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Abstract. A nano-system in which electrons interact and in contact with Fermi leads gives rise to an
effective one-body scattering which depends on the presence of other scatterers in the attached leads.
This non local effect is a pure many-body effect that one neglects when one takes non interacting models
for describing quantum transport. This enhances the non-local character of the quantum conductance
by exchange interactions of a type similar to the RKKY-interaction between local magnetic moments.
A theoretical study of this effect is given assuming the Hartree-Fock approximation for spinless fermions
of Fermi momentum kF in an infinite chain embedding two scatterers separated by a segment of length
Lc. The fermions interact only inside the two scatterers. The dependence of one scatterer onto the other
exhibits oscillations of period π/kF which decay as 1/Lc and which are suppressed when Lc exceeds the
thermal length LT. The analytical results given by the Hartree-Fock approximation are compared with
exact numerical results obtained with the embedding method and the DMRG algorithm.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 72.10.-d Theory of electronic
transport; scattering mechanisms – 73.23.-b Electronic transport in mesoscopic systems

1 Introduction

The coupling of nano-objects via conduction electrons was
discovered long ago, in the case of spins of magnetic ions,
or of nuclei, which results indirectly from the interaction
of such spins with those of conduction electrons in met-
als. After tracing out the degrees of freedom of the con-
duction electrons, one gets an effective spin Hamiltonian
characterized by an oscillatory long range interaction, the
RKKY-interaction [1,2,3,4], which plays a crucial role in
understanding the large variety of possible ordered spin
structures in magnetic crystals. If Ii is a local magnetic
moment in a metal, the conduction electrons give rise to
an interaction energy between these moments, which can
be described by an Hamiltonian of the form:

HRKKY =
∑

i

∑

j<i

JijIi · Ij (1)

where the coupling term between two moments separated
by a distance Rij behaves as

Jij ∝ 2kFRij cos(2kFRij) − sin(2kFRij)

R4
ij

(2)

in d = 3 dimensions, kF being the Fermi momentum of
the conduction electrons. In d = 1 dimension, this gives a

long range 1/R interaction with oscillations of periodicity
π/kF.

We show in this work that a similar phenomenon char-
acterizes also the quantum conductance of nano-systems
in which electrons interact, coupled via metallic wires.
This phenomenon is very general, and does not require
to include the spin degrees of freedom. Combining Lan-
dauer’s formulation [5] of quantum transport and the
Hartree-Fock approximation, as reviewed in Ref. [6,7], we
show that the scattering matrix of an interacting system
depends on what is embedded at a distance R of the in-
teracting system in the attached leads, this dependence
decaying as 1/Rd with oscillations of periodicity π/kF.
This non local character of the quantum conductance is
another example of the effect of indirect exchange inter-
actions between interacting nano-systems via conduction
electrons, as the RKKY-interaction between local mag-
netic moments.

To study this phenomenon, we take an infinite chain
where spinless fermions do not interact outside two iden-
tical regions where the scattering is a pure many body
effect due to Coulomb repulsions. The chain is described
by a one dimensional tight binding model with nearest
neighbor hopping th = 1. A nearest neighbor repulsion of
strength U acts only between two consecutive sites, in two
regions which are connected by Lc sites where the particles
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do not interact. This model is simple enough to be analyt-
ically solved at a mean field level, using the self-consistent
Hartree-Fock (SCHF) approximation. To simplify the cal-
culations, we take a compensated nearest neighbor repul-
sion which cancels the Hartree terms in the SCHF equa-
tion. But the exchange term modifies the hopping term
coupling the two internal sites of each scatterers, in such
a way that it takes a value v instead of th. In the SCHF ap-
proximation, v is given by a self-consistent equation. Hav-
ing v, it is straightforward to obtain the scattering matrix
S1(v) of one scatterer at the Fermi energy of the infinite
non interacting chain. Using the combination law of the
one-body S-matrices in series, one can get the scattering
matrix S2(v), and hence the dimensionless conductance

gkF

2 (in units of e2/h) of these two many-body scatterers
in series, in the SCHF approximation.

For such a system where two identical many-body scat-
terers are coupled by a perfect wire of Lc sites where the
electrons do not interact, our main result is to show that
the value of v characterizing one scatterer differs from its
value when there is no second scatterer by an oscillatory
term of period π/kF which decays as 1/Lc. In certain lim-
its, v can be given in a simple form as a function of U,Lc

and kF. For instance, for a half-filled chain (kF = π/2)
and weak interactions, the effective hopping term v reads

v ≈ 1 +
2

2 − π + 2π/U
+

(−1)Lc

Lc

(

1

2 − π + 2π/U

)2

. (3)

In this limit, this expression shows how the effective hop-
ping term v characterizing a single scatterer decays as
1/Lc towards its value when it is not in series with an-
other one, with the even-odd oscillations characteristic of
a half-filled chain. Using Eq. (3), it is straightforward to
show how the scattering matrix S1(v) of a single scatterer
is modified by the presence of a second scatterer. We un-
derline that this non local effect is a pure many-body effect
that one neglects when one takes non interacting models
for describing quantum transport. This non local effect
was first numerically discovered in a previous work [8], us-
ing the embedding method [9,10,11,12,13,14,15,16] and
the DMRG algorithm [17,18] valid for one dimensional
fermions. In this work, we give a simple theory of this ef-
fect based on the SCHF approximation, which turns out
to qualitatively describe this non local effect for all values
of U , including its suppression in the limit when U → ∞.
The SCHF approximation becomes quantitatively accu-
rate for small strengths U of the interaction. Moreover,
we will also show that this non local effect vanishes when
the length Lc of the coupling wire exceeds the thermal
length LT characterizing free fermions in one dimension.

The paper is organized as follows:
In section 2, we consider a single scatterer with a near-

est neighbor repulsion of strength U embedded in an infi-
nite chain. In the first sub-section, the Hartree-Fock equa-
tion of this simple model is written, leading us to study
a chain where the hopping term between the two cen-
tral sites is equal to v instead of th = 1. This one body
model is solved in the second sub-section, allowing us to

obtain the implicit equation giving v in the SCHF approx-
imation. The system being symmetric upon reflection, we
use scattering phase shifts and Friedel sum rule for this
purpose. In the third sub-section, the conductance of this
single scatterer is studied as a function of the strength
U of the nearest neighbor repulsion, the SCHF behav-
ior being compared to the exact results given by the em-
bedding method and the DMRG algorithm. In the fourth
sub-section, the Friedel oscillations of the particle density
around the scatterer are described. In a last sub-section, a
correlation function inside the attached leads is calculated
at a distance p from the scatterer, which will be useful for
describing the case of two scatterers in series. This func-
tion is shown to decay as 1/p with oscillations of periodic-
ity π/kF towards an asymptotic value characterizing the
chain without scatterer.

In section 3, we study the conductance of two scatter-
ers in series, coupled by a scattering free wire of Lc sites.
In the first sub-section, simple analytical expressions are
given in the limit where the strength U of the interaction
acting inside the two scatterers remains small. Notably, we
show that the effective hopping term v characterizing each
scatterer differs from the value obtained in the section 2
by a correction which decays as 1/Lc with oscillations of
periodicity π/kF. In the second sub-section, the Hartree-
Fock equation is solved exactly for arbitrary values of U ,
allowing us to show that the weak U -expansion assumed
in the first sub-section remains valid till U ≈ th. The ef-
fective hopping term v characterizing a single scatterer
being modified when it is in series with another, the im-
plication of this non local effect upon the conductance is
illustrated in the third sub-section, the SCHF curves de-
scribing the conductance oscillations of the two scatterers
in series being similar to the curves numerically obtained
in Ref. [8].

In section 4, the results for two scatterers in series
given by the SCHF theory are compared to the exact nu-
merical values given in Ref. [8]. The SCHF theory turns
out to give a good qualitative description of the non lo-
cal effect, which becomes quantitatively accurate when
U < th for very small scattering regions which we have
considered.

In section 5, we show that this non local effect is sup-
pressed at a temperature T , when the length Lc of the
coupling wire exceeds the thermal length LT ∝ vF/T of
free fermions in one dimension, vF being the Fermi veloc-
ity.

We conclude in section 6 by a summary of the main
results, underlining their relevance for a theory of the non
local character of quantum transport measurements, and
suggesting straightforward extensions of this theory out-
side one dimension.
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2 Transmission through a single many-body

scatterer

2.1 Microscopic model and exchange energy

To study the indirect exchange interaction via conduction
electrons between nano-systems in which the electrons in-
teract, we begin to study the simplest many-body scat-
terer, taking a tight-binding model of spinless fermions
which do not interact, unless they occupy the two central
sites 0 and 1 of an infinite chain, which costs a nearest
neighbor repulsion energy U . Assuming the self consis-
tent Hartree-Fock approximation, this leads us to study
an analytically solvable one body model where the hop-
ping term between the two central sites is modified by
the interaction, modification which has to be calculated
self-consistently. The many-body scattering system is de-
scribed by an Hamiltonian H = Hkin +Hint. The kinetic
and interaction terms respectively read

Hkin = −
∞
∑

p=−∞

th(c†pcp−1 + c†p−1cp)

Hint = U [n1 − V+] [n0 − V+] .

(4)

The hopping amplitude th = 1 between nearest neigh-
bor sites sets the energy scale, cp (c†p) is the annihilation

(creation) operator at site p, and np = c†pcp. The poten-
tial V+ is due to a positive background charge which ex-
actly compensates the Hartree term in the SCHF equa-
tion. The conduction band corresponds to energies −2 <
E = −2 cosk < 2 (k real). H is invariant under reflections
(p − 1/2 → −p + 1/2) and exhibits particle-hole symme-
try if the chain is half filled. In this case, V+ = 1/2, the
Fermi momentum kF = π/2 and one has a uniform den-
sity without Friedel oscillations around the central region
where the fermions interact.

In the SCHF approximation, one assumes a variational
ground state which is a Slater determinant of one-body
wave-functions ψα(p) of energies Eα < EF . Since in our
model the negative charge inside the scatterer is exactly
compensated by a positive background charge, the Hartree
term is zero and we have just to take into account the
exchange term in the Hartree-Fock equation [19,20] giving
the ψα(p):

−ψα(p+ 1)−ψα(p− 1)−
∑

p′

tHF
p,p′ψα(p′) = Eαψα(p). (5)

The exchange term

tHF
p,p′ =

∑

Eβ<EF

Up,p′ψ∗
β(p′)ψβ(p) (6)

with the taken nearest neighbor repulsion

Up,p′ = U {δp,0δp′,1 + δp,1δp′,0} , (7)

is very simple. It is zero, excepted between the two cen-
tral sites where the fermions interact, where it yields an

−1 −1 −1 −1 −v(U) −1 −1 −1 −1

0 1

Fig. 1. Effective one body model obtained assuming the
Hartree-Fock approximation for a single many body scatterer
(Hamiltonian (4)). The hopping term (indicated above) v(U)
between the sites at p = 0 and p = 1 (indicated below) depends
on U and kF.

increase of the strength of the hopping term coupling the
two central sites by an amount

tHF
0,1 (U) = U

∑

Eα<EF

ψ∗
α(1)ψα(0) = U

〈

c†1c0

〉

. (8)

The Hartree-Fock equation describes a tight-binding
model which is represented in Fig.1, where the hopping
term between the two central sites is no longer equal to
th = 1, but takes an interaction dependent value v, which
is given by an implicit equation:

v = th + tHF
0,1 (v) = 1 + tHF

0,1 (v) (9)

for th = 1.

2.2 Scattering phase shifts and density of states

The effective one-body model being symmetric upon the
reflection (p− 1/2 → −p+1/2), its Hamiltonian has even
and odd standing-wave solutions ψ0

k(p) and ψ1
k(p), which

can be written [21] inside the conduction band as:

ψ0
k(p) =

√

2

L
cos

(

k(p− 1

2
) − δ0(k)

)

ψ1
k(p) =

√

2

L
sin

(

k(p− 1

2
) − δ1(k)

)

,

(10)

at the left side of the scatterer (p ≤ 0) and

ψ0
k(p) =

√

2

L
cos

(

k(p− 1

2
) + δ0(k)

)

ψ1
k(p) =

√

2

L
sin

(

k(p− 1

2
) + δ1(k)

)

,

(11)

at its right side (p ≥ 1). The normalization factor
√

2
L

corresponds to a chain of length L → ∞. The scatter-
ing when v 6= 1 gives rise to two phase shifts δ0(k) and
δ1(k). Writing the Schrödinger equation inside the scat-
terer (sites 0 and 1) for the even and odd solutions, one
gets:

−(2 cosk)ψ0,1
k (0) = − ψ0,1

k (−1) − vψ0,1
k (1)

−(2 cosk)ψ0,1
k (1) = − vψ0,1

k (0) − ψ0,1
k (2),

(12)
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which yields the following expressions for the even and
odd phase shifts:

tan δ0(k) =
v − 1

v + 1
cot

(

k

2

)

(13)

and

tan δ1(k) =
1 − v

v + 1
tan

(

k

2

)

. (14)

In addition, a value of v > 1 gives rise to two bound
states located in the central region with energies outside
the conduction band. The first one of energy

Ebs1 = −(v + v−1) (15)

has an even wave-function given by

ψbs1(p) =

(
√

v − v−1

2

)

v−|p−1/2|, (16)

while the second of energy

Ebs2 = v + v−1 (17)

has an odd wave-function given by

ψbs2(p) =

(
√

v − v−1

2

)

(−1)pv−|p−1/2|. (18)

When a scatterer is introduced in the chain (v 6= 1),
this yields a correction δρ(E) to the density of states ρ(E),
which is given [22] for the even and odd components inside
the conduction band by:

δρ0,1(E) =
1

π

∂δ0,1(E)

∂E
. (19)

δρ(E) satisfies [22] Friedel sum rule:

δ0(EF ) + δ1(EF )

π
=

∫ EF

−∞

δρ(E)dE = νLS (20)

for a scatterer of length LS embedded in a chain with a
uniform filling factor ν. This implies that

∫ EF

−∞
δρ(E)dE

∫ EF

−∞
ρ(E, v = 1)dE

=
LS

L
→ 0 (21)

when L→ ∞: The change δρ(k) of the density of real mo-
menta k (inside the conduction band) vanishes in the limit
of infinite lead length. When L → ∞, the only change in
the density ρ(k) due to the scatterer comes from the bound
states ψbs of imaginary momenta K = ik which are oc-
cupied outside the conduction band at zero temperature.
For an arbitrary function F (k) at zero temperature, this
gives the relation:

∑

k<kF

F (k) =
L

2π

∫ kF

0

F (k)dk +
∑

bs

F (Kbs), (22)

the last term being a sum over the occupied bound states.

2.3 〈c†1c0〉 and conductance gkF

1 (v)

To obtain the implicit equation giving v, we need to calcu-

late 〈c†1c0〉, which is the sum of contributions A1,0
cb due to

the conduction band and A1,0
bs due to the occupied bound

states. Assuming that EF < 2, only the even bound state
is occupied and:

〈

c†1c0

〉

=A1,0
cb +A1,0

bs1

A1,0
cb =

L

2π

∫ kF

0

dk

{

1
∑

i=0

ψi∗
k (1)ψi

k(0)

}

=

∫ kF

0

dk

π

{

4v cos k sin2 k

1 + v4 − 2v2 cos(2k)

}

=
v−2 − 1

2π
arctan

(

2v sin kF

v2 − 1

)

+
sin kF

πv
,

A1,0
bs1 =ψ∗

bs1(1)ψbs1(0) =
1 − v−2

2

(23)

Using this, one can calculate v as a function of the
interaction strength U and the Fermi momentum kF by
solving the implicit equation

v = 1 + U〈c†1c0(v)〉. (24)

Once the change of the effective hopping term v between
the two central sites is obtained, it is straightforward to
determine the transmission coefficient t1(v). At zero tem-

perature, the Landauer conductance gkF

1 (v) (in units of
e2/h) of the central region where the electrons interact is
given by this effective one-body transmission coefficient
|tkF

1 (v)|2. Using the Landauer formula, one gets the trans-
mission coefficient and the dimensionless conductance

tkF

1 (v) =
v(e2ikF − 1)

v2 − e−2ikF

gkF

1 (v) =|tkF

1 (v)|2 =
4v2 sin2 kF

v4 − 2v2 cos(2kF) + 1
.

(25)

The behavior of gkF

1 as a function of the interaction
strength U , obtained assuming the Hartree-Fock approx-
imation (Eq. (25)) is shown in Fig. 2 for kF = π/2. An

accurate value for gkF

1 can be obtained using the embed-
ding method and the DMRG algorithm, as introduced in
Refs. [9,10]. Using this exact method, we have also calcu-

lated gkF

1 at different interaction strengths U . The data are
presented in Fig. 2, showing that the SCHF approxima-
tion is a good approximation for a very short interacting
region of moderate interaction strength U .

2.4 Friedel oscillations of the density outside half-filling

For a half-filled chain, the system has particle-hole sym-
metry, and the density np = 〈c†pcp〉 must be equal to 1/2 at
each site p. This is due to two opposite effects which com-
pensate each other: a decrease of the contribution of the
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0

0.25

0.5

0.75

1

g
k

F

1g
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F

1

0 1 2 3 4 5 6 7

UU

Fig. 2. Conductance gkF

1 of a single scatterer as a function of
the interaction strength U for kF = π/2. The solid line gives
the SCHF behavior (Eq. (25)). The circles are the exact results
obtained with embedding method and the DMRG algorithm.

kF =
π
2

kF =
π
32

0

0.02

0.04

0.49

0.5

〈c
† p
c p
〉

〈c
† p
c p
〉

−100 −50 0 50 100

pp

Fig. 3. Particle density np = 〈c†pcp〉 at sites p around a scat-
terer with an interaction strength U = 0.4. For kF = π/32
(lower part of the figure): Contributions of the bound state
(dashed line) and of the conduction band (dotted-dashed line)
to np and Friedel oscillations of np around the average fill-
ing 1/32 (solid line). For kF = π/2 (upper part of the figure):
Contribution of the conduction band (dotted-dashed line) and
total uniform density np = 1/2.

conduction band to the density that one can expect when
there is a local repulsion acting inside the scatterer, and
the contribution of the interaction-induced bound state to
the density. These contributions are plotted separately in
Fig. 3. For half-filling (upper part of Fig. 3), one gets an
exact compensation of the two opposite effects for having
a uniform density, and particle-hole symmetry is satisfied.
Outside half-filling (lower part of Fig. 3), one gets large
Friedel oscillations of the density around the scatterer, as
shown in Fig. 3 for kF = π/32 (filling factor 1/32). Since
the Hartree term is exactly compensated in our model,
those oscillations are only due to the exchange energy.

0.29

0.3

0.31

0.32

0.33

0.34

〈c
† p
+

1
c p
〉

〈c
† p
+

1
c p
〉

0 5 10 15 20 25 30

pp

Fig. 4. Oscillatory decay of 〈c†p+1cp〉 towards its asymptotic
value 1/π as a function of p for kF = π/2, U = 0.1 (circles)
and U = 0.5 (diamonds) obtained by using (28)-(30).

2.5 〈c†p+1cp〉 outside the scatterer

The conductance gkF

1 (v) was obtained assuming infinite
perfect leads outside the central scattering region. To
know to what extend this condition does really matter,

we calculate 〈c†p+1cp〉 outside the two sites where the elec-
trons interact. When p ≥ 1,

〈

c†p+1cp

〉

= Ap+1,p
cb +Ap+1,p

bs1 , (26)

where the contributions Ap+1,p
cb of the conduction band

and Ap+1,p
bs1 of the bound state to 〈c†p+1cp〉 read:

Ap+1,p
cb =

L

2π

∫ kF

0

dk

{

1
∑

i=0

ψi∗
k (p+ 1)ψi

k(p)

}

=

∫ kF

0

dk

π
{cos k −G(v, k)}

G(v, k) =
(

v2 − 1
) v2 cos(2kp− k) − cos(2kp+ k)

1 + v4 − 2v2 cos(2k)

Ap+1,p
bs1 =

v2 − 1

2
v−2p−1.

(27)

After integration, one obtains:

〈

c†p+1cp

〉

=
sinkF

π
+

v2 − 1

π(2p+ 1)
X(kF, p, v) (28)

where the function X(kF, p, v) is defined as:

X(kF, p, v) = ImF (kF, p, v) (29)

F (kF, p, v) =2 F1(1,
1

2
+ p,

3

2
+ p, v2e2ikF)eikF(2p+1),

2F1(α, β, γ, z) being the Gauss hypergeometric function

2F1(α, β, γ, z) =

∞
∑

n=0

(α)n(β)n

(γ)nn!
zn (30)
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−1 −v(U) −1 −1 −1 −1 −1 −v(U) −1

−Lc

2
Lc

2 + 10 1

Fig. 5. Effective one body model describing two identical
many-body scatterers (Hamiltonian (33)) coupled by Lc sites
where the electrons do not interact.

with (x)n =
∏n

m=0(x + m). Using an expansion of the
Gauss hypergeometric function valid in the limit p→ ∞:

2F1(1,
1

2
+ p,

3

2
+ p, v2e2ikF) → 1

1 − v2e2ikF
, (31)

one obtains for the behavior of 〈c†p+1cp〉 far from the scat-
terer a simpler expression:

〈

c†p+1cp

〉

→ 1

π

{

sinkF +
Hv

kF
(p)

2p+ 1

}

(32)

where Hv
kF

(p) is an oscillatory function given by

Hv
kF

(p) =
(v2 − 1)

[

−v2 sin(kF(2p− 1)) + sin(kF(2p+ 1))
]

1 + v4 − 2v2 cos(2kF)
.

Outside the region where the electrons interact,

〈c†p+1cp〉 exhibits oscillations of periodicity π/kF which
have a slow power law decay towards an asymptotic value
sin kF/π. Those oscillations are illustrated in Fig. 4 for
kF = π/2 and two values of U .

3 Transmission through two many-body

scatterers coupled via conduction electrons

We now consider an infinite tight binding chain with the
same kinetic Hamiltonian than defined in Eq. (4), but with
an interaction Hamiltonian:

Hint =U(nLc
2

+2 − V1+)(nLc
2

+1 − V2+)

+U(n−Lc
2

− V2+)(n−Lc
2

−1 − V1+).
(33)

This Hamiltonian describes two nano-systems where
the electrons interact, as previously studied, which are
coupled via an ideal lead of Lc sites where the electrons
do not interact. Two positive background potentials V1+

and V2+ are introduced to compensate the Hartree terms
of the SCHF equation. The total Hamiltonian is symmet-
ric under the reflection p − 1/2 → −p + 1/2. At half-
filling, one has particle-hole symmetry, V1+ = V2+ = 1/2
and the density np = 1/2 is uniform. As before, the ex-
change leads to a modified effective hopping term v in
the SCHF-approximation . Because of reflection symme-
try, this modification must be the same for the two scatter-
ers. The corresponding one-body model is sketched in Fig.
5. However, the value v for each scatterers when they are
in series differs from the value v obtained in the previous
section for the single scatterer. This is due to the indirect

exchange interaction which takes place between two scat-
terers coupled via conduction electrons. This indirect ex-
change interaction gives rise to an effect upon the quantum
conductance of two nano-systems in series, which vanishes
only if the length Lc of the coupling wire becomes infinite.
We first study this effect in the limit when U → 0, before
solving exactly the Hartree-Fock equation. We give only
the results for Lc even. The extension to the case where
Lc is odd is straightforward. Moreover, for kF = π/2 and
odd values of Lc, the conductance of the two scatterers in

series g
π/2
2 = 1, independently of v. Because of this, we

just need v for the even value of Lc, at half-filling.

3.1 Expansion in the weak interaction limit

For writing the self-consistent equation giving the effec-
tive hopping term v of one scatterer in series with another,
we need to calculate the ground state expectation value

of 〈c†Lc
2

+2
cLc

2
+1(v, v)〉2 inside one scatterer when another

identical scatterer is located at the sites −Lc

2 −1 and −Lc

2 .
This value depends of the two modified hopping terms
which occurs inside each scatterer, and which are equal
because of reflection symmetry. In the limit of a weak in-
teraction strength U , v → 1+ (v > 1) and one can expend:

〈

c†Lc
2

+2
cLc

2
+1(v, v)

〉

2
=
〈

c†Lc
2

+2
cLc

2
+1(1, 1)

〉

2

+ (v − 1)

{

∂

∂v
C2(Lc, v)

}

v→1+

+O
(

(v − 1)2
)

(34)

where

C2(Lc, v) =
〈

c†Lc
2

+2
cLc

2
+1(1, v)

〉

2
+
〈

c†Lc
2

+2
cLc

2
+1(v, 1)

〉

2
.

We note that the above expansion involves only terms with
a single scatterer, for which one can write

〈

c†Lc
2

+2
cLc

2
+1(1, 1)

〉

2
=
〈

c†1c0(1)
〉

〈

c†Lc
2

+2
cLc

2
+1(v, 1)

〉

2
=
〈

c†1c0(v)
〉

〈

c†Lc
2

+2
cLc

2
+1(1, v)

〉

2
=
〈

c†Lc+3cLc+2(v)
〉

.

(35)

Using Eqs. (23) and (28), one gets when v → 1 (v > 1)

∂

∂v

〈

c†1c0(v)
〉

→ 1

2
− sinkF

π
∂

∂v

〈

c†p+1cp(v)
〉

→ 2X(kF, p, 1)

π(2p+ 1)
,

(36)

the function X(kF, p, v) being defined in Eq. (29).
In the weak interaction limit, the effective hopping

term v characterizing each of the two scatterers in series
is given by the self-consistent equation:

1 − v ≈ −U
{

1

π
+ (v − 1)

∂

∂v
C2(Lc, v)

}

v→1+

(37)
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where C2(Lc, v) = 〈c†1c0(v)〉+ 〈c†Lc+3cLc+2(v)〉. One even-
tually obtains:

v ≈ 1 +

{

π(2 − U)

2U
− 2X(kF, Lc + 2, 1)

2Lc + 5
+ sin kF

}−1

.

(38)
when U → 0. One can see that the indirect exchange in-
teraction gives rise to a correction which decays with a
power law as the length Lc of the coupling wire increases.
This is when Lc → ∞ that the scatterers become decou-
pled, and characterized by a value for the effective hopping
term which coincides with the value given by Eq. (24) for
a single scatterer in the limit U → 0:

v(Lc = ∞, U → 0) ≈ 1 +
2

2 sinkF − π + 2π/U
. (39)

Equation (38) can be written in a simpler form for a
half-filled chain. Expressing X(kF, Lc + 2, 1) for kF = π/2
one obtains for the effective hopping term the equation
(3) given in the introduction.

3.2 Exact solution of the Hartree-Fock equation

Let us solve now the SCHF-equation for v without assum-
ing that v → 1+. The effective one-body model described
in Fig. 5 has even and odd standing-wave solutions ψ0

k(p)
and ψ1

k(p), which can be written inside the conduction
band as:

ψ0
k(p) =

√

2

L
cos

(

k(p− 1

2
) − δ0(k)

)

ψ1
k(p) =

√

2

L
sin

(

k(p− 1

2
) − δ1(k)

)

,

(40)

at the left side of the two scatterers (p ≤ −Lc

2 − 1) and

ψ0
k(p) =

√

2

L
cos

(

k(p− 1

2
) + δ0(k)

)

ψ1
k(p) =

√

2

L
sin

(

k(p− 1

2
) + δ1(k)

)

,

(41)

at the right side of the two scatterers (p ≥ Lc

2 +2). Between

the two scatterers (−Lc

2 ≤ p ≤ Lc

2 + 1), the even and odd

standing-wave solutions ψ0
k(p) and ψ1

k(p) read

ψ0
k(p) =

√

2

L
a0 cos

(

k(p− 1

2
)

)

ψ1
k(p) =

√

2

L
a1 sin

(

k(p− 1

2
)

)

,

(42)

The expressions for the factors a0 and a1 are given in
Appendix.

When v 6= 1, the scattering gives rise to two phase
shifts δ0(k) and δ1(k), which are given by

tan δ0(k) =
(v2 − 1) (cos(k(Lc + 2)) + cos k)

(v2 − 1) sin(k(Lc + 2)) + (v2 + 1) sink
(43)

and

tan δ1(k) =
(1 − v2) (− cos(k(Lc + 2)) + cos k)

(v2 − 1) sin(k(Lc + 2)) − (v2 + 1) sink
(44)

respectively.
In addition, a value of v > 1 can give rise to four bound

states located around the scatterers with energies outside
the conduction band. We just write those below the con-
duction band (Ebs < 2). There is an even bound state of
energy Ebs0 = −2 coshK0, K0 being the real solution of
the equation:

v2 + v2 exp(K0(Lc + 1)) = 1 + exp(K0(Lc + 3)). (45)

Its wave function reads

ψbs0(p) = A0 exp

(

K0(p+
Lc + 1

2
)

)

(46)

at the left side of the two scatterers (p ≤ −Lc

2 − 1),

ψbs0(p) = A0 exp

(

−K0(p−
Lc + 3

2
)

)

(47)

at the right side of the two scatterers (p ≥ Lc

2 + 2), and

ψbs0(p) = A0b0 cosh

(

K0(p−
1

2
)

)

(48)

between the two scatterers (−Lc

2 ≤ p ≤ Lc

2 + 1). The
expression for the factor b0 is given in Appendix.

If Lc is large enough, the equation:

v2 − v2 exp (K1(Lc + 1)) = 1 − exp (K1(Lc + 3)) (49)

has a real solution for K1. In this case, there is also an odd
bound state below the conduction band of energy Ebs1 =
−2 coshK1. Its wave function is given by

ψbs1(p) = −A1 exp

(

K1(p+
Lc + 1

2
)

)

(50)

at the left side of the two scatterers (p ≤ −Lc

2 − 1),

ψbs1(p) = A1 exp

(

−K1(p−
Lc + 3

2
)

)

(51)

at the right side of the two scatterers (p ≥ Lc

2 + 2), and

ψbs1(p) = A1b1 sinh

(

K1(p−
1

2
)

)

(52)

between the two scatterers (−Lc

2 ≤ p ≤ Lc

2 + 1). The
expression for the factor b1 is given in Appendix.

The condition

∞
∑

p=−∞

|ψbs0,1(p)|2 = 1 (53)
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1

1.25

1.5

1.75

2

2.25

vv

0 0.5 1 1.5 2

UU

Fig. 6. Two scatterers in series: Value v of the effective hop-
ping term as a function of U . v characterizes each of the scat-
terers for Lc = 4 and kF = π/2. The solid line gives the exact
SCHF value obtained from Eq. (54) and the dashed line gives
the approximated value (Eq. (38)).

1.0324

1.03245

1.0325

1.03255

1.0326

vv

0 20 40 60 80 100

LcLc

Fig. 7. Two scatterers in series: v as a function of even values
of Lc for U = 0.1 and kF = π/2. The circles give the exact
SCHF value obtained from Eq. (54) and the dashed line gives
the approximated value (Eq. (38)). The even-odd oscillations
characteristic of kF = π/2 are not shown, v for odd Lc being
not plotted.

gives the normalization factors A0,1. The obtained expres-
sions are somewhat involved and given in Appendix.

Using Eq. (22), one can calculate

〈

c†p+1cp

〉

2
=
L

2π

∫ kF

0

dk

{

1
∑

i=0

ψi∗
k (p+ 1)ψi

k(p)

}

+
∑

bs

ψ∗
bs(p+ 1)ψbs(p)

(54)

for p = Lc

2 + 1 to obtain the SCHF equation giving v
for two scatterers in series. The above integrals have been
calculated using Mathematica.

We compare in Fig. 6 and Fig. 7 the exact SCHF value
of v obtained with formula (54) to the approximated value
given by formula (38) in the limit v → 1+. One can see
that the approximated value is accurate enough for the

0.0275

0.03

0.0325

0.035

0.0375

0.04

〈c
† p
c p
〉

〈c
† p
c p
〉

−150 −100 −50 0 50 100 150

pp

Fig. 8. Two scatterers in series: Friedel oscillations of the den-
sity np = 〈c†pcp〉 for U = 0.4, Lc = 100 and kF = π/32.

0.9

0.925

0.95

0.975

1

g
k

F

2g
k

F

2

0 50 100 150 200

LcLc

Fig. 9. Two scatterers in series: total conductance gkF

2 (Lc, U)
as a function of Lc for U = 0.4 and kF = π/32. Only the values
given by the exact solution of the Hartree-Fock equation where
Lc is even are plotted.

values of U where one can trust the SCHF approximation.
Fig. 7 shows the effect of indirect exchange interaction
upon the value v of the effective hopping, and how this
effect disappears when Lc → ∞, for even Lc only.

3.3 Density oscillations and quantum conductance for
two many-body scatterers in series

Once the self-consistent value for v is obtained, one can
calculate the Friedel oscillations of the density np = 〈c†pcp〉
around the two scatterers. Outside half-filling, our model
exhibits Friedel oscillations of the density which are illus-
trated in Fig. 8 for U = 0.4, Lc = 100 and kF = π/32.

The transmission coefficient tkF

1 of a single scatterer as

a function of v and kF is given by Eq. (25). rkF

1 denoting its

reflection coefficient, the transfer matrices MkF

1 and MkF

Lc

through a single scatterer and the coupling lead read:

MkF

1 =

(

(1/tkF

1 )∗ rkF

1 /tkF

1

(rkF

1 /tkF

1 )∗ 1/tkF

1

)

(55)
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0.9115

0.912

0.9125

0.913

g
k

F

2g
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F

2
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LcLc

Fig. 10. Two scatterers in series: Minimum values of
gkF

2 (Lc, U) for the successive conductance oscillations occur-
ring when U = 0.4 and kF = π/16, underlining the power law
decay of their amplitudes as a function of Lc. The dashed line
is a numerical fit 0.91324 − 0.05267/Lc .

and

MkF

Lc
=

(

eikFLc 0
0 e−ikFLc

)

. (56)

From the matrix MkF

2 = MkF

1 MkF

Lc
MkF

1 , and current

conservation (1 = |tkF

1 |2 + |rkF

1 |2), one obtains the trans-

mission coefficient tkF

2 and the dimensionless conductance

gkF

2 of two scatterers in series, coupled by Lc sites where
the electrons do not interact:

tkF

2 (v) = − 2iv2e2ikF sin2 kF

dkF(v)

gkF

2 (v) =
4v4 sin4 kF

|dkF(v)|2
,

(57)

where

dkF(v) =e−ikF sin[kF(Lc + 3)] − 2v2 sin[kF(Lc + 2)]

+ v4eikF sin[kF(Lc + 1)].

The presence of Lc dependent corrections to v shows
that the transmission coefficient tkF

1 of one scatterer de-
pends on the distance Lc from the other scatterer. Ac-
cordingly, this non-local effect affects the conductance gkF

2
of two scatterers in series. We show in Fig. 9 the total
conductance gkF

2 of two scatterers in series for a low fill-
ing factor (kF = π/32), obtained by the exact solution of
the Hartree-Fock equation. One can see the large period
π/kF = 32 of the conductance oscillations, though the
values for odd Lc are not plotted. The conductance oscil-
lations are larger when Lc is small, due to the effect of
the exchange energy. The 1/Lc-decay of the conductance
oscillations towards its asymptotic Lc-independent value
is underlined in Fig. 10 obtained with kF = π/16.

4 Comparison with exact DMRG results

Exact values of the conductance of a one dimensional scat-
terer in which electrons interact can be obtained using

the embedding method and the DMRG algorithm, as ex-
plained in previous works [8,9,10,11]. We have compared
in Fig. 5 the SCHF approximation and the exact DMRG
results for a single very short scatterer. The difference was
negligible for small values of U . Nevertheless, the SCHF
values differ [7] more and more from the exact values when
the size of the scatterer in which the electrons interact in-
creases. The difference should become more pronounced
for two scatterers in series. We study the ability of the
SCHF approximation to describe two interacting nano-
systems in series for a half filled chain (kF = π/2).

If the scattering matrix of one scatterer is not modified
by the presence of other scatterer as in non-interacting

systems, the conductance g
π/2
2 of two scatterers in series

for kF = π/2 shows even-odd oscillation as a function of

the size Lc of the coupling wire: g
π/2
2 = 1 when Lc is odd,

and is given by [8]

g
π/2
2 =

(

g
π/2
1

g
π/2
1 − 2

)2

(58)

when Lc is even. Here g
π/2
1 is the conductance of a chain

with a single scatterer. In the presence of electron-electron
interaction, however, the scattering matrix of one scatterer
can be affected by the other scatterer as shown in the
previous subsection.

In Ref. [8], the exact values of g
π/2
1 and g

π/2
2 were

obtained separately, using the embedding method: g
π/2
1

being calculated for an infinite chain embedding a single

scatterer, g
π/2
2 for an infinite chain embedding two scatter-

ers. It was found that g
π/2
2 = 1 if Lc is odd, as predicted.

But if Lc is even, g
π/2
2 was related to g

π/2
1 by formula (58)

only in the limit Lc → ∞. For small sizes Lc, formula

(58), with g
π/2
1 obtained for a single scatterer surrounded

by infinite leads without other scatterers, overestimates

g
π/2
2 by an amount

δg
π/2
2 (Lc) =

A(U, kF)

Lc
(59)

characterized by a function A(U, kF) given in Fig. 11 for
kF = π/2.

Using the SCHF approximation, we have shown that
the parameter v characterizing a single scatterer becomes
modified if another scatterer is put in series. Hence, the

conductance g
π/2
1 of one scatterer in series with another

differs from its value when it is alone. If one ignores this
difference, as previously using the DMRG algorithm, tak-

ing for g
π/2
1 its value without the second scatterer and

using formula (58), one overestimates also g
π/2
2 by an

amount which is described by formula (59), but with a
different function A(U, kF) given in Fig. 11. One can see
that the SCHF approximation reproduces qualitatively
the DMRG results, giving a function A(U, kF) character-

izing the correction δg
π/2
2 (Lc) which first increases before

decreasing as U varies. When U is small enough, the SCHF
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0
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(U
,k

F
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A
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F
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Fig. 11. Function A(U, kF) characterizing the interaction in-

duced correction δgkF

2 (Lc) to gkF

2 of (58) for two interacting
nano-systems in series (formula (59)) at kF = π/2. The exact
values obtained from the embedding method and the DMRG
algorithm are shown by circles, the values obtained from the
SCHF approximation by a solid line.

approximation reproduces quantitatively the DMRG re-
sults: ASCHF(U, kF) ≈ ADMRG(U, kF). When U becomes
larger, the decay of ADMRG(U, kF) is not quantitatively
reproduced by the SCHF approximation. A more suit-
able description could be obtained using a perturbative
approach adapted to the limit U ≫ th, as used in Ref.
[23]. For intermediate U , there is no simple analytical
approach, making the use of numerical renormalization
methods (NRG [22,24] or DMRG) necessary.

5 Temperature dependent scale LT of the

indirect exchange interactions

We have shown that the indirect exchange interaction be-
tween two scatterers gives rise to corrections to the value
of the quantum conductance gkF

2 which slowly decays as Lc

increases at zero temperature. We are going to show that
this effect is suppressed when the length of the wire cou-
pling the two scatterers exceeds LT, which is the scale on
which an electron propagates at the Fermi velocity dur-
ing a time ~/kBT , i.e. the thermal length characteristic
of free fermions in one dimension. Since our approach is
essentially valid in the limit of weak values of U , it is
sufficient to consider the weak interaction limit discussed
in subsection 3.1 for a temperature T = 0. In this limit,

the effect was given by the deviation of 〈c†p+1cp〉 from its

uniform value sin kF/π, deviation induced inside the leads
by an embedded scatterer. To show that this deviation is
exponentially suppressed above LT is enough for proving
that the effect of the indirect exchange interaction upon
gkF

2 vanishes when Lc > LT.
At finite temperature kBT = β−1, the Fermi-Dirac

function f(E, µF) gives the occupation number of the level
of energy E at a Fermi chemical potential µF:

fβ(E, µF) =
1

eβ(E−µF) + 1
. (60)

When one has a single scatterer embedded in an infinite
perfect lead, the temperature modifies [20] the value of

〈c†1c0〉 inside the scatterer. Instead of having Eq. (23), one
now has:

〈c†1c0〉β = A1,0
cb (β, µF) +A1,0

bs (β, µF) (61)

where the contribution of the conduction band reads:

A1,0
cb (β, µF) =

L

2π

∫ π

0

dkfβ(Ek, µF)

{

1
∑

i=0

ψi∗
k (1)ψi

k(0)

}

=

∫ π

0

dk

π
fβ(Ek, µF)

{

4v cos k sin2 k

1 + v4 − 2v2 cos(2k)

}

,

the contribution of the two bound states becoming

A1,0
bs (µF) =

∑

bs

fβ(Ebs, µF)ψ∗
bs(1)ψbs(0)

= {fβ(Ebs1, µF) − fβ(Ebs2, µF)} 1 − v−2

2
.
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0.00 0.02 0.04 0.06 0.08 0.10
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kBT
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1.172

1.173
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υ

(b) U=0.5

1.065

1.066

1.067

υ

(a) U=0.2

Fig. 12. v given by Eq. (62) as a function of the temperature
T = β−1 for different values of U and µF = 0.

The effective hopping term v is given by the implicit
equation:

v = 1 + U〈c†1c0(v)〉β , (62)

and becomes dependent on the temperature T and on µF.
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∣
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as a function of p for U = 0.5 and

µF = 0 (half-filling). A is the asymptotic value when p → ∞.

Assuming a half-filled chain (µF = 0 due to particle-
hole symmetry), v given by Eq. (62) has been calculated
numerically for weak values U of the interaction strength.
The T dependence of v is shown in Figs. 12. One can see
that this dependence remains weak when the temperature
kBT ≤ 0.1 and U is small.

The equation (28) giving 〈c†p+1cp〉 outside the part

where the electrons interact (p ≥ 1) becomes at a tem-
perature T :

〈

c†p+1cp

〉

β
=

L

2π

∫ π

0

dkfβ(Ek, µF)

{

1
∑

i=0

ψi∗
k (p+ 1)ψi

k(p)

}

+
∑

bs

fβ(Ebs, µF)ψbs (p+ 1)ψbs (p) (63)

=
1

π

∫ π

0

dkfβ(Ek, µF) {cos k −G(k, v)}

+ {fβ(Ebs1, µF) − fβ(Ebs2, µF)} v
2 − 1

2
v−2p−1,

the function G(k, v) being defined in Eq. (27).
By using numerical integration, we have calculated

〈c†p+1cp〉β as a function of p for different temperatures T

and µF = 0. The data show that 〈c†p+1cp〉β exhibits oscil-
lations which have a faster decay when the temperature

increases. If A is the asymptotic value of 〈c†p+1cp〉β when
p → ∞, we show in Fig . 13 how the absolute value of

the difference between 〈c†p+1cp〉β and A decays when p
increases for different values of T . One can see that the
decay towards its asymptotic value of 〈c†p+1cp〉β becomes
exponential:

∣

∣

∣

∣

〈

c†p+1cp

〉

β
−A

∣

∣

∣

∣

∝ exp

(

− p

LT

)

(64)

when p is large.
In Fig. 14 the decay length LT is shown as a function

of T . One can see that LT decays when the temperature

0

10

20

30

40

0.00 0.02 0.04 0.06 0.08 0.10
L

T
kBT

1/πkBT

U=0.5
U=1.0

Fig. 14. Thermal length LT as a function of the temperature
T obtained from the exponential decays of 〈c†p+1cp〉β shown in
Fig. 13. The points obtained using two values of U = (0.5 and
1) and T form a single solid curve LT = 1/(πkBT ).

increases as:

LT =
1

πkBT
. (65)

Since we have taken th = 1 and the lattice spacing s =
1 in our calculations, one can identify this decay length
with the length on which a free fermion of speed vF =
~
−1∂EF /∂kF = 2/~ propagates during a time ~/(kBT )

in one dimension. Ignoring a multiplicative factor 1/(2π),
LT is the usual thermal length of free fermions in one
dimension.

6 Conclusion

Extending the Landauer formulation of quantum trans-
port to nano-systems inside which electrons interact, we
have studied a one dimensional spinless model which is
simple enough to be analytically solved assuming the
Hartree-Fock approximation. We have shown that the
scattering becomes non local when the many-body ef-
fects inside the scatterer are taken into account. Using
two identical nano-systems in which interaction gives rise
to scattering and which are coupled by a non-interacting
lead of length Lc, the Hartree-Fock approximation have al-
lowed us to map the many-body scatterers onto effective
one-body scatterers which depend on the other scatterer
through the indirect exchange interaction via the conduc-
tion electrons of the coupling lead. The non local charac-
ter of the scattering is only due to exchange terms in the
studied model, a positive background charge suppressing
the Hartree contribution. We have shown that the SCHF
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theory provides a qualitative understanding of the non lo-
cal effects found in Ref.[8], quantitatively reproducing the
exact behaviors in the weak interaction limit.

Eventually, we point out that we have restricted our
SCHF study to a purely one dimensional limit where pow-
erful renormalization methods (DMRG, NRG) are avail-
able. Though it has allowed us to compare the SCHF re-
sults to exact numerical results, this is the worst limit
for using the SCHF approximation. To extend the SCHF
study to the many channel case, where the electron dy-
namics will be more two or three dimensional does not
present particular difficulties [7]. Moreover, the SCHF ap-
proximation is believed to become more accurate outside
one dimension. A SCHF study of this many channel limit
is in progress and will be published in another work.

We believe that the interaction induced enhancement
of the sensitivity of the quantum conductance to the na-
ture of the attached leads can be relatively easily observed.
A more detailed study of a possible experiment will be dis-
cussed in a separate work.
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8 Appendix

For two scatterers in series, one uses even and odd stand-
ing wave functions. The factors a0 and a1 for the even and
odd functions of energy inside the conduction band read:

a0 =
v| sin k|√

α0

,

α0 =

{

(v2 − 1) cos

(

k

2
(Lc + 1)

)}2

+ sin k
{

v2 sin k + (v2 − 1) sin(k(Lc + 2))
}

,

a1 =
v| sin k|√

α1

,

α1 =

{

(v2 − 1) sin

(

k

2
(Lc + 1)

)}2

+ sin k
{

v2 sin k − (v2 − 1) sin(k(Lc + 2))
}

.

The factors b0 and b1 for the even and odd functions of
energy outside the conduction band read:

b0 =
v

eK0/2 cosh K0(Lc+3)
2

,

b1 =
v

eK1/2 sinh K1(Lc+3)
2

.

Using the auxiliary functions A±(Lc,K)

A±(Lc,K) = 2 + Lc ±
sinh(k(Lc + 2))

sinhK
,

the normalization factors A0 and A1 for the even and odd
bound states of energy below the conduction band read:

A0√
2eiK0/2

=











2 + 2 cothK0 +
v2A+(Lc,K0)

(

cosh K0(Lc+3)
2

)2











−1/2

,

A1√
2eiK1/2

=











2 + 2 cothK1 −
v2A−(Lc,K1)
(

sinh K1(Lc+3)
2

)2











−1/2

.
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