
HAL Id: hal-00077564
https://hal.science/hal-00077564

Submitted on 31 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Level Power Estimation based on a functional
analysis for Embedded DSP Software

Johann Laurent, Nathalie Julien, Eric Senn, Eric Martin

To cite this version:
Johann Laurent, Nathalie Julien, Eric Senn, Eric Martin. High Level Power Estimation based on a
functional analysis for Embedded DSP Software. 2001, pp 168-172. �hal-00077564�

https://hal.science/hal-00077564
https://hal.archives-ouvertes.fr

1/5

High Level Power Estimation based on a functional analysis for Embedded DSP
Software

Johann LAURENT Nathalie JULIEN Eric SENN Eric MARTIN
LESTER South Brittany University E-mail: name@iuplo.univ-ubs.fr

Centre de recherche rue Saint Maudé 56325 LORIENT cedex France

Abstract
We introduce here a high level power estimation

method based on an original functional analysis; the
power consumption of a whole algorithm is evaluated at a
behavioral level instead of the classical study conducted at
the instruction level. We also present the energy models
elaborated for the last generation complex DSP: the TI
C6201. This energy estimation method has been applied to
a classical signal processing algorithm (FIR) and
validated by measurements; with an error of less than 1% .

1. Introduction

Today, more and more complex applications are
implemented on embedded systems. The complexity of
these applications lead to the computing resource
increasing. One of the major problem due to this increase
is the system power consumption. Indeed, the power
consumption has a lot of repercussions on the system, this
increases its size, its weight and the size of the cooling
system and batteries.

The power optimization can act on these different
parameters and these reductions are essential for all
portable applications (GSM, UMTS) or spatial
telecommunications. It is well-known that algorithm
transformations are more efficient than technologic
optimizations [1]; furthermore, such modifications are less
expensive and allow to restrict the time to market. So it is
very important to evaluate the application consumption at
the early stage of the system design.

The new information and communications
technologies, like real time image coding, need more
processing and therefore require more computation
capacities. In such complex applications, the new
generation of Digital Signal Processor (DSP) are usually
used. They are characterized by elaborate architectures: a
deep pipeline, VLIW instructions, memory caches and
possibly superscalar architecture.

All recent works on power estimation for DSP operate
at the instruction level [2], [6],[7].

Until now, the estimation of an algorithm consumption
was conducted using an instruction level model[3]. In the

first time, measures of all instruction set and all
interactions between these instructions had to be realized.
This step is very time expensive and must be restarted even
when the DSP architecture is slightly modified. With new
DSP generations, the instructions set increases
significantly and the parallelism possibilities have to be
taken into account. For the memory aspects, it’s well-
known that the power consumption due to external
memory access is more and more important in latest
applications [1-4]. We have chosen to conduct our study at
behavioral level. This can take into account the other
architectural components (i.e. memories).

Section 2 will present the framework of the
methodology proposed and its implementation to a specific
DSP. Section 3 develops some examples of the power
characterization for functional blocks such as fetch and
execution stages. Finally, a whole signal processing
application is provided as example of the method, and the
estimates are compared to the measures.

2. Methodology and functional analysis

2.A Framework of the methodology

The final purpose is in fact to develop a power
estimation method together with power optimization
strategies on DSP programming for an algorithm in C
language. The complete methodology proposed is
presented in Figure 1.

First the C algorithm is divided in different C
primitives (i.e. if, do, while…). Then we use a toolbox
called Consumption estimation to estimate the
consumption of all the different primitives. By combining
these estimates, we can evaluate the power consumption of
the entire algorithm. The toolbox Optimization is used for
rewriting the C algorithm.

2/5

 Current work

Figure 1: Methodology of power estimation and
optimization

Both the toolboxes Consumption estimation and
Optimization require the construction of a complete
library, enclosing accurate power estimates validated by
precise measurements. It is this part of the work on which
we are focused here.

2.B General functional analysis

A functional analysis is used for realizing the libraries,
based on a power consumption study of the architecture
and the pipeline of recent DSP.

In a first time, we cluster the architectural components
according to their impact on energy dissipation and their
interactions. The general representation is presented in
figure 2. This representation can be modified for particular
DSP, by adding some sub-blocks and removing some
others. In our model we have 4 blocks: the CU (Control
Unit), the PU (Processing Unit), the MMU (Memory
Management Unit) and the IMU (Instructions Management
Unit). This 4 blocks can be composed of several sub-
blocks.

In a second time, we determine the interactions inter
and intra blocks and we qualify them in terms of power
consumption. Generally, there are interaction between the
CU and all other blocks because it integrates all the control
registers. The DMA (Direct Memory Access) can generate
an interaction between the MMU and the PU if data are
loaded from external memory and between MMU and
IMU if instructions are loaded from external memory. An
interaction exists between the IMU and the PU because the
instructions are first fetched in the IMU and then executed
in the PU.

Figure 2: General functional analysis

2.C Specific functional analysis

We develop in this paragraph an example of the
functional analysis applied to the TMS320C6201, one of
the last generation of TEXAS INSTRUMENTS DSP. This
processor uses a complex architecture since it has a deep
pipeline (11 stages), VLIW instructions, parallelism
possibilities (up to 8 parallel instructions) and its internal
program memory can be used as cache memory.

We expose in Figure 3 the application of our
functional analysis to this particular DSP; for more
cleanness, only the interactions between blocks are
represented.

An important interaction for all the sub-blocks has
come out that is the Clock Tree which in effect acts upon
the power consumption especially at the nominal
frequency (F = 200 MHz) of this circuit.

We have separated the DECODE stage of the pipeline
in two steps: the dispatching part (DP) is now included in
the IMU whereas the instruction decoding (DC) is
remaining in the PU. Indeed, the decoding is really done in
the processing units whereas the dispatching is done at the
fetch stages.

This DSP contains a specific block, the External
Memory InterFace (EMIF), used for all the external access
of both the program memory (in the IMU) and the data
memory (in the PU). This device is represented as a new
block with its interactions.

We will not represent the interactions between the CU
and the other blocks because these do not be strong
interactions in consumption point of view.

The different interactions can be define by either
algorithm and configuration parameters.

C
Algorithm

C
primitives

cutting

C algorithm
consumption

estimation

Consumption
estimation of

primitives

Library
Optimization

Rewriting of
C algorithm

DMA

MMU

CTRL registers
Peripheral bus

PLL
Interruptions

CU

FETCH
stages

CTRL/MEM
PRG

IMU
REGISTERS

ALU / MPY

DECODE stages

CTRL/MEM
DATA

PU

3/5

Figure 3: Interactions for the TMS320C6201

The configuration parameters are the frequency F and
the localization. The algorithm parameters are the number
of processing units used by cycle β, the cache miss rate γ,
the external program reads rate ε and the external data
accesses rate τ.

Then, we characterize all interactions by consumption
laws. These laws allow us to estimate the power
consumption for each part of a program and subsequently,
for a whole algorithm.

3. Power characterization of functional
blocks

To determine all the different laws, needed for the
estimating of the algorithm consumption, we first have to
make measures.

Two parameters must be measured, the average
current of the DSP core Icore and the execution time of the
program Texe. Knowing these two parameters and the core
supply voltage Vdd (2.5V) allow us to determine the
average energy E thanks to the following expression (1):

E = Icore * Texe * Vdd (1)

We have defined scenarios to qualify the interactions
and the sub-blocks. These scenarios are program set that
stimulate one or one part of a block for measuring the
absolute or relative part of this element in the total power
consumption. These programs are written in assembler to
be sure that we stimulate only the part that we want to
qualify.

We construct these scenarios by using an unbounded
loop that allows us to perform the measures and we
calculate the energy (E) for one iteration of this program.
The effect of the branch which is done at the end of the
loop is negligible when the loop size is at least 500.

We present in the next section some typical examples
of the achieved work on the TMS320C6201, especially on
the fetch stage and on the processing unit.

3.A Memory modes

Here, we will present some results for the IMU with
the different memory modes. The considered DSP, has 4
use modes for its internal program memory. The first one
is the mapped mode where all instructions are in the
internal memory. The second is the cache mode, where
external access are done when the instructions are not in
the cache (case of a cache miss). The third is the freeze
mode, similar to the cache except that the cache is only
read and never written. The last one is the bypass, where
all the instructions are read in external memory.

In Figure 4, we show the average current used by the
DSP core and also the average energy for one iteration of
the scenario. As the scenario generates no cache miss thus,
in this case the results for the cache are identical to the
freeze.

First, we can confirm that the current is not a
sufficient parameter to make a choice between the different
memory mode. Indeed, the bypass absorbs less current
than the mapped mode (about –39%) but it use more
energy (at least +390%). The most efficient mode is, of
course, the mapped.

MEMORY
MODE

CURRENT
(mA)

ENERGY
(µjoule)

F = 133MHz
MAPPED 1300 24.44
CACHE 1342 25.22
BYPASS 795 120

F = 160MHz
MAPPED 1554 24.3
CACHE 1595 24.9
BYPASS 948 237

F = 200MHz
MAPPED 1840 23
CACHE 1904 23.8
BYPASS 1175 235

Figure 4: Characteristics of memory modes

3.B Memory cache

As the complexity of embedded applications increases
regularly, more and more memory space is needed but the

DMA

FETCH/DP

CTRL/MEM PRG

EMIF

REGISTERS

MULTIPLEXER

DC/UAL/MPY

CTRL/MEM

MMU

Clock tree (F)

γ, ε

β

τ

PU

IMU

Localization

EXTERNAL MEMORY

DSP

4/5

internal memory size is limited so, to execute the recent
applications, external memory accesses are unavoidable.
The evolution of the consumption in the cache mode
depends on several parameters like the parallelism rate (α),
the frequency (F) and the cache miss rate (γ).

The parallelism rate can vary from 1/8 to 1. When
α=1/8, all the instructions are executed sequentially and
when α=1, all the instructions are executed in parallel. The
cache miss rate can vary from 0% to 100%.

In Figure 5, we present the evolution of the average
energy in function of both the cache miss rate and the
parallelism rate for F=160MHz.

Figure 5: Cache miss energy

We can see that there is an over-consumption of more
than 2000% between a program which generates 0% of
cache miss and a program which generates 100% of cache
miss. Moreover, the energy variations with the parallelism
rate are less predominant; at 0% of cache miss rate, the
energy dissipated for α = 1 is 300% lower than for α = 1/8.
This gap shrinks when the cache miss rate increases (about
–15% at 100% of cache miss rate). In conclusion, α is
optimized by the compiler although γ is not taken into
account it is crucial to first avoid the cache miss before
using the parallelism possibilities.

3.C Consumption laws

 We have obtained consumption laws by generating
different scenarios. These laws will be able to estimate the
consumption of a complete applications. We will present
here some laws for example.

The first one is the consumption law of the mapped
mode and it is given by the expression (2).

ICLK+FETCH+PRG = (aα + b) F + cα + d (2)

ICLK+FETCH+PRG: average current (in mA)

F: frequency (in MHz)
a = 5.21 mA/MHz; b = 4.19 mA/MHz
c = 42.4 mA; d = 7.6 mA
The bF parameter represents the clock tree

consumption, this parameter is validated by the TI value
(4.21*F) [5].

The second is the consumption law of bypass and it
is given by the expression (3).

IBYPASS = 5.68*F + 38.4 + 4.19*F (3)

The third is the law to estimate the consumption
of the processing unit and it is given by the expression (4).

IPU = a*β*F (4)

IPU : average current of the processing unit (in mA).
a = 0.64 (mA/MHz).

In this law, the data variation is not taken into account
because the consumption variation due to this parameter is
negligible [5].

4. Algorithm estimation

In this section, we present our estimation method to
estimate a whole algorithm (for the moment at the
assembler level). We will estimate the consumption of a
FIR filter implemented on a TMS320C6201. These results
will be compared to the measurements, this can allow us to
validate our model.

4.A Estimation method

The estimation method is based on the specific
functional analysis presented above and uses the laws
obtained through the experiments. Figure 6 synthesizes the
different parameters to take into account for each
functional block of our target architecture.

0
200
400
600
800

1000
1200
1400
1600
1800

0% 50% 100%

CACHE MISS RATE

ENERGY
by

iteration
(µjoule)

α = 1

α = 1/4

α = 1/8

DMA

MMU

ALU/MPY/DC/
REGISTER

- β

DATA MEMORY

- τ, η

MEMORY MODE

- γ, ε

PARALLELISM RATE

- α

IMU

PU

5/5

Figure 6: Estimation functional parameters

For the IMU, we have to consider the memory mode
operating. According to this mode, we will use the
appropriate parameter (γ, ε) to determine the consumption
of this block. In this block, we study also the parallelism
rate α that determines the FETCH stages cost. It could be
reminded that the cost of both the clock tree and the
program memory are also included in the FETCH stages
cost.

For the PU, the processing unit cost is determined
with the law that we have shown before by calculating the
β parameter. We also study where the data are stored to
take into account the locality of data (τ, η, use of DMA
and external memories).

The global cost of the application can now be
evaluated by addition of all the different costs we have
determined.

A. Estimation example

The considered application is a FIR filter that uses 16
coefficients and for which all the samples and coefficients
are in internal data memory. Energy results are presented
in Figure 7 for two cases. In the first one, we use internal
program memory in mapped mode and in the second one
in bypass mode. For these examples, the clock frequency is
equal to 200MHz (maximum frequency for this DSP).

FIR 16
IMU PU Global

Estimates
Measures Error

(%)

Mapped 122 33 155 156 0.64

Bypass 775 15.85 790.85 793.9 0.38

Figure 7: FIR16 energy estimations and measures (in
µJoule per iteration)

We first remark that we underestimate the power
consumption with an error of less than 1%. Further results
for the cache mode will also be presented in the last
version of this paper.

In mapped mode, the clock consumption represents
54% of the total consumption, the fetch consumption
24.7% and the PU consumption 21.3%. In bypass mode,
the clock consumption represents 41% of the total
consumption, the fetch consumption 57% and the PU
consumption 2%.

We can see that the clock consumption is not
negligible but particularly that the fetch stages used more
energy than the PU. Therefor, it is very important to take

into account the memories and to try to optimize as better
as possible the memory accesses.

5. Conclusion

We have introduced a high level power estimation
method providing the energy estimates of an entire
algorithm through a behavioral analysis of the DSP
architecture instead of the usual approach conducted at the
instruction level. This method has been implemented on
one of the last generation of Texas Instruments DSP
(TMS320C6201), built around a complex architecture. The
results obtained for a FIR algorithm, at the assembler level,
are validated by measurements with an error of less than
1%. In future works, after having improved this promising
method for other applications, the final purpose of the
project will be to extend it to the estimation of C language
algorithms and to find some parameters to optimize the
consumption of embedded applications.

References

[1] J.M. Rabaey, M. Pedram "Low power design methodologies"
Kluwer Academic Publishers 1996.

[2] Vivek Tiwari, Sharad Malik, Andrew Wolfe "Power analysis
of embedded software: a first step towards software power
minimisation." IEEE Transactions on VLSI Systems, December
1994.

[3] Mike Tien-Chien-Lee, Vivek Tiwari, Sharad Malik and
Masahiro Fujita "Power Analysis and Minimisation Techniques
for Embedded DSP Software." IEEE Transactions on VLSI
Systems Vol5 N°1 March 1997.

[4] P. Vanoostende et al. "Issues in low power design for telecom"
IEEE 1995 p 591-593.

[5] J.Laurent, N. Julien, E. Martin " High Level power
Estimation for DSP" SAME 2000 conference proceeding
p112-118.

[6] P.Laramie "Instruction level power analysis and low
power design methodology of a microprocessor" in Master
Thesis, U.C. Berkeley.

[7] C. Brandolese, W. Fornaciari, F. Salice, D. Scuito “ An
Instruction-Level Functionnality-Based Energy Estimation
Model for 32 bits Microprocesseur” DAC 2000 conference
proceeding p342-346.

