
HAL Id: hal-00077536
https://hal.science/hal-00077536v2

Preprint submitted on 4 Aug 2006 (v2), last revised 25 Aug 2006 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata for Positive Core XPath Queries on
Compressed Documents
Barbara Fila, Siva Anantharaman

To cite this version:
Barbara Fila, Siva Anantharaman. Automata for Positive Core XPath Queries on Compressed Doc-
uments. 2006. �hal-00077536v2�

https://hal.science/hal-00077536v2
https://hal.archives-ouvertes.fr

Automata for Positive Core XPath Queries

on Compressed Documents

Barbara Fila, Siva Anantharaman

LIFO - Université d’Orléans (France),
e-mail: {fila, siva}@univ-orleans.fr

Abstract. Given any dag t representing a fully or partially compressed
XML document, we present a method for evaluating any positive unary
query expressed in terms of Core XPath axes, on t, without unfolding t
into a tree. To each Core XPath query of a certain basic type, we asso-
ciate a word automaton; these automata run on the graph of dependency
between the non-terminals of the straightline regular tree grammar asso-
ciated to the given dag, or along complete sibling chains in this grammar.
Any given Core XPath query can be decomposed into queries of the basic
type, and the answer to the query, on the dag t, can then be expressed
as a sub-dag of t suitably labeled under the runs of such automata.

Keywords: Automata, Tree grammars, Dags, XML, Core XPath.

1 Introduction

Several algorithms have been optimized in the past, by using structures over
dags instead of over trees. Tree automata are widely used for querying XML
documents (e.g., [6, 11, 12]); on the other hand, the notion of a compressed XML
document has been introduced in [1, 5, 9], and a possible advantage of using dag
structures for the manipulation of such documents has been brought out in [9].
It is legitimate then to investigate the possibility of using automata over dags
instead of over trees, for querying compressed XML documents.

Our aim in this paper is to propose an approach based on word automata, for
evaluating queries on any XML document possibly given in a compressed format.
With such an objective, we first define the notion of a compressed document as
a tree/dag (trdag, for short), designating a directed acyclic graph that may be
partially or fully compressed; the terms ‘trdag’ and ‘document’ will therefore
be considered synonymous in the sequel. We adopt then the view that a trdag
t is equivalent to a minimal straightline regular tree grammar Lt that one can
naturally associate with t, cf. e.g., [2, 3]. From the grammar Lt, we construct
the graph of dependency Dt between its non-terminals, and also the chiblings
(linear graphs formed of complete chains of sibling non-terminals) of Lt. The
word automata that we construct below will run on Dt, or on the chiblings of
Lt, rather than on the document t itself.

We shall only consider positive unary queries expressed in terms of Core
XPath axes. (The view we adopt allows us to define the various axes of Core

XPath on compressed documents, in a manner which does not modify their
semantics on trees.) For evaluating any such query on any document (trdag) t,
we proceed as follows. We first break up the given query into basic sub-queries
of the form Q= //*[axis::σ] where axis is a Core XPath axis of a certain
type. To each such basic query Q, we associate a word automaton AQ. The
automaton AQ runs on the graph Dt when axis is non-sibling, and on the
chiblings of Lt when axis is a sibling axis. An essential point in our method is
that the runs of AQ are guided by some well-defined semantics for the nodes
traversed, indicating whether the current node answers Q, or is on a path leading
to some other node answering Q. The automaton, though not deterministic, is
made effectively unambiguous by defining a suitable priority relation between its
transitions, based on the semantics. A basic query Q can then be evaluated in
one single top-down pass of AQ, under such an unambiguous run. An arbitrary
positive unary Core XPath query Q can be evaluated on t by combining the
answers to its various basic sub-queries, and the answer set for Q is expressed
as a sub-trdag of t, whose nodes get labeled in conformity with the semantics.
It is important to note that the evaluation is performed on the given trdag t; as
such, on two different trdags corresponding to two different compressions of the
same XML tree, the answers obtained may not be the same, in general.

The paper is structured as follows: Section 2 presents the notion of trdags. In
Section 3, we construct from any trdag t its normalized straightline regular tree
grammar Lt, as well as the dependency graph Dt and the chiblings of Lt; these
will be seen as rooted labeled acyclic graphs (rlags, for short); the basic notions
of Core XPath are also recalled. Section 4 is devoted to the construction of the
word automata for any basic Core XPath query, based on the semantics, and
an illustrative example. In Section 5, we prove that the runs of these automata,
uniquely and effectively determined under a maximal priority condition, generate
the answers to the queries. Section 6 shows how a non basic (composite, or
imbricated) Core XPath query can be evaluated in a stepwise fashion.

2 Tree/Dags

Definition 1 A tree/dag, or trdag for short, over an unranked alphabet Σ is a
rooted dag (directed acyclic graph) t = (Nodes(t), Edges(t)), where:

- every node u ∈ Nodes(t) has a name ∈ Σ, denoted namet(u) or name(u);
- the edges going out of any node are ordered.

Given any node u on a trdag t, the notion of the sub-trdag of t rooted at u
is defined as usual, and denoted as t|u. If v is any node, γ(v) = u1 . . . un will
denote the string of all its not necessarily distinct children nodes. For any node
u on t, we set: Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

A trdag t is said to be a tree iff for every node u on t other than the root,
Parents(u) is a singleton. For any trdag t, we define the set Pos(t) as the set
of all the positions post(u) of all its nodes u, these being defined recursively, as
follows: if u is the root node on t, then post(u) = ǫ, otherwise, post(u) = {α.i |
α ∈ post(v), v is a parent of u, u is the i-th child of v}. The elements of Pos(t)
are words over natural integers.

2

The function namet is extended naturally to the positions in Pos(t) as fol-
lows: for every u ∈ Nodes(t) and α ∈ post(u), we set namet(α) = namet(u).
Given a trdag t, we define its tree-equivalent as a tree t̂ such that: Pos(t̂) =
Pos(t), and for every α ∈ Pos(t) we have namet̂(α) = namet(α). A trdag is
said to be a tdag, or fully compressed, iff for any two distinct nodes u, u′ on t,
the two sub-dags t|u and t|u′ have non-isomorphic tree-equivalents; otherwise,
the trdag is said to be partially compressed. For example, the tree to the left
of Figure 1 is the tree-equivalent of the partially compressed trdag to the right,
and also of the fully compressed tdag to the middle.

 Compressed

 Tree
Compressed
 Partially

f

a a b a

f

a a abb

f

 Fully

Fig. 1. tree, tdag, and trdag

3 Querying Compressed Documents: Preliminaries

Given a trdag t, one can naturally construct a regular tree grammar associated
with t, which is straightline (cf. [3]), in the sense that there are no cycles on
the dependency relations between its non-terminals, and each non-terminal pro-
duces exactly one sub-trdag of t. Such a grammar will be denoted as Lt, if it is
normalized in the following sense:

(i) for every non-terminal Ai of Lt, there is exactly one production of the
form Ai → f(Aj1 , . . . , Ajk

), where i < jr for every 1 ≤ r ≤ k; we shall then set
Sons(Ai) = {Aj1 , . . . , Ajk

}, and symbLt
(Ai) = f ;

(ii) the number of non-terminals of Lt is the number of nodes on t.
Such a normalized grammar Lt is uniquely defined up to a renaming of the non-
terminals. For instance, for the trdag t to the left of Figure 2 we get the following
normalized grammar:

A1 → f(A2, A3, A4, A5, A2), A2 → c, A3 → a(A5), A4 → b, A5 → b.

Such a grammar is easily constructed from t, for instance by using a standard
algorithm which computes the ‘depth’ of any node (as the maximal distance
from the root), to number the non-terminals so as to satisfy condition (i) above.

The dependency graph of the normalized grammar Lt associated with t, and
denoted as Dt, consists of nodes named with the non-terminals Ai, 1 ≤ i ≤ n,
and one single directed arc from any node Ai to a node Aj whenever Aj is a son
of Ai. The root of Dt is by definition the node named A1. The notion of Sons
of the nodes on Dt is derived in the obvious way from that defined above on Lt.

3

F

tD

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

t :

b

ba

f

c

A2(c,_)

A2(c,_)

(,_)aA3

b,)_(4A

A5 b,)_(

:1F

A5 b,)_(

A1)_f(,

0:F

:3

:

Fig. 2. trdag t, associated rlag Dt, and chiblings of Lt

Furthermore, to any production Ai → f(Aj1 , . . . , Ajk
) of Lt, we associate a

rooted linear graph composed of k nodes respectively named Aj1 , . . . , Ajk
, with

root at Aj1 , and such that for all l ∈ {2, . . . , k} the node named Ajl
is the son of

the node named Ajl−1
. This graph is referred to as the chibling of Lt associated

with the (unique) Ai-production; it is denoted as Fi. We also define a further
chibling denoted F0, as the linear graph with a single node named A1, where A1

is the axiom of Lt.
In the sequel, we designate by G either Dt or any of the chiblings F of Lt.

We complete any of these acyclic graphs G into a rooted labeled acyclic graph
(rlag, for short), by attaching to each node u on G, with name(u) = Ai, a label
denoted label(u), and defined as label(u) = (symbLt

(Ai),−); cf. Figure 2.

3.1 Positive Core XPath Queries on trdags

In this paper we restrict our study to positive Core XPath queries on trdags.
Recall that Core XPath is the navigational segment of XPath, and is based
on the following axes of XPath (cf. [7, 14]): self, child, parent, ancestor,

descendant, following-sibling, preceding-sibling. A location expression
is defined as a predicate of the form [axis::b], where axis is one of the above
axes, and b is a symbol of Σ. Given any trdag t over Σ, a context node u on
t and b ∈ Σ, the semantics for axis is defined by evaluating this predicate at
u. The semantics for the axes self, child, descendant are easily defined, ex-
actly as on trees (cf. [14]). For defining the semantics of the remaining axes, we
first recall that Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

Definition 2 Given a context node u on a trdag t, and b ∈ Σ:
i) [parent::b] evaluates to true at u, if and only if there exists a

b-named node in Parents(u);
ii) [ancestor::b] evaluates to true at u, iff either [parent::b] evaluates

to true at u, or there exists a node v ∈ Parents(u) such that [ancestor::b]
evaluates to true at v;

iii) [following-sibling::b] evaluates to true at u, iff there exists a
b-named node u′, and a node v on t such that γ(v) is of the form ...u...u′...;

iv) [preceding-sibling::b] evaluates to true at u, iff there exists a
b-named node u′, and a node v on t such that γ(v) is of the form ...u′...u....

4

For the ‘composite’ axes descendant-or-self and ancestor-or-self, the
semantics are then deduced in an obvious manner. We shall also need posi-
tion predicates of the form [position()= i]; their semantics is that the expres-
sion [child::b [position()= i]] evaluates to true at a context node u, iff:
[child::b] evaluates to true at u, and u is an i-th child of some parent.

Positive Core XPath query expressions are usually defined in the literature
(cf. e.g., [5]), as those generated by the following grammar:

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling

Scan ::= A::σ | position()= i | Scan and Scan | Scan or Scan

Ecan ::= A::∗[Scan] | Ecan[Ecan]

Qcan ::= /Scan | /Ecan | Qcan/Qcan

We shall refer to the query expressions generated by this grammar as canon-
ical; they can be shown to be of the type /C1/C2/ . . . /Cn, where each Ci is
of the form A::σ[Xcan], or of the form A::σ[Xcan] conn A’::σ′[X ′

can], with
conn ∈ {and, or}, and Xcan, X ′

can ∈ {Scan, Ecan, true}; we agree here to identify
A::σ[true] with A::σ.

Any such positive Core XPath query expression can be translated into one
that is in “standard form”, i.e., where the format of the sub-queries is of the type
‘axis::b’; we formalize this idea now. We shall refer to the axes self, child,

descendant, parent, ancestor, preceding-sibling, following-sibling

as basic. A basic Core XPath query is a query of the form //*[axis::σ], where
axis is a basic axis. More generally, the queries we propose to evaluate on trdags
are defined formally as the expressions Qstd generated by the following grammar,
where σ stands for any node name on the documents, or for ∗ (meaning ‘any’):

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling

S ::= A::σ | position()= i | S and S | S or S | Root

E ::= A::∗[S] | E[E]

Qstd ::= //* | //*[S] | //*[E]

Core XPath queries Qstd of the format generated by this grammar are said
to be in standard form; to be able to handle any positive Core XPath query with
such a grammar, we have introduced a special predicate called Root, deemed
true only at the root node of the trdag considered.

By the evaluation of a given query expression Q on any trdag t, we mean
the assignment: t 7→ the set of all context nodes on t where the expression Q
evaluates to true (following the conventions of Definition 2); this latter set is also
called the answer for Q on t. Two given queries Q1, Q2 are said to be equivalent
iff, on any trdag t, the answer sets for Q1 and Q2 are the same. Any positive
Core XPath query Qcan can be translated into an equivalent one in standard
form; e.g., /c[following-sibling::g]/d is equivalent to //*[self::d and
parent::*[Root and self::c [following-sibling::g]]] in standard form.
An inductive procedure performing such a translation in the general case (of
linear complexity w.r.t. the number of location steps in Qcan) is given in the
Appendix. The following proposition results from Definition 2.

5

Proposition 1 (1) For any set of nodes X on a trdag t, and any axis A, we
have: A(X) =⋃

x∈X, α∈post(x)
α = i1...ik

{/child::∗[position()= i1]/.../child::∗[position()= ik]/A::∗}

(2) For any trdag t, and any node with name b on t, we have:
(i) //*[preceding::b] =⋃

u

{descendant-or-self(following-sibling(

//*[self::u and (descendant::b or self::b)]))}

(ii) //*[following::b] =⋃

u

{descendant-or-self(preceding-sibling(

//*[self::u and (descendant::b or self::b)]))}

Finally, following [1], for any set S of nodes on t, the sets of nodes following(S)
and preceding(S) can now be defined formally, as follows:

following(S) =
descendant-or-self(following-sibling(ancestor-or-self(S))),

preceding(S) =
descendant-or-self(preceding-sibling(ancestor-or-self(S))).

Note: Unlike on a tree, the ancestor, descendant, following, self and
preceding axes do not partition the set of nodes on a trdag t, in general.

4 Automata for Basic Core XPath Queries

4.1 The Semantics of the Approach

We first consider basic Core XPath queries. Composite or imbricated queries will
subsequently be evaluated in a stepwise fashion; see Section 6.

To any basic query Q = //*[axis::σ], we shall associate a word automaton
(actually a transducer), referred to as AQ. It will run top-down, on the rlag Dt

if axis is non-sibling, and on each of the chiblings F of Lt otherwise. In either
case, a run will attach, to any node traversed, a pair of the form (l, x), where the
first component l will have the intended semantics of selection or not by Q, of the
corresponding node on t, and the component x will be a 1 or 0, with the intended
semantics that x = 1 iff the corresponding node on t has a descendant answering
Q. At the end of the run, label(u), at any node u of Dt, will be replaced by a
new label derived from the ll-pairs attached to u by the run.

To formalize these ideas, we introduce a set of new symbols L = {s, η,⊤,⊤′}
referred to as llabels (the term ‘llabel’ is used so as to avoid confusion with the
term label). We define ll-pairs as elements of the set L×{0, 1}, and the states of
AQ as elements of the set {init}∪ (L×{0, 1}). For any Q, the automaton AQ is
over the alphabet Σ ∪ {s, η}, has init as its initial state, and has no final state.
The set ∆Q of transitions of AQ will consist of rules of the form (q, τ) → q′

where q ∈ {init} ∪ (L × {0, 1}), q′ ∈ (L × {0, 1}), and τ ∈ Σ ∪ {s, η}.

6

For any rlag G, we define a function llab : Nodes(G) → Σ ∪ {s, η}, by setting
llab(u) = π1(label(u)), the first component of label(u). A run of AQ on G is a
map r : Nodes(G) → L×{0, 1}, such that, for every u ∈ Nodes(G), the following
holds:

- if u is rootG , then the rule (init, llab(u)) → r(u) is in ∆Q;
- otherwise, for every v ∈ γ(u) the rules (r(u), llab(v)) → r(v) are all in ∆Q.

(Note: when axis is non-sibling, this amounts to requiring that, for any node v,
the state r(v) must be in conformity with the states r(u) for every parent node
u of v, with respect to the rules in ∆Q.)

From the run of the automaton AQ and from the states it attaches to the
nodes of Dt, we will deduce, at every node u of t, a well-determined ll-pair as
(a new) label at u, via the natural bijection between Nodes(t) and Nodes(Dt).
The ll-pairs thus attached to the nodes of t will have the following semantics
(where x stands for the name of the node u on t, corresponding to the ‘current’
node on Dt):

- (s, 1) : x 6= σ, current node is selected;
- (η, 1) : x 6= σ, current node is not selected, but has a selected descendant;
- (η, 0) : x 6= σ, current node is not selected, and has no selected descendant;
- (⊤′, 1) : x = σ, current node on t is selected by (i.e., is an answer for) Q;
- (⊤, 1) : x = σ, current node is not selected, but has a selected descendant;
- (⊤, 0) : x = σ, current node is not selected, and has no selected descendant.

Only the nodes on Dt, to which the run of AQ associates the labels (s, 1)
or (⊤′, 1), correspond to the nodes of t that will get selected by the query Q.
The ll-pairs with boolean component 1 will label the nodes of Dt corresponding
to the nodes of t which are on a path to an answer for the query Q; thus the
automaton AQ will have no transitions from any state with boolean component
0 to a state with boolean component 1. Moreover, with a view to define runs
which are unique (or unambiguous in a sense that will be presently made clear),
we define the following priority relations between the ll-pairs:

(η, 0) > (η, 1) > (s, 1), and (⊤, 0) > (⊤, 1) > (⊤′, 1).

A run of the automaton AQ will label any node u on G with an ll-pair coming ei-
ther from the group {(η, 0), (η, 1), (s, 1)}, or from the group {(⊤, 0), (⊤, 1), (⊤′, 1)};
and this group will be determined by llab(u).

For ease of presentation, we agree to set η′ := s, and often denote either of
the above two groups of ll-pairs under the uniform notation {(l, 0), (l, 1), (l′, 1)},
where l ∈ {η,⊤}, with the ordering (l, 0) > (l, 1) > (l′, 1).

We shall construct a run r of AQ on G that will be uniquely determined by
the following maximal priority condition:

(MP): at any node v on G, r(v) is the maximal ll-pair (l , x) for the ordering >
in the group {(l, 0), (l, 1), (l′, 1)} determined by llab(v), such that AQ contains
a transition rule of the form (r(u), llab(v)) → (l , x), for every parent u of v.

Such a run will assign a label with boolean component 1 only to the nodes
corresponding to those of the minimal sub-trdag t containing the root of t and
all the answers to Q on t.

7

4.2 Re-labeling of Dt by the Runs of AQ

We first consider a non-sibling basic query Q on a given document t, and a given
run r of the automaton AQ on Dt; at the end of the run, the nodes on Dt will
get re-labeled with new ll-pairs, computed as below for every u ∈ Nodes(Dt):

labr(u) = (s, 1) iff r(u) ∈ {(s, 1), (⊤′, 1)},
labr(u) = (η, 1) iff r(u) ∈ {(η, 1), (⊤, 1)},
labr(u) = (η, 0) iff r(u) ∈ {(η, 0), (⊤, 0)}.

The rlag obtained in this manner from Dt, following the run r and the associated
re-labeling function labr, will be denoted as r(Dt).

For a basic query Q over a sibling axis, the situation is a little more complex,
because several different nodes on one chibling of Lt can have the same name
(non-terminal), or several different chiblings can have nodes named by the same
non-terminal, or both. Thus, to any node of Dt, named with a non-terminal A,
will correspond in general a set of ll-pairs, assigned by the various runs of AQ

to the A-named nodes on the various chiblings of Lt. We therefore proceed as
follows: for every complete set r̂ of runs of AQ, formed of one run rF on each
chibling F , we will define r̂(Dt) as the re-labeled rlag derived from Dt, under r̂.
With that purpose we associate to r̂ and any u ∈ Nodes(Dt), a set of ll-pairs:

llbr(u) =
⋃

rF∈ br

{rF (v) | v ∈ Nodes(F), and name(v) = name(u)}.

We then derive, at each node of Dt a unique ll-pair in conformity with the
semantics of our approach, by using the following function:

λbr(u) = s ⇐⇒ llbr(u) ∩ {(s, 1), (⊤′, 1)} 6= ∅,
λbr(u) = η ⇐⇒ llbr(u) ∩ {(s, 1), (⊤′, 1)} = ∅.

From Dt and this function λbr, we next derive an rlag λbr(Dt) by re-labeling
each node u on Dt with the pair (λbr(u),−). And finally we define r̂(Dt) as the
rlag obtained from λbr(Dt), by running on it the automaton for the basic non-
sibling query //*[self::s], as indicated at the beginning of this subsection.
In practical terms, such a run amounts in essence to setting, as the second
component of label(u) at any node u, the boolean 1 iff u is on a path to some node
with llab s, and 0 otherwise. All these details are illustrated with an example in
the following subsection.

4.3 The Automata

We present the automata for all the basic queries. A few words on some of the
automata by way of explanation. First, the reason why the automaton for self
does not have the states (⊤, 0), (⊤, 1), (s, 1): for (⊤, 0), (⊤, 1), by the semantics of
Section 4.1 we must have x = σ, where x is the name of the current node on t, but
then the query //*[self::σ] should select the current node, so one cannot be
at such a state; as for (s, 1), the reasoning is just the opposite. Next, the reason
why the automaton for descendant does not have the states (η, 1), (⊤, 1): if the
semantics attribute one of these pairs to any node u, that would mean the node u
has a selected descendant u′; which means that u′ has some σ-descendant node,
which would then be a σ-descendant for u too, so Q should select u.

8

Automata for:

• //*[self::σ]

σ

init

η , 1

’
T, 1=σγ

=σγ

=σγ

=σγ
=σγ

=σγ

=σγ

η , 0

σ σ

•//*[parent::σ]

σ
init

T, 1

s, 1

η , 0

T,0

=⁄γ σ
=⁄γ σ

η , 1

’
T, 1

=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ

σ

σ

σ

σ
σ σ

σ

σ

σ

σ

• //*[preceding-sibling::σ]

σ

init

η , 1

T,1

=⁄γ σ

’
T, 1

s, 1

=⁄γ σ
=⁄γ σ

T,0

=⁄γ σ
η , 0

=⁄γ σ

=⁄γ σ =⁄γ σ

σ

σ

σ

σ

σ

σ

• //*[ancestor::σ]

σ

, 0

init s, 1

’
T, 1η , 1

T,0

=σγ

=σγ

=σγ =σγ

T, 1

=σγ

=σγ

=σγ

=σγ
=σγ

σ
σ

σ

σ
σ

σ

σ

σ

η

• //*[descendant::σ]

σ

init

’
T, 1

η , 0

s, 1
=σγ

=σγ

=σγ
=σγ

=σγ

=σγ

=σγ

T,0
=σγ

σ

σ

σσ

σ

• //*[following-sibling::σ]

σ

init

η , 0

s, 1

T,0

’
T, 1

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ
=⁄γ σ

σ
σ

σ

σ

σ

• //*[child::σ]

σ

, 1

T,0

T, 1

’
T, 1

init

η , 1

η , 0

=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ=⁄γ σ=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

σ
σ

σ σ

σ

σ

σ

σ

s

9

Figure 3 below illustrates the evaluation of Q = //*[following-sibling::b],
on the trdag t of Figure 2. We first use the automaton for the basic query
//*[following-sibling::σ] with σ = b, and then the automaton for
//*[self::σ] with σ = s. The sub-trdag of t, formed of nodes correspond-
ing to those of r̂(Dt) with labels having boolean component 1, contains all the
answers to Q on t.

s 2 A3

A5

4A

)(

(,)(,)

,)(η

A1

)(

,η 1

1s s 1 ,

0

s 1

A1

A3A2

A5

4A

)(,_η

(,_)s(,_)s

,)_(η

,)_(s

Dt)λr (:

(,)η 1

,)η 0(

A1

A3A2

A5

4A
T ’,1)(T ’,1)(T ’,1)(

r
(D

t
):for //*[self : : s] on

run of the automaton
λ rlag : r(D

t
)

final re−labeled

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

s,()1
η ,()0

s,()1

T,()0

,)η 0(

T ’,1)(

r 3r 10r ,, on Dt :

A2(c,_)

s,()1

η ,()0

T,()0

s,()1

A2(c,_)

(,_)aA3

b,)_(4A

A5 b,)_(

T ’,1)(

,)η 0(A1)_f(,

T,()0A5 b,)_(

0r 0Fon :

r 3 3Fon :

r 1 1Fon :

)(,_η

(,_)s(,_)s

,)_(η

,)_(A

Fig. 3.

5 Maximal Priority Runs of Basic Query Automata

Note that the following properties, required by our semantics of Section 4.1, hold
on the automaton AQ for any basic Core XPath query Q = //*[axis::σ]:

i) There are no transitions from any state with boolean component 0 to a state
with boolean component 1;
ii) The σ-transitions have all their target states in {(⊤, 0), (⊤, 1), (⊤′, 1)}; and
for any γ 6= σ, the target states of γ-transitions are all in {(η, 0), (η, 1), (s, 1)}.

10

Theorem 1 Let Q be any basic Core XPath query, t any given trdag, and let G
denote either the rlag Dt, or any given chibling F of Lt. Assume given a labeling
function L from Nodes(G) into the set of ll-pairs, which is correct with respect
to Q, i.e., in conformity with the semantics of Section 4.1. Then there is a run
r of the automaton AQ on G, such that :

i) r is compatible with L; i.e., r(u) = L(u) for every node u on G;
ii) r satisfies the maximal priority condition (MP) of Section 4.1.

Proof. We first construct, by induction, a ‘complete’ run (i.e., defined at all the
nodes of G) satisfying property i). For that, we shall employ reasonings that will
be specific to the axis of the basic query Q. We give here the details only for the
axis parent; they are similar for the other axes.

Q = //*[parent::σ]: (The axis considered is non-sibling so G = Dt here.) At
the root u node of Dt, we set r(u) = L(u); we have to show that there is a
transition rule in AQ of the form (init, llab(u)) → L(u). Obviously, for the axis
parent, the root node u cannot correspond to a node on t selected by Q, so the
only ll-pairs possible for L(u) are (l, 0), (l, 1), with l ∈ {η,⊤}; for each of these
choices, we do have a transition rule of the needed form, on AQ.

Consider then a node v on Dt such that, at each of its ancestor nodes u on
Dt, the part of the run r of AQ has been constructed such that r(u) = L(u);
assume that the run cannot be extended at the node by setting r(v) = L(v). This
means that there exists a parent node w of v, such that (L(w), llab(v)) → L(v) is
not a transition rule of AQ; we shall then derive a contradiction. We only have
to consider the cases where the boolean component of L(w) is greater than or
equal to that of L(v). The possible couples L(w), L(v) are then respectively:

 L(w) : (⊤, 0) | (⊤, 1) | (⊤, 1) | (⊤′, 1) | (⊤′, 1)
 L(v) : (η, 0) | (⊤, 1) | (η, 1) | (⊤, 1) | (η, 1)

In all cases, we have llab(w) = σ because of the semantics, so the node (on t
corresponding to the node) v has a σ-parent, so must be selected; thus the above
choices for L(v) are not in conformity with the semantics; contradiction.

We now prove that the complete run r thus constructed, satisfies property ii).
For this part of the proof, the reasoning does not need to be specific for each Q;
so, write Q more generally, as //*[axis::σ] for some given σ. Suppose the run
r does not satisfy the maximal priority condition at some node v on G; assume,
for instance, that the run r made the choice, say of the ll-pair (l, 1), although the
maximal labeling of the node v, in a manner compatible with the ll-pairs of all
its parents, was the ll-pair (l, 0). Since L is assumed correct, and r is compatible
with L, the maximal possible labeling (l, 0) would mean that the node (on t
corresponding to the node) v has no descendant selected by Q; whereas, the
choice that r is assumed to have made at v, namely the ll-pair (l, 1), has the
opposite semantics whether or not llab(v) = σ; in other words, the labeling L
would not be correct with respect to Q; contradiction. The other possibilities for
the ‘bad’ labelings under r also get eliminated in a similar manner. ⊓⊔

Theorem 2 Let Q, t,Dt,F ,G be as above. Let r be a (complete) run of the
automaton AQ on G, which satisfies the maximal priority condition (MP) of

11

Section 4.1. Then the labeling function L on Nodes(G), defined as L(u) = r(u)
for any node u, is correct with respect to the semantics of Section 4.1.

Proof. Let us suppose that the labeling L deduced from r is not correct with
respect to Q; we shall then derive a contradiction. The reasoning will be by case
analysis, which will be specific to the axis of the basic query Q considered. We
give the details here for Q = //*[descendant::σ]. The axis is non-sibling, so
we have G = Dt here. The sets Nodes(t), Nodes(Dt) are in a natural bijection,
so for any node u on Dt we shall also denote by u the corresponding node on t,
in our reasonings below.

We saw that the automaton AQ for the descendant axis does not have the
states (η, 1), (⊤, 1). Consider then a node u on Dt such that: for all ancestor nodes
w of u, the llabel r(w) is in conformity with the semantics, but the ll-pair r(u) is
not in conformity. Now, AQ has only 5 states: (init), (⊤′, 1), (s, 1), (⊤, 0), (η, 0),
of which only the last four can llabel the nodes. So the possible ‘bad’ choices
that r is assumed to have made at our node u, are as follows:

(a) r(u) = (⊤′, 1), but the node u is not an answer to the query Q. Here
name(u) must be σ, so the choice of r ought to have been (⊤, 0);

(b) r(u) = (s, 1), but the node u is not an answer to the query Q. Here
name(u) 6= σ, so the choice of r ought to have been (η, 0);

(c) r(u) = (η, 0), but the node u is an answer to the query Q. Here
name(u) 6= σ, so the choice of r ought to have been (s, 1);

(d) r(u) = (⊤, 0), but the node u is an answer to the query Q. Here
name(u) must be σ, so the choice of r ought to have been (⊤′, 1).

In all the four cases, we have to show:
i) that the “ought-to-have-been” choice ll-pair is reachable from all the

parent nodes of u;
ii) and that, with such a new and ‘correct’ choice made at u, r can be

completed from u, into a run on the entire dag Dt.
The reasoning will be similar for cases (a), (b), and for the cases (c), (d).

Here are the details for case (a): That u is not an answer to Q means that u has
no σ-descendant node, so for all nodes v below u on Dt, we have llab(v) 6= σ.
Therefore, assertions i) and ii) above follow from the following observations on
the automaton for Q= //*[descendant::σ]:

i) if r could reach the state (⊤′, 1) at node u (via a σ-transition) from any
parent node of u, then (⊤, 0) is also reachable thus at u, from any of them;

ii) if, from the state (⊤′, 1), r could reach all the nodes on Dt below u (with
state (η, 0)), via transitions over γ 6= σ, then it can do exactly the same now,
with the ‘correct’ choice ll-pair (⊤, 0) at u.

As for case (c): Node u is an answer to Q here, so u has a σ-descendant; let v
be a σ-node below u on Dt; the ll-pair r(v) that r assigns to v must then be either
(⊤′, 1) or (⊤, 0); this implies that r passed from the state (η, 0) – supposedly
assigned by r to u – to (⊤′, 1) or (⊤, 0) somewhere between u and v; which
is impossible, as is easily seen on the automaton AQ for the axis descendant

considered. The reasoning for case (d) is even easier: from state (⊤, 0), no state
with an outgoing σ-transition is reachable. ⊓⊔

12

6 Evaluating Composite Queries

A composite query is a query in standard form, but not basic; it is evaluated
incrementally. We first consider queries of the form //*[A::x conn A’::x′],
where conn ∈ {and, or}, where the axes are all basic. Observe that the answer
for Q = //*[A::x conn A’::x′] can be obtained as union (resp. intersection) of
the answers for the two ‘component’ queries //*[A::x], and //*[A’::x′], when
conn is an or (resp. and). So, we apply the method described earlier, separately
for Q1 = //*[A::x] and for Q2 = //*[A’::x′], thus getting two respective
evaluating runs r1, r2. Any node u of the dag Dt will then be re-labeled, by the
composite query Q, with ll-pairs computed by a function AND when conn = and
(resp. OR when conn = or), in conformity with the semantics of Section 4.1:

AND(u) = (s, 1) iff r1(u) = (l′, 1) = r2(u);
AND(u) = (η, 0) iff r1(u) = (l, 0) or r2(u) = (l, 0);
AND(u) = (η, 1) otherwise.
OR(u) = (s, 1) iff r1(u) = (l′, 1) or r2(u) = (l′, 1);
OR(u) = (η, 0) iff r1(u) = (l, 0) = r2(u);
OR(u) = (η, 1) otherwise.

Figure 4 illustrates the above reasoning, for the evaluation of the composite
query Q = //*[self::b and parent::a], on the trdag t of Figure 2:

//*[parent : : a]

1)(η,1

A2(,)0η A3(,1η) 4A ,)(0η

A5 ,)(1s

Dt()AND

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

η ,0() η(,1)

η(,1)

T ’,1)(

T ’,1)(

//*[self : : b]

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,η(,1)

η ,0() T,(1) T,(0)

s,1()

A

Fig. 4.

Next, we consider imbricated queries of the form Q = //*[A1::*[A2::σ]].
We first consider a maximal priority run evaluating r2 (resp. a set of runs r̂2) of
the automaton associated to the inner query //*[A2::σ], on Dt (resp. the set of
all chiblings of Lt). This run (resp. set of runs) will output the rlag r2(Dt) (resp.
r̂2(Dt)), as described in Section 4.2. Evaluating the given imbricated query Q
on the dag t is then done by running the automaton for the basic outer query
//*[A1::s] on r2(Dt) (resp. r̂2(Dt)).

Finally, the answer for a query of the type Q = //*[child::*[position()=
k]], is the subset of the nodes answering //*[child::*], which correspond to
a k-th node on some chibling.

13

7 Conclusion

Information retrieval from compressed structures, without having to uncompress
them, is a field of active research; cf. e.g., [13, 8]. Our concern has been the evalua-
tion of queries on XML documents that may be in a compressed form. Limiting
our concern to positive Core XPath queries, we have presented a method for
evaluating them on any trdag t without having to uncompress t, by breaking
up the given query –in linear time, w.r.t. the number of location steps– into
sub-queries of a basic type; with each basic query, an automaton is associated
such that an unambiguous maximal priority run of this automaton can evaluate
the query. (Please note: given a query Q and a trdag t, the answer set for Q on
t is in general a superset of the answer set for Q on the tree-equivalent t̂ of t.)
An algorithm constructing the maximal priority runs is given in [4]; it has just
been implemented (in Java). It is of complexity O(n3) where n is the number of
nodes of the given trdag t; the bound O(n3) is due to the relation Parents –less
trivial on a trdag than on a tree; the complexity reduces to O(n2) on trees.

One apparent advantage of the approach presented here is that the various
basic sub-queries “composing” a given query can be evaluated in parallel, in
several cases; a detailed analysis of this issue could be a possible direction for
future work. A second possible direction would be to see if the Core XPath query
evaluation algorithms of [7] can be adapted to dags, in a manner compatible
with our approach. We also expect to be able to extend our approach to the
evaluation of more general XPath queries, such as those involving the data values,
by suitably adapting its underlying mechanism based on labeling.

References

1. P. Buneman, M. Grohe, C. Koch, Path queries on compressed XML. In Proc. of
the 29th Conf. on VLDB, 2003, pp. 141–152, Ed. Morgan Kaufmann.

2. G. Busatto, M. Lohrey, S. Maneth, Grammar-Based Tree Compression. EPFL
Technical Report IC/2004/80, http://icwww.epfl.ch/publications.

3. G. Busatto, M. Lohrey, S. Maneth, Efficient Memory Representation of XML
Documents. In Proc. DBPL’05, LNCS 3774, pp. 199–216, Springer-Verlag, 2005.

4. B. Fila, S. Anantharaman, Automata for Analyzing and Query-
ing Compressed Documents, Research Report, RR-2006-03, LIFO, 2006,
http://www.univ-orleans.fr/lifo/prodsci/rapports/

5. M. Frick, M. Grohe, C. Koch, Query Evaluation of Compressed Trees, In Proc. of
LICS’03, pp. 188–197, IEEE, 2003.

6. G. Gottlob, C. Koch, Monadic Queries over Tree-Structured Data, In Proc. of
LICS’02, pp. 189–202, IEEE, 2002.

7. G. Gottlob, C. Koch, R. Pichler, L. Segoufin, The complexity of XPath query
evaluation and XML typing In Journal of the ACM 52(2):284-335, 2005.

8. M. Lohrey, Word problems and membership problems on compressed words In SIAM
Journal of Computing, 35(5):1210-1240, 2006.

9. M. Marx, XPath and Modal Logics for Finite DAGs. In Proc. of TABLEAUX’03,
pp. 150–164, LNAI 2796, 2003.

10. W. Martens, F. Neven, On the complexity of typechecking top-down XML trans-
formations, In Theoretical Computer Sc., 336(1): 153–180, 2005.

14

11. F. Neven, Automata Theory for XML Researchers, In SIGMOD Record 31(3),
September 2002.

12. F. Neven, T. Schwentick, Query automata over finite trees, In Theoretical Com-
puter Science, 275(1–2):633–674, 2002.

13. W. Rytter, Compressed and fully compressed pattern matching in one and two
dimensions, In Proceedings of the IEEE, 88(11):1769–1778, 2000.

14. Worl Wide Web Consortium, XML Path Language (XPath Recommendation),
http://www.w3c.org/TR/xpath/

Appendix: From Canonical Forms to Standard Forms

We stick to the notations of Section 3.1. Given any canonical Core XPath query expres-
sion Qcan, we compute, inductively, an equivalent standard XPath expression denoted
as Std(Qcan); as earlier, conn stands for either of the boolean connectives and, or.

To start with, we define:

Std([true]) = self::∗
Std([Scan]) = Scan

Std([A::σ[Scan]]) = A::∗[self::σ and Std([Scan])]
Std([A::σ[A1::σ1[...[Ak::σk]. . .]]]) = A::∗[self::σ and

A1::∗[self::σ1 and. . . Ak−1::∗[self::σk−1 and Ak::σk] . . .]]

We also define, for every basic axis relation, an inverse relation, as follows:

self−1 = self, child−1 = parent, parent−1 = child,
ancestor−1 = descendant, descendant−1 = ancestor

following-sibling−1 = preceding-sibling,
preceding-sibling−1 = following-sibling

For any query Q = // ∗ [X] in standard form, we set exp(Q) = X. For any canon-
ical Core XPath query Q = /C1/C2/ . . . /Cn, the standard form Std(Q) of Q is then
generated by the following recursive construction:

Case of length 1: Q = /C1

Std(/child::σ[Xcan]) = //∗[(Root and self::σ) and Std([Xcan])]
Std(/child::∗[Xcan]) = //∗[Root and Std([Xcan])]
Std(/descendant::σ[Xcan]) = //∗[self::σ and Std([Xcan])]
Std(/descendant::∗[Xcan]) = //∗[Std([Xcan])]
Std(/axis::σ[Xcan] conn axis’::σ′[X ′

can]=
//∗[exp(Std(/axis::σ[Xcan])) conn exp(Std(/axis’::σ′[X ′

can]))]

Case of length n>1: Q = /C1/C2/ . . . /Cn

Std(/C1/. . . /Cn−1/A::σ[Xcan]) =
//∗[(self::σ and Std([Xcan])) and A−1::∗[exp(Std(/C1/. . . /Cn−1))]]
Std(/C1/. . . /Cn−1/A::σ[Xcan] conn A’::σ′[X ′

can]) =
//∗[((self::σ and Std([Xcan])) conn (self::σ′ and Std([X ′

can])))
and A−1::∗[exp(Std(/C1/. . . /Cn−1))]]

This translation procedure is of complexity linear with respect to the number of location

steps (i.e. of the form axis::σ) that appear in Q.

15

