
HAL Id: hal-00077588
https://hal.science/hal-00077588

Submitted on 31 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Level Power Analysis for Embedded DSP Software
Johann Laurent, Nathalie Julien, Eric Martin

To cite this version:
Johann Laurent, Nathalie Julien, Eric Martin. High Level Power Analysis for Embedded DSP Soft-
ware. 2000, pp 100. �hal-00077588�

https://hal.science/hal-00077588
https://hal.archives-ouvertes.fr

1/6

High Level Power Analysis for Embedded DSP Software

Johann LAURENT Nathalie JULIEN Eric MARTIN
LESTER South Brittany University E-mail: name@iuplo.univ-ubs.fr

Centre de recherche rue Saint Maudé 56325 LORIENT cedex France

Abstract
We introduce here a high level power estimation

method; the power consumption of a whole algorithm is
evaluated at a behavioral level instead of the classical
study conducted at the instruction level. We present non
exhaustive results on the energy models elaborated for a
Texas Instruments DSP. This original energy estimation
method has been applied to a classical algorithm (FIR)
and validated by measurements; promising results provide
an error of less than 8% .

1. Introduction

In embedded applications, power dissipation is
currently a major parameter. Power consumption
optimization allows to reduce both the weight and the size
of a circuit through minimizing the batteries (or increasing
their duration) as well as moderating the importance of
cooling systems. These reductions are essential for all
portable applications (GSM) or spatial tele-
communications.

To control the power consumption, it is well-known
that algorithm transformations are more efficient than
technologic optimizations [1]; furthermore, such
modifications are less expensive and allow to restrict the
time-to-market. So it is very important to evaluate the
application consumption at the early stage of the system
design.

Especially for the new information and
communication technologies, like real time image coding,
the processing needs are always higher and therefore
require more computation capacities. In such complex
applications, the new generation of Digital Signal
Processors (DSP) are usually used. They are characterized
by elaborated architectures: a deep pipeline, VLIW
instructions, memory caches and possibly superscalar
architectures.

Differing of all other recent works on power
consumption optimization for DSP which operate at the
instruction level [2], we have chosen to conduct the study
at a behavioral level. Such a methodology can also take
into account the other architectural components (i.e.
memories) and may include optimizations through
compiler directives and high level code transformations.

Until now, the estimation of an algorithm consumption
was conducted using an instruction level model [3]. In the
first place, measures of all the instruction set and all
interactions between these instructions had to be realized.
This step is very expensive in time and must be started
again even when the DSP architecture is slightly modified.
Moreover, with new DSP generations, the instruction set
increases significantly and the parallelism possibilities
have to be taken into account. For the memory aspect, it’s
well-known that the power consumption part due to the
external memory access is a more and more important
problem in latest applications [1-4]. Even if there are some
works on memory optimization, they are poorly related to
an estimation method able to predict the power
consumption of a whole algorithm.

Section 2 will present the framework of the
methodology leading to the general functional analysis we
proposed and then its implementation to a specific DSP.
Afterwards, section 3 develops some examples of the
power characterization for functional block such as
memory and fetch stages. From adequate measurements,
experimental energy variations are computed for each part
of the architecture. Finally, a whole signal processing
application is provided as example of the method, and the
estimates are validated by the measures.

2. Methodology and functional analysis

A. Framework of the methodology

The purpose is to develop power optimization
strategies on DSP programming for an algorithm in C
language. The complete methodology proposed is
presented in Figure 1.

First the C algorithm is divided in different C
primitives (i.e. if, do, while...). We then use a toolbox
called Consumption estimation to estimate the power
consumption of all the different primitives and, by
combining these estimates, to evaluate the power
consumption of the entire algorithm. The next toolbox
Optimization is used for rewriting the C algorithm.

2/6

Figure 1: Methodology of power estimation and
optimization

Both the toolboxes Consumption estimation and
Optimization require the construction of a complete
library, enclosing accurate power estimates validated by
precise measurements.

B. General functional analysis

For realizing first this library, we use a functional
analysis, based on a power consumption study of the
architecture and the pipeline of recent DSP. The processor
can have an elaborated architecture since it can integrate a
deep pipeline, VLIW instructions, internal memories that
can be used in cache mode and parallelism possibilities for
the instructions.

We start to cluster the architectural components
according to their impact on energy dissipation and their
interactions. The general representation presented in Figure
2 can be modified for a particular DSP, by adding some
clusters and removing some others.

In a second time, we determine the interactions
between the different clusters and qualify them in terms of
power consumption. Generally, there are interactions
between the CU (Control Unit) and all other clusters
because it integrates all the control registers. In addition,
there are interactions between the MMU (Memory
Management Unit) and the PU (Processing Unit) through
the loading of data from an external memory via the DMA
(Direct Memory Access). We also find relations between
the IMU (Instructions Management Unit) and the PU
because after the instruction loading in the IMU, these are
then executed in the PU. Finally, there is a last interaction
between the MMU and the IMU which is generated by the
link between the DMA and fetch stages. Generally,
interactions between the CU and the others clusters are

looked upon as negligible for our domain of interest
(image and audio processing applications).

MMU: Management Memory Unit
CU: Control Unit
IMU: Instructions Management Unit
PU: Processing Unit

Figure 2: Functional analysis example

C. Specific functional analysis

We develop in this paragraph an example of the
functional analysis applied to the TMS320C6201, one of
the last generation of TEXAS INSTRUMENTS DSP. This
processor uses a complex architecture since it has a deep
pipeline (11 stages), VLIW instructions, parallelism
possibilities (up to 8 parallel instructions) and its internal
program memory can be used as cache memory.

In Figure 3, we present the application of our
functional analysis methodology for this particular type of
DSP. For more clearness, only interactions between
clusters are reported; inter-clusters interactions, although
studied, are not represented here.

An important interaction for all the clusters has come
out that is the Clock Tree which in effect acts upon the
power consumption especially at the nominal frequency (F
= 160 MHz) of this circuit.

It could be noticed that the DECODE stage of the
pipeline is now separated into two steps: the dispatching
part (DP) of the instructions is included in the IMU and
only the instruction decoding (DC) is remaining in the PU.

This type of DSP contains a specific block which is
the External Memory InterFace (EMIF), used for all the
external access of both the program memory (in the IMU)
and the data memory (in the PU). So we have chosen to
make it occur in each involved part.

C
Algorithm

C
primitives

cutting

C algorithm
consumption
estimation

Consumption
estimation of

primitives

Library
Optimization

Rewriting of
C algorithm

DMA

MMU

CTRL registers
Peripheral bus

PLL
Interruptions

CU

FETCH stages

CTRL/MEM PRG

IMU

REGISTERS

UAL / MPY

DECODE stages

CTRL/MEM DATA

PU

3/6

Figure 3: Interactions for the TMS320C6201

In addition, the DSP contains two different register
files and multiplexers allow to cross over the datapath. It
also appears as a new cluster.

Afterwards, the qualification of different interactions
is characterized by the consumption laws presented below.
These laws allow us to estimate the power consumption for
each part of a program and subsequently, for a whole
algorithm.

3. Power characterization of functional
blocks

To validate the estimates of energy dissipation for the
primitives and work up the library, we have first to realize
measurements for each functional block or cluster of
blocks. Indeed, these measures will permit to elaborate
consumption laws who will be used for generating our
energy models.

Two kinds of measures are done, one for measuring
the average current dissipated by the DSP core Icore and
another for measuring the execution time of the program
Texe. Knowing these two parameters and the core supply
voltage Vdd (2.5 V) allow us to determine the average
energy E thanks to the following expression (1):

E = Icore * Texe * Vdd (1)

To qualify the different interactions and the clusters,
we have defined scenarii; they are program sets that
stimulate just one cluster or one block, in order to measure
the absolute or relative part of this element in the total
power dissipation. So far, these programs have been
written in assembler but in further works, all the study will
be conducted for C language algorithms. These scenarii are
composed of an unbounded loop that allows to perform the
measures and E is calculated for one iteration. The effect

of the loop to the dissipation is ensured negligible relative
to all the rest of the scenario. Based on these measures, we
determine the evolution of the consumption for a
functional block or cluster.

We will present in this section some typical examples
of the achieved work on the TMS320C6201, especially on
the memory and on the fetch stages.

A. Memory modes

First, we will expose the results for the 4 different
modes of the internal program memory. The first one is
the MAPPED mode where all the program is in the internal
memory. For the CACHE mode, external accesses are
done when instructions are not in the cache memory (case
of a cache miss). The FREEZE mode is similar to the
CACHE mode except that the cache is only read and never
written. At least, in the BYPASS mode, all instructions are
read in external memory.

Figure 4 summarizes the variations with the frequency
of both the average current of DSP core and the energy for
one iteration of the program. As the operating scenario
generates no cache miss, the results for the FREEZE mode
are here identical to those for the CACHE mode.

First, we can confirm that the current is not a
sufficient criteria. Actually, the BYPASS mode absorbs
less current than the CACHE mode (about –16%) but it
consumes more energy (about +250%). In fact, it is the
energy optimization for a given task that allows to increase
portable circuit autonomy. Moreover, for each memory
mode, the energy is stable with the frequency. The most
efficient mode is, of course, the MAPPED one. All the
others can be characterized relatively to it with about
+35% of energy cost for the cache management and around
+400% for the BYPASS mode.

MEMORY
MODE

CURRENT
(mA)

ENERGY
(µjoule)

F = 40MHz
MAPPED 281 70
CACHE 448 112
BYPASS 369 369

F = 133MHz
MAPPED 886 66
CACHE 1399 105
BYPASS 1224 367

F = 160MHz
MAPPED 1040 65
CACHE 1560 98
BYPASS 1464 366

Figure 4: Characteristics of memory modes

DMA

MMU

FETCH / DP

CTRL/MEM PRG
EMIF

IMU

REGISTERS

MULTIPLEXORS

DC/UAL/MPY

CTRL/MEM DATA
EMIF

PU

E
xt

er
n

a
l/i

n
te

rn
a

l m
em

or
y

a
cc

es
s

Decoding

Clock tree

4/6

B. Memory cache

As explained before, the increasing complexity of the
embedded applications needs more and more memory
space. But the internal memory size is limited so, to
execute these applications, we may often use external
memory. In order to know how the energy evolves when
the cache miss varies, measures have been done for a same
scenario. The parallelism rate α must be taken into
account; when α = 1, the parallelism is maximum and 8
instructions are executed in parallel and when α = 1/8, all
the instructions are executed sequentially.

In Figure 5, the measured average energy for the same
scenario is represented as a function of the cache miss in
percentage and α for F = 160 MHz.

Figure 5: Cache miss energy

We can see that there is an over-consumption of more
than 2000% between a program which generates 0% of
cache miss and a program which generates 100% of cache
miss. Moreover, the energy variations with the parallelism
rate are less predominant; at 0% of cache miss rate, the
energy dissipated for α = 1 is 300% lower than for α = 1/8.
This gap shrinks when the cache miss rate increases (about
–15% at 100% of cache miss rate). In conclusion, it is
crucial to first avoid the cache miss before using the
parallelism possibilities.

C. FETCH stages

The last example presented concerns the FETCH
stages. In our case, this consumption can not be over-
looked as the processor uses VLIW instructions and
therefore loads several instructions in the same time (8
instructions for the TMS320C6201).

To realize these measures, we program a scenario in
the MAPPED mode that excites only the FETCH stages in
the DSP architecture. Indeed, this excitation changes with

the parallelism rate because, when α = 1 the excitation is
maximum and 8 instructions are loaded at each cycle time.
When α = 1/8, the excitation is minimum and so 8
instructions are loaded all the 8 cycle times.

Figure 6 presents the results of these measures. It
confirms that the current is linear with the frequency and
that it increases when the parallelism rate increases. It has
to be noticed that this current ICLK+FETCH+PRG represents the
current used by the FETCH stages IFETCH, the current used
by the clock tree ICLK and also the current used by the
program memory IPRG.

Figure 6: Current used by the FETCH stages

From these measures, we infer an experimental
consumption law given by the expression (2):

ICLK+FETCH+PRG = (aα + b) F + cα + d (2)

ICLK+FETCH+PRG: average current (in mA)
F: frequency (in MHz)
a = 5.21 mA/MHz; b = 4.19 mA/MHz
c = 42.4 mA; d = 7.6 mA

Such a procedure has been used for the other
blocks of the architecture in order to deduce the energy
evolution laws of the entire DSP.

4. Algorithm estimation

In this section, we present the original method used to
estimate a whole algorithm (for the moment at the
assembler level) and its application for a typical signal
processing algorithm, the FIR. These results, compared to
the measurements, allow to validate our method.

0
200
400
600
800

1000
1200
1400
1600
1800

0% 50% 100%

CACHE MISS RATE

ENERGY
by

iteration
(µjoule)

α = 1

α = 1/4

α = 1/8 0

200

400

600

800

1000

1200

1400

1600

1800

0 100

Frequency (MHz)

C
ur

re
nt

 (
m

A
)

α = 1

α = 1/4

α = 1/8

5/6

A. Estimation method

The estimation method is based on the specific
functional analysis presented above and uses the energy
laws obtained through the experiments. Figure 7
synthesizes the different parameters to take into account
for each functional block of our architecture.

Figure 7: Estimation functional parameters

For the IMU, we have to consider which memory
mode is operating. If the CACHE mode is used, we add the
cache management cost and we analyze the cache miss
rate; we also can add the cache miss cost. In this cluster,
we study also the parallelism rate α that determines the
FETCH stages cost. It could be reminded that the cost of
both the clock tree and the program memory are also
included in the FETCH stages cost.

For the PU, the processing unit cost is determined
from the average number of used processing units per
cycle time. We also study where the data are stored if
either DMA or external access are needed.

The global cost of the application can now be
evaluated by addition of all the different costs we have
determined.

B. Estimation example

The considered application is a FIR filter that uses 16
coefficients and for which all the samples and coefficients
are in internal data memory. Energy results are presented
in Figure 8 for two cases: both samples and coefficients are
simple (Simple case) and then complex (Complex case).

FIR 16
IMU PU Global

Estimates
Measures Error

(%)

Simple 130.4 21.4 151.8 162 6.2

Complex 130.4 21.4 151.8 164.4 7.7

Figure 8: FIR16 energy estimations and measures (in
µJoule per iteration)

The first remark is that the estimates are independent
of the considered case; in fact, as our method is operating
at high level of abstraction, the data variations are not
taken into account and it is obvious in this example that it
is not the predominant source of power dissipation in
complex architecture: only 1.5% of the whole consumption
is here due to the data variations.

The estimation error is less than 8% in the worst case
but it could be noticed that the energy estimation is always
lower than the measured value. Actually, this is due to the
estimation of the PU: when many loads are made in the
program, it generates more cycle time to operate them and
then the average number of processing units per cycle time
becomes improper. It would be efficient to divide this
functional block into two parts, one for the load aspect and
the other only for the processing. Future works will precise
the functional estimation laws in order to eliminate this
problem.

As few works actually exist on power estimation, we
have not found any possible comparison on this example
with another estimation method. One of the next works
will be to validate our method with a more complex
application and, if possible, to compare the results with
those of an instruction level model.

5. Conclusion

We have introduced a high level power estimation
method providing the energy estimates of an entire
algorithm through a behavioral analysis of the DSP
architecture instead of the usual approach conducted at the
instruction level. This method has been implemented on
one of the last generation of Texas Instruments DSP
(TMS320C6201), built around a complex architecture. The
results obtained for a FIR algorithm, at the assembler level,
are validated by measurements with an error of less than
8%. In future works, after having improved this promising
method for other applications, the final purpose of the
project will be to extend it to the estimation of C language
algorithms.

DMA

MMU

UAL/MPY/DC/
REGISTER

- Processing unit cost
(unit number/cycle
time)

DATA MEMORY
- External access cost
- Internal access cost

MEMORY MODE
- Cache management cost
- External access cost
- Internal access cost

CACHE MISS RATE

PARALLELISM RATE
- FETCH stages cost

IMU

PU

6/6

References

[1] J.M. Rabaey, M. Pedram "Low power design methodologies"
Kluwer Academic Publishers 1996.

[2] Vivek Tiwari, Sharad Malik, Andrew Wolfe "Power analysis
of embedded software: a first step towards software power
minimisation." IEEE Transactions on VLSI Systems, December
1994.

[3] Mike Tien-Chien-Lee, Vivek Tiwari, Sharad Malik and
Masahiro Fujita "Power Analysis and Minimisation Techniques
for Embedded DSP Software." IEEE Transactions on VLSI
Systems Vol5 N°1 March 1997.

[4] P. Vanoostende et al. "Issues in low power design for telecom"
IEEE 1995 pp 591-593.

[5] Berkeley Design Technology, inc.
www.bdti.com/articles/lowpower.htm 1994.

[6] M.C Rinard "Compiling for low power consumption"
www.cag.lcs.mit.edu/~~rinard/F98.6.892/handouts/h2/

