
SAME 2000, October 25th 2000 1

Abstract :

We present here a high level power estimation
method for Digital Signal Processor (DSP) based on an
original functional analysis together with practical
validations. Instead of classical methods conducted at
instruction level, we evaluate the power consumption of
a whole algorithm at a behavioural level; first are
extracted for the given algorithm characteristics such as
parallelism rate, cache miss rate, memory mode... and
then these parameters are applied to empirical
consumption laws. As example, the energy model
elaborated for a TEXAS INSTRUMENTS DSP is
provided; our method applied to classical algorithm
(FIR) has also been validated by measurements.

1. Introduction

Power optimisation is currently recognised as a
major issue for future developments in
telecommunication applications in order to reduce both
the weight and the size of the batteries, to increase the
autonomy of portable applications or to moderate the
cooling system.

To be power efficient, algorithm transformations in
addition to technological optimisations are essential [1];
furthermore, such modifications are easy to applied and
allow to decrease the time-to-market. However, to
evaluate the power impact of these transformations, we
need to estimate the application consumption at the
early stage of the system design.

In 'process greedy' applications such as the new
information and communication technologies, the use of
the last DSP generation has been largely extended in
order to improve the computation possibilities. These
processors are characterised by complex architectures: a
deep pipeline, VLIW control instructions, memory
caches and possibly superscalar architectures. Moreover,
it is well-known that the power consumption part due to
the external memory access is a more and more

important problem in this kind of applications [1-4] ; so
the power estimation model has to take into account this
aspect. Even if there are some advanced works on
memory optimisation, they are poorly related to an
estimation method able to predict the power
consumption of a whole algorithm [5].

Differing of all the other recent works on power
consumption optimisation for DSP [2], we have chosen
to conduct the study at a behavioural level instead of the
instruction level in order to avoid two main problems:
on one hand, a "low level" approach does not consider
the other architectural components such as memory and
on the other hand, being at a behavioural level allows to
include optimisations through compiler directives and
high level code transformations.

Furthermore, at this time, the only way proposed to
evaluate power consumption at the instruction level
implies, for a given DSP, to first measure all the
different instructions set and their interactions [2,3]. So
even when the DSP is slightly modified (as a new
version of the same architecture), all the measures have
to be achieved again; in addition, with the last DSP
generation, the available instructions are so numerous
that the characterisation measurements are very time
expensive.

Section 2 will present the framework of the
methodology and its implementation to a specific DSP,
the TEXAS INSTRUMENT TMS320C6201.
Afterwards, section 3 develops the power
characterisation for the main functional blocks and the
empirical consumption laws that we have obtained.
Finally, in section 4 we present the application of our
method on one typical processing algorithm (a FIR) and
the validations of these results with measurements.

2. Methodology and functional analysis

A. Framework of the methodology

Our purpose is to develop power optimisation
strategies on DSP programming for an algorithm in C
language as represented in Figure 1.

 SAME 2000

Session 6: EDA/FLOW

High Level Power Estimation for DSP

Johann LAURENT, LESTER Laboratory
Nathalie JULIEN, LESTER Laboratory

Eric MARTIN, LESTER Laboratory

LORIENT

SAME 2000, October 25th 2000 2

To validate the efficiency of different optimisation
techniques, it is convenient to be able to predict the
power consumption of the initial algorithm and its
modifications through a complete estimation method. To
prove the reliability of the estimates, the definition of a
precise measurement methodology is also needed. These
measures must be executed rapidly and have to
characterise accurately the DSP power behaviour in
relation with the task it has to execute.

First, from the C algorithm are extracted different
parameters characterising this algorithm and the
different functional clusters it uses: the clock frequency
F, the execution time Texe, the memory mode, if
necessary the cache miss rate, the parallelism rate for
the processing units, the number of memory access...
Then, we use a toolbox called Cluster consumption laws
to estimate the power consumption of each functional
cluster used by the algorithm and, by combining these
estimates, to evaluate the power consumption of the
whole algorithm. The next toolbox Optimisation is used
for rewriting the C algorithm.

Figure 1 Complete methodology of power estimation
and reduction

To construct the toolboxes Cluster consumption
laws and Optimisation, we must realise a complete
library which encloses empirical but accurate power
consumption estimates validated by measurements.

The new DSP generation can have an elaborated
architecture since it can integrate a deep pipeline, VLIW
control instructions, internal memories that can be used
in cache mode and parallelism possibilities for the
instructions. On the hardware point of view, each
different architectural component contributes to the
entire power consumption of the processor. But current
compilers optimise very efficiently the parallelism both
for the instructions and for the processing. The only part
that is not properly treated by the compilers is
concerning the memory management (cache memory,
external access…). So the designers are concentrating

all their efforts on this problem and there is a strong
need of adapted estimation and optimisation tools.

B. General functional analysis

For realising the library, we use a functional
analysis based on a power consumption study of the DSP
architecture including its pipeline. All the functional
blocks are analysed, developed and reorganised in
clusters which are architectural components defined
according to their impact on energy dissipation and their
interactions. The general representation presented in
Figure 2 can be modified for a particular DSP, by
adding or/and removing some clusters.

After analysis, we obtain four different functional
blocks: MMU (Memory Management Unit), IMU
(Instructions Management Unit), PU (Processing Unit),
CU (Control Unit). In a second time, we determine the
interactions between the different clusters and we
qualify them in terms of power consumption.

MMU: Management Memory Unit
CU: Control Unit
IMU: Instructions Management Unit
PU: Processing Unit

Figure 2: Functional analysis example

From this analysis we define three steps for
determining the power consumption of a block. First all
the characteristic parameters of the block are described
i.e. for the program memory part, the cache miss rate,
the memory mode… as illustrated later. Then, a set of
testing programs called scenarios are developed: either
we can determine one scenario that includes only a
block (or a cluster) or this power part is defined
relatively to the others by varying the scenario. Then,
time and current measurements (absolute or relative) are
performed leading to the energy. This approach allows
us to obtain finally direct relations between architecture
and power consumption.

C
Algorithm

Algorithm
parameters
extraction

C algorithm
consumption
estimation

Cluster
consumption

laws

Library
Optimization

Modified C
algorithm

DMA

MMU

CTRL registers
Peripheral bus

PLL
Interruptions

CU

FETCH stages

CTRL/MEM PRG

IMU

REGISTERS

UAL / MPY

DECODE stages

CTRL/MEM DATA

PU

SAME 2000, October 25th 2000 3

C. Specific functional analysis on Texas
Instruments TMS320C6201

This last generation processor uses a complex
architecture with a deep pipeline (up to 11 stages),
VLIW instructions, parallelism possibilities (up to 8
parallel instructions) and its internal program memory
can be used in cache mode. In Figure 3, the result of this
specific functional analysis is presented with only
interactions between blocks for more clearness.

This DSP has a particular block which is the
External Memory InterFace (EMIF), used for all the
external memory access and then appearing for both the
program memory (IMU) and the data memory (PU). It
also contains two different registers files and
multiplexers that allow to cross the datapath and
represented as new clusters. Moreover, it could be
noticed that the DECODE stage of the pipeline is now
separated into two steps: the dispatching part (DP) of
the instructions is included in the IMU and only the
instruction decoding (DC) is remaining in the PU.

Figure 3: Interactions for the TMS320C6201

The interactions between the CU and all other clusters
through the control registers are negligible because these
registers are rarely modified during the algorithm execution.
Another weak link is the one between the DMA (Direct
Memory Access) and the fetch stages (IMU) because, for the
mapped memory mode, the DMA can only be used to load
the internal program memory at the boot phase. On the other
hand, an important interaction exists between the MMU and
the PU through the loading of data from an external
memory via the DMA. We also have a relation between IMU
where instructions are loaded and the PU where they are
executed. Otherwise, the Clock Tree is a strong interaction
for all the clusters. Indeed, for the new DSP generation, this
frequency can be up to 300MHz and the clock tree
consumption can represent up to 40% of the global energy.

The characterisation of these blocks, clusters and
their interactions by consumption laws is presented
below.

3. Power characterisation of functional
blocks and clusters

Two kind of measures has to be realised, one for
measuring the average current dissipated by the DSP
core Icore and another to obtain the execution time of the
program Texe. The energy per iteration E can also be
determined by knowing these two parameters and the
core supply voltage Vdd (2.5V) via the expression (1):

E = Icore * Texe * Vdd (1)

The scenarios (testing programs) are actually
written in assembler in order to excite each cluster
individually; they are composed of an unbounded loop
which size ensures that its effect to the dissipation is
negligible relative to all the rest of the scenario. With
the different measures obtained by varying each
parameter for a given block or cluster, we can determine
the evolution of the power consumption.

We will present as example in the next section, the
achieved work on the IMU block containing the fetch
stages and the program memory.

A. The FETCH/DP cluster

As the TMS320C6201 processor uses VLIW
instructions and therefore loads several instructions in
the same time, the consumption of the fetch stages can
not be neglected. The power consumption of this cluster
depends on two parameters: the frequency F and the
parallelism rate α. When α=1, both the parallelism and
the fetch excitation are maximum and 8 instructions are
loaded at each cycle to be executed in parallel. When
α=1/8, the excitation is minimum and so 8 instructions
are loaded all the 8 cycle times because the instructions
will be executed sequentially. By analysing the
assembler source, it is easy to deduct the average
parallelism rate for the whole algorithm or a part of it.

On the Figure 4, the results confirm that the current
is linear with the frequency and increases with the
parallelism rate. It has to be noticed that is represented
the current used by the fetch stages IFETCH together with
the clock tree current ICLK and the current of the internal
program memory IPRG.

FETCH / DP

CTRL/MEM PRG
EMIF

IMU

DMA

MMU

REGISTERS

MULTIPLEXERS

DC/UAL/MPY

CTRL/MEM DATA
EMIF

PU

E
xt

er
na

l/i
nt

er
na

lm
em

or
y

a
cc

es
s

Decoding

Clock tree

SAME 2000, October 25th 2000 4

Figure 4: Current variations for the FETCH/DP
cluster

From these measures, we establish a consumption
law given by the expression (2):

ICLK+FETCH+PRG = (aα + b) F + cα + d (2)
ICLK+FETCH+PRG : average current (mA)
F : frequency (MHz)
a = 5.21mA/MHz; b = 4.19mA/MHz
c = 42.4mA; d = 7.6mA

α
parallelism rate

1/8 1/5 1/2 1

E
µjoule/iteration

100 98 77 27

Figure 5: Energy variations for the FETCH/DP
cluster

Finally, we remark that the energy per iteration E is
constant in the frequency domain for a given parallelism
rate α as represented in Figure 5. It corroborates that the
energy is optimised when the parallelism rate increases,
that can be completely managed by the compiler.

B. Memory modes

If we consider now the second cluster of the IMU
block, it concerns the program memory part. The first
parameter that we can define for this cluster is the
memory mode of the algorithm (or part of it) which has
an important effect on the final power consumption.

So we will present here the results obtained for the
four different modes of the internal program memory.
For the MAPPED mode, all the program is in the
internal memory. In the CACHE mode, external
accesses are done when the instructions are not in the
cache (case of a cache miss). The FREEZE mode is
similar to the CACHE mode except that the cache is
only read and never written. For the BYPASS mode, all
the instructions are read in the external memory.

MEMORY
MODE

CURRENT
(mA)

ENERGY
(µjoule)

F = 40MHz
MAPPED 281 70
CACHE 448 112
BYPASS 369 369

F = 133MHz
MAPPED 886 66
CACHE 1399 105
BYPASS 1224 367

F = 160MHz
MAPPED 1040 65
CACHE 1560 98
BYPASS 1464 366

Figure 6: Memory modes characteristics

Figure 6 shows the variations of both the average
current used by the DSP core and the energy used for a
iteration of the program. As the scenario generates no
cache miss, the results for the FREEZE mode are similar
to those for the CACHE mode.

First, we can confirm that the current is not a
sufficient parameter. Indeed, the BYPASS mode absorbs
less current than the CACHE mode (about –16%) but it
consumes more energy (about +250%) without
considering the additional energy cost of the external
memory and I/O buffers.

The energy for each memory mode is also stable
with the frequency. Of course, the most efficient mode is
the MAPPED one. We can characterise the others
relatively to it with about +35% of energy cost for the
cache management and around +400% for the BYPASS
mode.

C. Memory cache

The other parameter concerning the program
memory cluster in the case of the memory cache mode is
the cache miss rate γ. As explained before, the
complexity of the embedded applications is ever-
increasing with the needs of memory space. As the
internal memory size is limited, the use of external
memory is often necessary to the good execution and it
is better for the programmer to use the CACHE mode.
But once the cache is used, it implies that cache misses
may appear together with supplementary consumption
due to the external accesses and due to the I/O buffers.

We have done measures to know how the energy
evolves with the cache miss rate.

In Figures 7 and 8, are represented the execution
time Texe and the measured average energy per iteration
E for the same scenario as functions of the cache miss
rate γ in percentage for F=160MHz and α = 1.

0

50

100

150

200

250

300

350

400

0 50 100

CACHE MISS RATE (%)

E
X

E
C

U
T

IO
N

 T
IM

E
 (

µs
)

a = 1

SAME 2000, October 25th 2000 5

Figure 7: Execution time versus γ

We can remark that the execution time Texe can be
written relatively to N, the number of cycles for the
execution of the program and the frequency F by the
expression (3)

Texe = N (n,α,γ)/F (3)
and N can also be defined as a function of the

number of the instructions in the program n, α and γ.
Each time a cache miss appears, the pipeline is frozen
and then the number of cycles increases rapidly and the
energy follows this rising.

Figure 8: Cache miss energy versus γ

Finally, for this example, we can see that there is an
over-consumption of more than 2000% between a
program with no cache miss and a program with γ =
100%. It could be noticed that this energy also varies
with the parallelism rate α but these variations are less
predominant; for γ = 0%, the energy dissipated for α=1
is 300% lower than for α=1/8 and this gap shrinks about
–15% at γ =100%. In conclusion, it is more important to
avoid the cache misses before improving the parallelism
rate.

Such a similar method has been used to determine
the laws for the other blocks and clusters of the
functional analysis.

4. Algorithm estimation

In this section, we present a method used to
estimate a whole algorithm (for the moment at
assembler level). We will use a typical signal processing
algorithm: a FIR filter. We will compare the result of
our estimations with measures for validating our
method.

A. Estimation method

The estimation method is based on the functional
analysis that we have presented above. We use also the
consumption laws that we have determined for each
functional block. Figure 9 represents the different
parameters to take into account for the architecture
presented as example.

Figure 9: Estimation functional parameters

Generic parameters of the algorithm are the
frequency F, the execution time Texe, the number of
instructions n, the number of cycles N.

For the IMU block, the functional parameters that
we have to extract are: the memory mode, if the CACHE
mode is operating, the cache miss rate γ and the
parallelism rate α..

For the PU block, we determine its cost by knowing
the average number of used processing units per cycle
time β. The consumption law for this cluster (PU) is
given in expression (4).

IPU = 0.64βF (4)
β: average number of processing units used per

cycle time.
F: Frequency (MHz).

 Another parameters concern the data storage with
the number of external Mext and internal Mint accesses
and the possible use of the DMA.

When all costs of the different blocks are known,
the application can evaluated by addition of all the
different clusters costs.

DMA

MMU

UAL/MPY/DC/
REGISTER

- Processing unit cost
(unit number/cycle
time)

DATA MEMORY
- External access cost
- Internal access cost

MEMORY MODE
- Cache management cost
- External access cost
- Internal access cost

CACHE MISS RATE

PARALLELISM RATE
- FETCH stages cost

IMU

PU

0

200

400

600

800

1000

1200

1400

1600

0% 50% 100%

CACHE MISS RATE

ENERGY
by

iteration
(µjoule)

α = 1

0

200

400

600

800

1000

1200

1400

1600

0% 50% 100%

CACHE MISS RATE

ENERGY
by

iteration
(µjoule)

α = 1

SAME 2000, October 25th 2000 6

B. Estimation example

The considered application is a FIR filter that uses
16 coefficients stored with all the samples in internal
data memory. First, we must extract the different
parameters of this algorithm:

- α = 0.36
- F = 160MHz
- γ = 0
- memory mode = MAPPED
- β = 1.595
- Texe = 52.5µs
Then, we inject these parameters in the

consumption laws that we have shown above. The
results are listed below:

ICLK = 4.19F = 670.4mA
IFETCH = 5.21αF+42.401α+7.6 = 323mA
IPU = 163mA

The global consumption is the addition of the
different consumption:

Σ = ICLK + IFETCH + IPU = 1156.4mA i.e.
151.8µjoule.

Figure 10: Repartition of the energy

Figure 10 show that the main consumption is due to
the clock tree (58%), the second consumption is due to
the FETCH stages (28%) and the last one is due to the
PU (14%).

 The results are presented in Figure 10 for complex
coefficients.

FIR 16
IMU PU Global

Estimates
Measures Error

(%)

Complex 130.4 21.4 151.8 164.4 7.7

Figure 10: FIR 16 energy estimations and measures (in
µjoule per iteration)

The error estimation is less than 8% and actually,
we think that this problem is due to the estimation of the
PU. Indeed, if a lot of loads are made by the program, so
several delay times are generated and thus the average

number of processing units per cycle time become
improper. Future works will have to take into account
this parameter to improve our consumption model: we
could divide the PU block in two parts, one for the load
aspect and another for the processing.

One of the next works will also be to validate our
method with a more complex application and, if
possible, to compare our results with those of an
instruction level model.

5. Conclusion

We have introduced an original high level power
estimation method providing the energy estimates of an
entire algorithm; this method is conducted through a
behavioural analysis of the DSP architecture instead of
the usual approach conducted at the instruction level.
This technique has been implemented on one of the last
generation of TEXAS INSTRUMENTS DSP
(TMS320C6201) with a complex architecture. Generic
parameters of the considered algorithm are extracted
such as the memory mode, the parallelism rate, the
cache miss rate… and are applied to empirical
consumption laws providing the dissipated current and
the energy for each functional part of the circuit. The
results obtained for a FIR algorithm, at the assembler
level, have been validated by measurements with an
error of less than 8%. In future works, after having
improved this promising method for other applications,
the final purpose of the project will be to extend it to the
estimation of C language algorithms.

Acknowlegments: we want to thank especially B.
Saget, M. Foulon and B. Foucault of Matra BAe
Dynamics for their contribution to this study.

References

[1] J.M. Rabaey, M. Pedram "Low power design
methodologies" Kluwer Academic Publishers 1996.

[2] Vivek Tiwari, Sharad Malik, Andrew Wolfe "Power
analysis of embedded software: a first step towards software
power minimisation." IEEE Transactions on VLSI Systems,
December 1994.

[3] Mike Tien-Chien-Lee, Vivek Tiwari, Sharad Malik and
Masahiro Fujita "Power Analysis and Minimisation
Techniques for Embedded DSP Software." IEEE Transactions
on VLSI Systems Vol5 N°1 March 1997.

[4] P. Vanoostende et al. "Issues in low power design for
telecom" IEEE 1995 pp 591-593.

[5] Berkeley Design Technology, inc.
www.bdti.com/articles/lowpower.htm 1994.

[6] M.C Rinard "Compiling for low power consumption"
www.cag.lcs.mit.edu/~~rinard/F98.6.892/handouts/h2/

58%28%

14%

CLK

FETCH

PU

