an anti unitary) defined by

S(f1 ⊗ · · · ⊗ fn) = fn ⊗ · · · ⊗ f1

for any f1, · · · , fn ∈ HR. Since Ω is also separating for ΓT,r(HR) we can define the right Wick
product, that will be denoted by Wr(ξ). For any ξ ∈ Γ∞

T (HR) we have

(W (ξ))∗ = W (Sξ) and SW (ξ)S = Wr(Sξ)

Some particular cases of deformation have been studied in the literature. Let (qij)i, j∈I be a
hermitian matrix such that supi,j |qij| < 1. Define

Tei ⊗ ej = qijej ⊗ ei

Then T is a strictly contractive Yang-Baxter operator, and it is tracial if and only if the qij are
real. Our deformed Fock space is then a realisation of the following qij-relations :

a(ei)a
∗(ej) − qija

∗(ej)a(ei) = δij

In the special case where all qij are equal, we obtain the well known q-relations.
Let us define the following selfadjoint unitary on the free Fock space :

∀ f1, . . . , fn ∈ HC, U(f1 ⊗ · · · ⊗ fn) = fn ⊗ · · · ⊗ f1

Since UP
(n)
T = P

(n)
T U (cf. [13]), U is also a selfadjoint unitary on each T-Fock space.

Given vectors f1, . . . , fn in HR we define :

a∗(f1 ⊗ · · · ⊗ fn) = a∗(f1) . . . a∗(fn) and a(f1 ⊗ · · · ⊗ fn) = a(f1) . . . a(fn)

For 0 ≤ k ≤ n, let Rn,k be the operator on H⊗n
C

given by

Rn,k =
∑

σ∈Sn/Sn−k×Sk

ϕ(σ−1)

where the sum runs over the representatives of the right cosets of Sn−k ×Sk in Sn with minimal
number of inversions. Then

P
(n)
T = Rn,k

(

P
(n−k)
T ⊗ P

(k)
T

)

and ‖Rn,k‖ ≤ Cq (2)

where Cq =
∞
∏

n=1

(1 − qn)−1 (cf. [2] and [13]). It follows that

P
(n)
T ≤ CqP

(n−k)
T ⊗ P

(k)
T (3)

It also follows that a∗, respectively a, extend linearly, respectively antilinearly, and continuously
to H⊗n

C
for every n ≥ 1. Then for each vector ξ ∈ H⊗n

C
we have

‖a∗(ξ)‖ ≤ C
1

2
q ‖ξ‖T and (a∗(ξ))∗ = a(Uξ). (4)

Let n ≥ 1 and 1 ≤ k ≤ n, H⊗n−k
C

⊗H⊗k
C

will be the Hilbert tensor product of the Hilbert spaces
H⊗k

C
and H⊗n−k

C
where both H⊗k

C
and H⊗n−k

C
are equipped with the T-scalar product.
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Lemma 1 There is a positive constant Dq,n,k such that

P
(n−k)
T ⊗ P

(k)
T ≤ Dq,n,kP

(n)
T

Consequently for every n ≥ 1 and 1 ≤ k ≤ n, H⊗n
C

and H⊗k
C

⊗H⊗n−k
C

are algebraically the same

and their norms are equivalent.

Remark : It is still not known whether one can choose Dq,n,k independent of n and k.

Proof : It was shown in [1] that there is a positive constant ω(q) such that

P
(n−1)
T ⊗ I ≤ ω(q)−1P

(n)
T

Since U(P
(n−1)
T ⊗ I)U = I ⊗ P

(n−1)
T we also have

I ⊗ P
(n−1)
T ≤ ω(q)−1P

(n)
T (5)

Fix some k, 2 ≤ k ≤ n − 1, using (3) and (4) we get :

P
(n−k+1)
T ⊗ P

(k−1)
T ≤ CqP

(n−k)
T ⊗ I ⊗ P

(k−1)
T

≤ Cqω(q)−1P
(n−k)
T ⊗ P

(k)
T

Thus by iteration it follows that for 0 ≤ k ≤ n :

P
(n−k)
T ⊗ P

(k)
T ≤ ω(q)−1(Cqω(q)−1)n−kP

(n)
T (6)

Since U(P
(n−k)
T ⊗ P

(k)
T )U = P

(k)
T ⊗ P

(n−k)
T it follows from (6) that

P
(k)
T ⊗ P

(n−k)
T ≤ ω(q)−1(Cqω(q)−1)n−kP

(n)
T

Combining this last inequality and (6) we finally obtain :

P
(n−k)
T ⊗ P

(k)
T ≤ ω(q)−1(Cqω(q)−1)min(k,n−k)P

(n)
T (7)

Then the desired result follows from (3) and (7). �

For k ≥ 0 let us now define on the family of finite linear combinations of elementary tensors
of length not less than k the following operator Uk:

Uk(f1 ⊗ · · · ⊗ fn) = a∗(f1 ⊗ · · · ⊗ fn−k)a(fn−k+1 ⊗ · · · ⊗ fn)

where ξ + iη = ξ − iη for all ξ, η ∈ HR.

Fix n and k with n ≥ k. Let J : H⊗k
C

→ H⊗k
C

be the conjugation (which is an anti
isometry). For any f1, · · · , fn, J is defined by J (f1 ⊗ · · · ⊗ fn) = f1 ⊗ · · · ⊗ fn. It is clear that
Uk extends boundedly to H⊗n−k

C
⊗ H⊗k

C
by the formula :

Uk = M(a∗ ⊗ aJ )

6



where M is the multiplication operator from B(FT (HC)) ⊗min B(FT (HC)) to B(FT (HC)) de-
fined by M(A ⊗ B) = AB. Moreover, by (4) we have

‖Uk‖ ≤ ‖M‖.‖a∗ ⊗ aJ ‖ ≤ Cq

where Uk is viewed as an operator from H⊗n−k
C

⊗ H⊗k
C

to B(FT (HC)).

In the following lemma we state an extension of the Wick formula (Theorem 3 in [13]). We
deduce it as an easy consequence of the original Wick formula and of our previous discussion.

Lemma 2 Let n ≥ 1 and ξ ∈ H⊗n
C

, then H⊗n
C

⊂ Γ∞
T (HR) and we have the following Wick

formula :

W (ξ) =

n
∑

k=0

UkR
∗
n,k(ξ) (8)

Moreover

‖ξ‖q ≤ ‖W (ξ)‖ ≤ C
3

2
q (n + 1)‖ξ‖q (9)

Remark : (9) is the well known Bozejko’s inequality discussed in [2] and [13], and which implies
the ultracontractivity of the q-Ornstein Uhlenbeck semigroup. We include an elementary and
simple proof.
Proof : The usual Wick formula is the following (cf [2] and [13]) : ∀f1, . . . , fn ∈ HC we have

W (f1 ⊗ · · · ⊗ fn) =

n
∑

k=0

∑

σ∈Sn/Sn−k×Sk

Ukϕ(σ)(f1 ⊗ · · · ⊗ fn)

Hence (8) holds for every ξ ∈ An = {linear combinations of elementary tensors of length n}.
By Lemma 1 and our previous discussion, the right handside of (8) is continuous from H⊗n

C
to

B(FT (HC)). Since Ω is separating, it follows that H⊗n
C

⊂ Γ∞
T (HR) and that (8) extends by

density from An to H⊗n
C

. Actually, our argument shows that for any ξ ∈ H⊗n, W (ξ) belongs
to C∗

T (HR) which is the C∗-algebra generated by the T-gaussians.

Since for any ξ ∈ H⊗n
C

, W (ξ)Ω = ξ, the left inequality in (9) holds. We have just showed
that W is bounded from H⊗n

C
to B(FT (HC)). Hence, there is a constant Bq,n such that for any

ξ ∈ H⊗n
C

we have ‖W (ξ)‖ ≤ Bq,n‖ξ‖q. To end the proof of (9) we now give a precise estimate
of Bq,n. Let ξ ∈ H⊗n

C
, by (8) and (3) we have

‖W (ξ)‖ ≤
n

∑

k=0

‖UkR
∗
n,k(ξ)‖ ≤ Cq

n
∑

k=0

‖R∗
n,k(ξ)‖H⊗n−k

C
⊗H⊗k

C

(10)

It remains to compute the norm of R∗
n,k as an operator from H⊗n

C
to H⊗n−k

C
⊗H⊗k

C
. Let η ∈ H⊗n

C

we have, by (2) and (3)

‖R∗
n,kη‖2

H⊗n−k
C

⊗H⊗k
C

= 〈P (n−k)
T ⊗ P

(k)
T R∗

n,kη, R∗
n,kη〉0

= 〈P (n)
T η, R∗

n,kη〉0 ≤ ‖η‖T‖R∗
n,kη‖T

On the other hand,
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‖R∗
n,kη‖2

T = 〈P (n)
T R∗

n,kη, R∗
n,kη〉0 ≤ Cq〈P (n−k)

T ⊗ P
(k)
T R∗

n,kη, R∗
n,kη〉0

≤ Cq〈P (n)
T η, R∗

n,kη〉0
≤ Cq‖η‖T‖R∗

n,kη‖T

Hence it follows that ‖R∗
n,kη‖T ≤ Cq‖η‖T and ‖R∗

n,kη‖2
H⊗n−k

C
⊗H⊗k

C

≤ Cq‖η‖2
T . Thus ‖R∗

n,k‖ ≤ C
1

2
q

as an operator from H⊗n
C

to H⊗n−k
C

⊗H⊗k
C

. From (10) and this last estimate, follows the second
inequality in (9).

�

The remainder of this section is devoted to a simple proof of the non-injectivity of the
free von Neumann algebra Γ0(HR) (dim HR ≥ 2). The main ingredient is the vector valued
Bozejko inequality (Lemma 3 below), which is the free Fock space analogue of the corresponding
inequality for the free groups proved by Haagerup and Pisier in [11] and extended by Buchholz
in [7] (see also [6]). Note also that the inequality (11) below was first proved in [11] in the case
n = 1 (i.e. for free gaussians) and that a similar inequality holds for products of free gaussians
(see [7]).

We will need the following notations : (ei)i∈I will denote an orthonormal basis of HR, and for
a multi-index i of length n, i = (i1, . . . , in) ∈ In, ei = ei1⊗· · ·⊗ein . (ei)|i|=n is a real orthonormal
basis of H⊗n

C
equipped with the free scalar product and (ei)|i|≥0 is a real orthonormal basis of

the free Fock space.

Lemma 3 Let n ≥ 1, K a complex Hilbert space and (αi)|i|=n a finitely supported family of

B(K). Then :

max
0≤k≤n

{∥

∥

∥

∥

(αj, l) |j|=n−k

|l|=k

∥

∥

∥

∥

}

≤

∥

∥

∥

∥

∥

∥

∑

|i|=n

αi ⊗ W (ei)

∥

∥

∥

∥

∥

∥

≤ (n + 1) max
0≤k≤n

{∥

∥

∥

∥

(αj, l) |j|=n−k

|l|=k

∥

∥

∥

∥

}

(11)

Remark : Since (αi)|i|=n is finitely supported the operator-coefficient matrix (αj, l) |j|=n−k

|l|=k

is a

finite matrix, say a r × s matrix, and its norm is the operator norm in B(ls2(K), lr2(K)).
Proof : We write

∑

|i|=n

αi ⊗ W (ei) =
n

∑

k=0

Fk

where
Fk =

∑

|j|=n−k

|l|=k

αj, l ⊗ a∗(ej)a(el)

we have

Fk = (. . . IK ⊗ a∗(ej) . . . )|j|=n−k(αj, l ⊗ IF0(HC)) |j|=n−k

|l|=k







...
IK ⊗ a(el)

...







|l|=k

8



that is, Fk is a product of three matrices, the first is a row indexed by j, the third a column
indexed by l. Note that

‖(. . . a∗(ej) . . . )|j|=n−k‖2 = ‖
∑

|j|=n−k

a∗(ej)(a
∗(ej))

∗‖ = ‖
∑

|j|=n−k

a∗(ej)a(Uej)‖

It is easy to see that
∑

|j|=n−k

a∗(ej)a(Uej) is the orthogonal projection on
⊕

p≥n−k

H⊗p.

Thus
‖(. . . a∗(ej) . . . )|j|=n−k‖ ≤ 1

Therefore

‖Fk‖ ≤ ‖(. . . IK ⊗ a∗(ej) . . . )|j|=n−k‖.‖(αj, l ⊗ IF0(HC)) |j|=n−k

|l|=k

‖.

∥

∥

∥

∥

∥

∥

∥

∥







...
IK ⊗ a(el)

...







|l|=k

∥

∥

∥

∥

∥

∥

∥

∥

≤ ‖(. . . a∗(ej) . . . )|j|=n−k‖.‖(αj, l) |j|=n−k

|l|=k

‖.‖(. . . a∗(Uel) . . . )|l|=k‖

≤ ‖(αj, l) |j|=n−k

|l|=k

‖

It follows that

‖
∑

|i|=n

αi ⊗ W (ei)‖ ≤
n

∑

k=0

‖Fk‖ ≤ (n + 1) max
0≤k≤n

‖(αj, l) |j|=n−k

|l|=k

‖

To prove the first inequality, fix 0 ≤ k0 ≤ n and consider (vp)|p|=k0
such that

∑

|p|=k0

‖vp‖2 < +∞.

Let η =
∑

|p|=k0

vp ⊗ Uep. We have :

‖
∑

|i|=n

αi ⊗ W (ei)η‖2 =
n

∑

k=0

‖Fkη‖2 ≥ ‖Fk0
η‖2

= ‖
∑

|j|=n−k0

|l|=k0

αj, lvl ⊗ ej‖2

=
∑

|j|=n−k0

‖
∑

|l|=k0

αj, lvl‖2

=

∥

∥

∥

∥

∥

∥

∥

∥

(αj, l) |j|=n−k0

|l|=k0







...
vl
...







|l|=k0

∥

∥

∥

∥

∥

∥

∥

∥

2

Then the result follows. �

Using Lemma 3, it is now easy to prove that Γ0(HR) is not injective as soon as dim HR ≥ 2.
Suppose that Γ0(HR) is injective and dim HR ≥ 2. Choose two orthonormal vectors e1 and e2
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in HR. For n ≥ 1 we have by semi-discreteness (which is equivalent to the injectivity):

τ





∑

|i|=n

W (ei)
∗W (ei)



 ≤ ‖
∑

|i|=n

W (ei) ⊗ W (ei)‖

where in the above sums, the index i ∈ {1, 2}n. However,

τ





∑

|i|=n

W (ei)
∗W (ei)



 =
∑

|i|=n

〈W (ei)Ω, W (ei)Ω〉0

=
∑

|i|=n

‖ei‖2 = 2n

On the other hand, by Lemma 3,

‖
∑

|i|=n

W (ei) ⊗ W (ei)‖ ≤ (n + 1) max
0≤k≤n

{‖(W (ej, l)) |j|=n−k

|l|=k

‖}

≤ (n + 1)





∑

|i|=n

‖W (ei)‖2





1

2

≤ (n + 1)(2n(n + 1)2)
1

2

≤ (n + 1)22
n
2

Combining the preceding inequalities, we get 2n ≤ (n + 1)22
n
2 which yields a contradiction for

sufficiently large n. Therefore, Γ0(HR) is not injective if dim HR ≥ 2.

3 Generalized Haagerup-Bożejko inequality and non in-

jectivity of ΓT (HR)

In the following we state and prove the generalized inequality (1). It actually solves a question
of Marek Bozejko ( in [2] page 210) whether it is possible to find an operator coefficient version
of the following inequality (this is inequality (9) in Lemma 2):

‖
∑

|i|=n

αiei‖ ≤ ‖
∑

|i|=n

αiW (ei)‖ ≤ C
3

2
q (n + 1)‖

∑

|i|=n

αiei‖ (12)

where (αi)i is a finitely supported family of complex numbers. Inequality (12) was proved in
[2] for the q-deformation, and generalized in [13] for the Yang-Baxter deformation.

First, we need to recall some basic notions from operator space theory. We refer to [10] and
[14] for more information.
Given K a complex Hilbert space, we can equip K with the column, respectively the row,
operator space structure denoted by Kc, respectively Kr, and defined by

Kc = B(C, K) and Kr = B(K∗, C).

10



Moreover, we have K∗
c = Kr as operator spaces.

Given two operator spaces E and F , let us briefly recall the definition of the Haagerup
tensor product of E and F . E ⊗ F will denote the algebraic tensor product of E and F . For
n ≥ 1 and x = (xi,j) belonging to Mn(E ⊗ F ) we define

‖x‖(h,n) = inf{‖y‖Mn,r(E)‖z‖Mr,n(F )}

where the infimum runs over all r ≥ 1 and all decompositions of x of the form

xi,j =
r

∑

k=1

yi,k ⊗ zk,j.

By Ruan’s theorem, this sequence of norms define an operator space structure on the completion
of E ⊗ F equipped with ‖ . ‖h = ‖ . ‖(h,1). The resulting operator space, which is called the
Haagerup tensor product of E and F is denoted by E ⊗h F .
In this setting, a bilinear map u : E × F → B(K) is said to be completely bounded, in short
c.b, if and only if the associated linear map û : E ⊗F → B(K) extends completely boundedly
to E ⊗h F . We define ‖u‖cb = ‖û‖cb. This notion goes back to Christensen and Sinclair [9].

We will often use the following classical identities for hilbertian operator spaces :

Kc ⊗min Hr = Kc ⊗h Hr = K(H, K),

where K stands for the compact operators and

Kc ⊗min Hc = Kc ⊗h Hc = (K ⊗2 H)c

and similarly for rows using duality.
There is another notion of complete boundedness for bilinear maps, called jointly complete

boundedness. Let E, F be operator spaces, K a complex Hilbert space, and u : E×F → B(K)
a bilinear map. u is said to be jointly completely bounded (in short j.c.b) if and only if
for any C∗-algebras B1 and B2, u can be boundedly extended to a bilinear map (u)B1,B2

:
E ⊗min B1 × F ⊗min B2 → B(K) ⊗min B1 ⊗min B2 taking (e ⊗ b1, f ⊗ b2) to u(e, f) ⊗ b1 ⊗ b2.
We put ‖u‖jcb = sup

B1, B2

‖(u)B1,B2
‖. Observe that in this definition B1 and B2 can be replaced by

operator spaces.
We will need the fact that every bilinear c.b map is a j.c.b map with ‖u‖jcb ≤ ‖u‖cb. Let K

be a complex Hilbert space and u : B(K) × Kc → Kc the bilinear map taking (ϕ, k) to ϕ(k).
Then it is easy to see that u is a norm one bilinear cb map.
To simplify our notations, HC will be, most of the time, replaced by H in the rest of this
section. For the same reason we will denote by H⊗n

c (respectively H⊗n
r ) the column Hilbert

space (H⊗n
C

)c (respectively the row Hilbert space (H⊗n
C

)r).

Lemma 4 Let n ≥ 1. The mappings a∗ : H⊗n
c → B(FT (HC)) and a : H

⊗n

r → B(FT (HC))
are completely bounded with cb-norms less than

√
Cq.

Proof : Let us start with the proof of the statement concerning a∗. Let n ≥ 1, K a complex
Hilbert space and (αi)|i|=n a finitely supported family of B(K) such that

‖
∑

|i|=n

αi ⊗ ei‖B(K)⊗minHc
< 1.
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Then, since the maps a∗(ei) acts diagonally with respect to degrees of tensors in FT (HC),

‖
∑

|i|=n

αi ⊗ a∗(ei)‖B(K)⊗minB(FT (HC)) = sup
k≥0

‖
∑

|i|=n

αi ⊗ a∗(ei)‖B(K)⊗minB(H⊗k ,H⊗n+k)

To compute the right term, fix k ≥ 0 and let (ξj)|j|=k be a finitely supported family of
vectors in K such that

‖
∑

|j|=k

ξj ⊗ ej‖K⊗2H⊗k < 1.

By (3) we have

‖
∑

i, j

αi(ξj) ⊗ ei ⊗ ej‖K⊗2H⊗n+k ≤ C
1

2
q ‖

∑

i, j

αi(ξj) ⊗ ei ⊗ ej‖K⊗2H⊗n⊗2H⊗k .

Let u : B(K) × Kc → Kc given by (ϕ, ξ) 7→ ϕ(ξ). Recall that ‖u‖cb = 1. Consequently,
‖u‖jcb ≤ 1. Therefore, we deduce

‖
∑

i, j

αi(ξj) ⊗ ei ⊗ ej‖K⊗2H⊗n⊗2H⊗k = ‖
∑

i, j

αi(ξj) ⊗ ei ⊗ ej‖Kc⊗minH⊗n
c ⊗minH⊗k

c

= ‖(u)H⊗n
c , H⊗k

c
(
∑

i

αi ⊗ ei,
∑

j

ξj ⊗ ej)‖

≤ ‖u‖jcb‖
∑

i

αi ⊗ ei‖B(K)⊗minH⊗n
c

‖
∑

j

ξj ⊗ ej‖Kc⊗minH⊗k
c

≤ 1

By the result just proved, for any complex Hilbert space K and for any finitely supported
family (αi)|i|=n of B(K) we have

‖
∑

|i|=n

αi ⊗ a∗(ei)‖B(K)⊗minB(FT (HC)) ≤
√

Cq‖
∑

|i|=n

αi ⊗ ei‖B(K)⊗minH⊗n
c

Taking adjoints on both sides we get

‖
∑

|i|=n

α∗
i ⊗ a(Uei)‖B(K)⊗minB(FT (HC)) ≤

√

Cq‖
∑

|i|=n

α∗
i ⊗ ei‖B(K)⊗minH

⊗n

r

Changing α∗
i to αi and using the fact that U (reversing the order of tensor) is a complete

isometry on H⊗n
r , we get that for any finitely supported family (αi)|i|=n of B(K) we have

‖
∑

|i|=n

αi ⊗ a(ei)‖B(K)⊗minB(FT (HC)) ≤
√

Cq‖
∑

|i|=n

αi ⊗ ei‖B(K)⊗minH
⊗n

r
.

In other words,

a : H
⊗n

r → B(FT (HC))

is also completely bounded with norm less than
√

Cq. �
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Corollary 1 For any n ≥ 0, and any k ∈ {0...n},

Uk : H⊗n−k
c ⊗h H⊗k

r → B(FT (HC))

is completely bounded with cb-norm less than Cq.

Proof : Let us denote by M the multiplication map B(FT (HC))⊗hB(FT (HC)) → B(FT (HC))
given by A ⊗ B 7→ AB, M is obviously completely contractive. We have the formula

Uk = M(a∗ ⊗ aJ )

if J : H⊗k → H
⊗k

is the conjugation (which is a complete isometry). By injectivity of the
Haagerup tensor product and by Lemma 4 we deduce that

‖a∗ ⊗ aJ ‖cb ≤ Cq

Then
‖Uk‖cb ≤ ‖M‖cb‖a∗ ⊗ aJ ‖cb ≤ Cq

�

Recall that, by definition, Γ∞
T (HR) is identified with ΓT (HR) by the mapping sending ξ to

W (ξ). Thus Γ∞
T (HR) inherits the operator space structure of ΓT (HR). In particular for all

n ≥ 0, H⊗n will be equipped with the operator space structure of En = {W (ξ), ξ ∈ H⊗n}.
Theorem 1 below was first obtained via elementary, but long, computations. In the version

presented here, we have chosen to follow an approach indicated to us by Eric Ricard. This
approach is much more transparent but involves some notions of operator space theory.

Theorem 1 Let K be a complex Hilbert space. Then for all n ≥ 0 and for all ξ ∈ B(K) ⊗min

H⊗n we have

max
0≤k≤n

‖(Id ⊗ R∗
n, k)(ξ)‖ ≤ ‖(Id ⊗ W )(ξ)‖min ≤ Cq(n + 1) max

0≤k≤n
‖(Id ⊗ R∗

n, k)(ξ)‖ (13)

where Id denotes the identity mapping of B(K), and where the norm ‖(Id ⊗ R∗
n, k)(ξ)‖ is that

of B(K) ⊗min H⊗n−k
c ⊗min H⊗k

r .

Proof : For the second inequality, we use the Wick formula :

W |H⊗n =

n
∑

k=0

Uk R∗
n,k.

Let ξ ∈ B(K) ⊗min H⊗n, then by corollary 1

‖(Id ⊗ W )(ξ)‖min ≤ Cq

n
∑

k=0

‖(Id ⊗ R∗
n, k)(ξ)‖

which yields the majoration.

For the minoration, for x ∈ H⊗n−k
c ⊗ H⊗k

r ⊂ B(H
⊗k

, H⊗n−k), we claim that

Pn−kUk(x)
∣

∣

H⊗k = x(UJ ) (14)
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where Pn−k is the projection on tensors of rank n − k in FT (HC). Assuming this claim and
recalling that U and J are (anti)-isometry, we get that for any x ∈ B(K)⊗min H⊗n−k

c ⊗min H⊗k
r

‖x‖B(K)⊗minH⊗n−k
c ⊗minH⊗k

r
≤ ‖Pn−k‖B(FT (HC))‖(Id ⊗ Uk)(x)‖B(K)⊗minB(FT (HC))

The conclusion follows applying this inequality to x = (Id ⊗ R∗
n, k)(ξ)

To prove (14), it suffices to consider an elementary tensor product with entries in any basis
of H , say x = ei ⊗ ej . Consider el ∈ H⊗k, a length argument gives that a(J ej).el is of the form
λΩ, with

λ = 〈a(J ej).el, Ω〉 = 〈el,JUej〉
We deduce that

Pn−kUk(ei ⊗ ej).el = 〈el, UJ ej〉 ei.

On the other hand, viewing x as an operator, we compute

x(JU).el = x.(JUel) = 〈ej ,JUel〉 ei

But since U is unitary and J antiunitary,

〈ej,JUel〉 = 〈el, UJ ej〉

This ends the proof. �

The following theorem is our main result.

Theorem 2 ΓT (HR) is not injective as soon as dim(HR) ≥ 2.

Proof : Let d ≤ dim HR. For all n ≥ 0, (ξi)|i|=n will denote a real orthonormal family of H⊗n

equipped with the T-scalar product of cardinal dn. For example one can take ξi = (P
(n)
T )−

1

2 ei.
Suppose that ΓT (HR) is injective. Fix n ≥ 1. By injectivity we have,

τ(
∑

|i|=n

W (ξi)
∗W (ξi)) ≤ ‖

∑

|i|=n

W (ξi) ⊗ W (ξi)‖

It is clear that
τ(

∑

|i|=n

W (ξi)
∗W (ξi)) = dn

On the other hand, applying twice (13) consecutively

‖
∑

|i|=n

W (ξi) ⊗ W (ξi)‖ ≤ (n + 1)2C2
q max

0≤k,k′≤n
{‖

∑

|i|=n

R∗
n,k′(ξi) ⊗ R∗

n,k(ξi)‖}

The norms are computed in H
⊗n−k′

c ⊗min H
⊗k′

r ⊗min H⊗n−k
c ⊗min H⊗k

r for fixed k and k′. We
can rearrange this tensor product and use the comparison with the Hilbert Schmidt norm : Let
t =

∑

|i|=n R∗
n,k′(ξi) ⊗ R∗

n,k(ξi),

‖t‖
H

⊗n−k′

c ⊗minH
⊗k′

r ⊗minH⊗n−k
c ⊗minH⊗k

r

= ‖t‖
(H

⊗n−k′
⊗2H⊗n−k)c⊗min(H

⊗k′
⊗2H⊗k)r

≤ ‖t‖
(H

⊗n−k′
⊗2H⊗n−k)⊗2(H

⊗k′
⊗2H⊗k)
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≤ ‖t‖
H

⊗n−k′
⊗2H

⊗k′
⊗2H⊗n−k⊗2H⊗k

Finally, we use the estimates on R∗
n,k :

‖t‖
H

⊗n−k′

c ⊗minH
⊗k′

r ⊗minH⊗n−k
c ⊗minH⊗k

r

≤ ‖t‖
H

⊗n−k′
⊗2H

⊗k′
⊗2H⊗n−k⊗2H⊗k

≤ Cq‖
∑

|i|=n

ξi ⊗ ξi‖H
n
⊗2Hn

But by the choice of ξi : ‖
∑

|i|=n ξi ⊗ ξi‖H
n
⊗2Hn = dn/2.

Combining all inequalities above, we deduce

dn ≤ C3
q (n + 1)2dn/2

which yields a contradiction when n tends to infinity as soon as d ≥ 2. �

Let C∗
T (HR) be the C∗-algebra generated by all gaussians G(f) for f ∈ HR. The preceding

theorem implies directly that C∗
T (HR) is not nuclear as soon as dim(HR) ≥ 2 (cf. [8] Corollary

6.5). Actually the preceding argument can be modified to prove that C∗
T (HR) does not have the

weak expectation property as soon as dimHR ≥ 2. Recall that a C∗-algebra A has the weak
expectation property (WEP in short) if and only if the canonical inclusion A → A∗∗ factorizes
completely contractively through B(K) for some complex Hilbert space K. By the results of
Haagerup (cf. [14] Chapter 15) a C∗-algebra A has the WEP if and only if for all finite family
x1, . . . , xn in A

‖
n

∑

i=1

xi ⊗ xi‖A⊗maxA = ‖
n

∑

i=1

xi ⊗ xi‖A⊗minA (15)

Corollary 2 C∗
T (HR) does not have the WEP as soon as dim HR ≥ 2.

Proof : Let us use the same notations as in the preceding proof and suppose that C∗
T (HR) has

the WEP. Fix n ≥ 1, by (15) we have

‖
∑

|i|=n

W (ξi) ⊗ W (ξi)‖C∗
T

(HR)⊗maxC∗
T

(HR) ≤ ‖
∑

|i|=n

W (ξi) ⊗ W (ξi)‖C∗
T

(HR)⊗minC∗
T

(HR) (16)

To estimate from below the left handside of (16) observe that Φ : C∗
T (HR) → C∗

T (HR)′ taking

W (ξ) to JUW (ξ)JU = Wr(JUξ) is a ∗- representation. Thus

‖
∑

|i|=n

W (ξi) ⊗ W (ξi)‖C∗
T

(HR)⊗maxC∗
T

(HR) = ‖
∑

|i|=n

W (ξi) ⊗ Wr(JUξi)‖C∗
T

(HR)⊗maxC∗
T

(HR)′

≥ ‖
∑

|i|=n

W (ξi)Wr(JUξi)‖B(FT (HC))

≥
∑

|i|=n

〈JUξi, W (ξi)
∗Ω〉T

≥
∑

|i|=n

〈JUξi, W (JUξi)Ω〉T

≥
∑

|i|=n

‖JUξi‖2
T = dn
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Then we can finish the proof as for Theorem 2. �

Remark : Non nuclearity of C∗
T (HR) is equivalent to the fact that C∗

T (HR) does not have the
completely positive approximation property as soon as dim(HR) ≥ 2. However it is possible
to prove that C∗

T (HR) has the metric approximation property, by truncation of the Ornstein-
Uhlenbeck semigroup. Arguing by duality and interpolation, it is not difficult to show that
Lp (ΓT (HR)) has the metric approximation property for 1 ≤ p < ∞. However, at the time of
this writing, we are not able to prove that C∗

T (HR) has the completely bounded approximation
property.

4 The case of the q−Araki-Woods algebras

For this last section we mainly refer to [12] where the q−Araki-Woods algebras are defined as
a generalization of the q− deformed case of Bożejko and Speicher on the one hand, and the
quasi-free case of Shlyakhtenko (cf. [16]) on the other. More precisely, let HR be a real Hilbert
space given with Ut, a strongly continuous group of orthogonal transformations on HR. Ut can
be extended to a unitary group on the complexification HC. Let A be its positive non-singular
generator on HC : Ut = Ait. A new scalar product 〈 . , . 〉U is defined on HC by the following
relation :

〈ξ, η〉U = 〈2A(1 + A)−1ξ, η〉
We will denote by H the completion of HC with respect to this new scalar product.

For a fixed q ∈] − 1, 1[, we now consider the q−deformed Fock space associated with H

and we denote it by Fq (H). Recall that it is the Fock space with the following Yang-Baxter
deformation T defined by :

T : H ⊗ H −→ H ⊗ H

ξ ⊗ η 7−→ qη ⊗ ξ

Or equivalently, for every n ≥ 2 and σ ∈ Sn we have

ϕ(σ) = qi(σ)Uσ

where i(σ) denotes the number of inversions of the permutation σ and Uσ is the unitary on
H⊗n defined by

Uσ(f1 ⊗ · · · ⊗ fn) = fσ−1(1) ⊗ · · · ⊗ fσ−1(n)

In this setting, the q−Araki-Woods algebra is the following von Neumann algebra

Γq(HR, Ut) = {G(h), h ∈ HR}′′ ⊂ B (Fq (HC))

Let H ′
R

= {g ∈ H, 〈g, h〉U ∈ R for all h ∈ HR} and

Γq,r(H
′
R
, Ut) = {Gr(h), h ∈ H ′

R
}′′

where Gr(h) is the right gaussian corresponding to the right creation operator.
Since Γq,r(H

′
R
, Ut) ⊂ Γq(HR, Ut)

′, HR + iHR = H and H ′
R

+ iH ′
R

= H (cf. [16]), it is easy to
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deduce that Ω is cyclic and separating for both Γq(HR, Ut) and Γq,r(H
′
R
, Ut). So Tomita’s theory

can apply : recall that the anti-linear operator S is the closure of the operator defined by :

S(xΩ) = x∗Ω for all x ∈ Γq(HR, Ut)

Let S = J∆
1

2 be its polar decomposition. J and ∆ are called respectively the modular conju-
gation and the modular operator. The following explicit formulas hold (cf. [12] and [16])

S(h1 ⊗ · · · ⊗ hn) = hn ⊗ · · · ⊗ h1 for all h1, . . . , hn ∈ HR

∆ is the closure of the operator
∞
⊕

n=0

(A−1)⊗n and

J(h1 ⊗ · · · ⊗ hn) = A− 1

2 hn ⊗ · · · ⊗ A− 1

2 h1 for all h1, . . . , hn ∈ HR ∩ domA− 1

2

By Tomita’s theory, we have
Γq(HR, Ut)

′ = JΓq(HR, Ut)J

Let h ∈ HR, as in [16] we have Jh ∈ HR′, then, since Ω is separating for Γq,r(H
′
R
, Ut), we obtain

that JG(h)J = Gr(Jh) ∈ Γq,r(H
′
R
, Ut), so that

Γq(HR, Ut)
′ = Γq,r(H

′
R
, Ut)

Moreover, if ξ ∈ Γq(HR, Ut)Ω, then Jξ ∈ Γq,r(H
′
R
, Ut)Ω and since Ω is separating, we get

JW (ξ)J = Wr(Jξ).

Recall that if Ut is non trivial, the vacuum expectation ϕ is no longer tracial and is called
the q−quasi-free state. In fact in most cases (cf. [12] Theorem 3.3), Araki-Woods factors are
type III von Neumann algebras.

When A is bounded, it is clear that our preliminaries are still valid with minor changes.
For example we should get an extra ‖A−1‖k/2 = ‖A‖k/2 in the estimation of ‖Uk‖. Note, in
particular, that the Wick formula, as stated in Lemma 2, is still true, and that the following
analogue of Bożejko’s scalar inequality holds : (proved in [12])
If A is bounded, (ηu)u∈U is a family of vectors in H⊗n and (αu)u∈U a finitely supported family
of complex numbers then :

∥

∥

∥

∥

∥

∑

u∈U

αuηu

∥

∥

∥

∥

∥

q

≤
∥

∥

∥

∥

∥

∑

u∈U

αuW (ηu)

∥

∥

∥

∥

∥

≤ C
3

2

|q|

‖A‖n+1

2 − 1

‖A‖ 1

2 − 1

∥

∥

∥

∥

∥

∑

u∈U

αuηu

∥

∥

∥

∥

∥

q

(17)

It is also a straightforward verification that Lemma 4, still hold in this setting. Observe also
that U is a unitary on Fq (H) : this follows from the fact that for every n ≥ 1, P

(n)
q , A⊗n and

U commute on H⊗n. Note that J is no more an anti unitary from H⊗k to H⊗k, but since
Uk(I ⊗ S) = M(a∗ ⊗ aU), we can deduce, as in the proof of Corollary 1, that Uk(I ⊗ S) :
H⊗n−k

c ⊗h H⊗k
r → B(FT (HC)) is completely bounded with norm less than Cq, where I stands

for the identity of H⊗n−k
c . Following the same lines as in the proof of Theorem 1 we get :

Theorem 3 Assume A is bounded. Let K be a complex Hilbert space. Then for all n ≥ 0 and

for all ξ ∈ B(K) ⊗min H⊗n we have

max
0≤k≤n

‖(Id ⊗ ((I ⊗ S)R∗
n, k)(ξ)‖ ≤ ‖(Id ⊗ W )(ξ)‖min (18)
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≤ Cq(n + 1) max
0≤k≤n

‖(Id ⊗ ((I ⊗ S)R∗
n, k)(ξ)‖

where Id denotes the identity mapping of B(K), I the identity of H⊗n−k
c , and where the norms

of the left and right handsides are taken in B(K) ⊗min H⊗n−k
c ⊗min H⊗k

r .

It is known (cf. [12]) that if Ut has a non trivial continuous part then Γq(HR, Ut) is not
injective. Using our techniques we are able to state a non-injectivity criterion similar to that
of [12] but independent of q.

Corollary 3 If either

dim EA ({1})HC ≥ 2

or for some T > 1
dim EA (]1, T ])HC

T 2
>

1

2

where EA is the spectral projection of A, then Γq(HR, Ut) is non injective.

Proof : We can assume that Ut is almost periodic, then we can write

(HR, Ut) = (ĤR, IdĤR
)
⊕

α∈Λ

(H
(α)
R

, U
(α)
t )

where

H
(α)
R

= R
2, U

(α)
t =

(

cos(t ln λα) − sin(t ln λα)
sin(t lnλα) cos(t ln λα)

)

, λα > 1

Thus the eigenvalues of the generator A(α) of U
(α)
t are λα and λ−1

α .

If dim EA ({1})HC ≥ 2 then dim ĤR ≥ 2 and since Ut is trivial on ĤR, the non-injectivity
follows from Theorem 2.

For the remaining case we first suppose that dim HR = 2, Ut is not trivial and that Γq(HR, Ut)
is injective. For all n ≥ 1, A⊗n is a positive operator on H⊗n equipped with the deformed
scalar product, we will denote by λ and λ−1 the eigenvalues of A with λ > 1 and by (ξi)|i|=n an
orthonormal basis of eigenvectors of A⊗n associated to the eigenvalues (λi)|i|=n. Since Γq(HR, Ut)
is semidiscrete we must have for every n ≥ 1

‖
∑

|i|=n

Wr(Jξi)W (ξi)‖ ≤ ‖
∑

|i|=n

Wr(Jξi) ⊗ W (ξi)‖ = ‖
∑

|i|=n

JW (ξi)J ⊗ W (ξi)‖

It is easily seen that

‖
∑

|i|=n

Wr(Jξi)W (ξi)‖ ≥
∑

|i|=n

〈Ω, Wr(Jξi)W (ξi)Ω〉q

=
∑

|i|=n

〈JW (ξi)
∗JΩ, W (ξi)Ω〉q

=
∑

|i|=n

〈∆ 1

2 ξi, ξi〉q = Trace

(

(

A− 1

2

)⊗n
)

= (λ
1

2 + λ− 1

2 )n
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On the other hand, the map from JΓq(HR, Ut)J to Γq(HR, Ut) taking JW (ξ)J to W (ξ) is a
∗-isomorphism, hence

‖
∑

|i|=n

JW (ξi)J ⊗ W (ξi)‖min = ‖
∑

|i|=n

W (ξi) ⊗ W (ξi)‖min

Applying (18) twice, and recalling that on H⊗k, S = J∆
1

2 = J(A⊗k)−
1

2 and that J : H⊗k
r →

H⊗k
r is completely isometric, we get

‖
∑

|i|=n

W (ξi) ⊗ W (ξi)‖min ≤ C2
q (n + 1)2 max

0≤k,k′≤n
‖

∑

|i|=n

(I ⊗ S)R∗
n, k′(ξi) ⊗ (I ⊗ S)R∗

n, k(ξi)‖

≤ C2
q (n + 1)2 max

0≤k,k′≤n
‖

∑

|i|=n

(I ⊗ (A⊗k′)−
1

2 )R∗
n, k′(ξi) ⊗ (I ⊗ (A⊗k)−

1

2 )R∗
n, k(ξi)‖

Where the norms are computed in H⊗n−k′

c ⊗min H⊗k′

r ⊗min H⊗n−k
c ⊗min H⊗k

r . For a fixed
(k, k′), let us denote by

t =
∑

|i|=n

(I ⊗ (A⊗k′)−
1

2 )R∗
n, k′(ξi) ⊗ (I ⊗ (A⊗k)−

1

2 )R∗
n, k(ξi)

As in the proof of Theorem 2, we have the following Hilbert-Schmidt estimate :

‖t‖
H⊗n−k′

c ⊗minH⊗k′
r ⊗minH⊗n−k

c ⊗minH⊗k
r

≤ ‖t‖
H⊗n−k′⊗2H⊗k′⊗2H⊗n−k⊗2H⊗k

Recall that R∗
n, k : H⊗n → H⊗n−k⊗2 H⊗k is of norm less than C

1

2

|q| and that ‖(A⊗k)−
1

2‖B(H⊗k) =

λ
k
2 . Hence,

‖t‖
H⊗n−k′⊗2H⊗k′⊗2H⊗n−k⊗2H⊗k ≤ C|q|λ

n‖
∑

|i|=n

ξi ⊗ ξi‖H⊗n⊗H⊗n

≤ C|q|(
√

2λ)n

Combining all inequalities we get

(λ
1

2 + λ− 1

2 )n ≤ C3
|q|(n + 1)2(

√
2λ)n.

We now return to the general case, we fix T > 1 and we denote by λ1, . . . , λp the eigenvalues
of A in ]1, T ] counted with multiplicities. Thus we have p = dim EA (]1, T ])HC. It is easy to
deduce from our first step that for any n ≥ 1 we have

(

p
∑

i=1

λ
1

2

i + λ
− 1

2

i )n ≤ C3
|q|(n + 1)2(2p)

n
2 T n

Since for any i we have λ
1

2

i + λ
− 1

2

i ≥ 2 we deduce

(2p)n ≤ C3
|q|(n + 1)2(2p)

n
2 T n

19



So we necessarily have
2p

T 2
≤ 1

that is to say
dim EA]1, T ]HC

T 2
≤ 1

2

�
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