
HAL Id: hal-00077536
https://hal.science/hal-00077536v1

Preprint submitted on 1 Jun 2006 (v1), last revised 25 Aug 2006 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automata for Positive Core XPath Queries on
Compressed Documents
Barbara Fila, Siva Anantharaman

To cite this version:
Barbara Fila, Siva Anantharaman. Automata for Positive Core XPath Queries on Compressed Doc-
uments. 2006. �hal-00077536v1�

https://hal.science/hal-00077536v1
https://hal.archives-ouvertes.fr

Automata for Positive Core XPath Queries

on Compressed Documents

Barbara Fila, Siva Anantharaman

LIFO - Université d’Orléans (France),
e-mail: {fila, siva}@univ-orleans.fr

Abstract. We present a method for evaluating positive unary queries
expressed in terms of Core XPath axes on any XML document t, which
may be presented in a fully or partially compressed form. To each Core
XPath query of a certain basic type, we associate a word automaton;
these automata run on the graph of dependency between the non-terminals
of the minimal straightline regular tree grammar associated to the given
document, or along complete sibling chains in this grammar. Any given
Core XPath query can be decomposed into queries of the basic type, and
the answer to the query can then be expressed as a sub-document of t,
suitably labeled under the runs of such automata.

Keywords: Automata, Tree grammars, Dags, XML, Core XPath.

1 Introduction

Several algorithms have been optimized in the past, by using structures over
dags instead of over trees. Tree automata are widely used for querying XML
documents (e.g., [6, 7, 12, 13]); on the other hand, the notion of a compressed
XML document has been introduced in [1, 5, 10], and a possible advantage of
using dag structures for the manipulation of such documents has been brought
out in [10]. It is legitimate then to investigate the possibility of using automata
over dags instead of over trees, for querying compressed XML documents.

Our aim in this paper is to propose an approach based on word automata,
for evaluating queries on XML documents that may not be in a fully unfolded
tree format. With such an objective, we first present the notion of compression
of documents, essentially as in [1, 5], and then define a tree/dag (trdag, for short)
as a directed acyclic graph that may be partially or fully compressed (the terms
‘trdag’ and ‘document’ will be considered synonymous in the sequel). We adopt
then the view that a trdag t is equivalent to a normalized straightline regular
tree grammar Lt that one can naturally associate with t, cf. e.g., [2, 3]. From
the grammar Lt, we construct the graph of dependency Dt between its non-
terminals, and also the chiblings (linear graphs formed of complete chains of
sibling non-terminals) of Lt. The word automata that we build below will run
on Dt, or on the chiblings of Lt, rather than on the document t itself.

We shall only consider positive unary queries expressed in terms of Core
XPath axes. (The view we adopt on compression allows us to define the various

axes of Core XPath on compressed documents, in a manner which does not
modify their semantics on trees.) For evaluating any such query on any document
t, we proceed as follows. We first break up the given query into basic sub-queries
of the form Q= //*[axis::σ] where axis is a Core XPath axis of a certain
type. To each such basic query Q, we associate a word automaton AQ. The
automaton AQ runs on the graph Dt when axis is non-sibling, and on the
chiblings of Lt when axis is a sibling axis. An essential point in our method is
that the runs of AQ are guided by some well-defined semantics for the nodes
traversed, indicating whether the current node answers Q, or is on a path leading
to some other node answering Q. The automaton is not deterministic as such,
but it is made effectively unambiguous by defining a suitable priority relation
between its transitions, based on the semantics. A basic query Q can then be
evaluated in one single top-down pass of AQ, under such an unambiguous run. An
arbitrary positive unary Core XPath query can be evaluated on t by combining
the answers to its various basic sub-queries, and its answer set is expressed as a
sub-trdag of t, whose nodes get labeled in conformity with the semantics.

The paper is structured as follows: Section 2 presents the notion of trdags.
In Section 3, we construct from any trdag t its normalized straightline regular
tree grammar Lt, as well as the dependency graph and the chiblings of Lt; these
will be seen as rooted labeled acyclic graphs (rlags, for short); the basic notions
of Core XPath are also recalled. Section 4 is devoted to the construction of the
word automata for any basic Core XPath query, based on the semantics, and
an illustrative example. In Section 5, we prove that the runs of these automata,
uniquely and effectively determined under a maximal priority condition, gener-
ate the answers to the queries. Section 6 shows how a non basic (composite, or
imbricated) Core XPath query can be evaluated in a stepwise fashion. The ap-
pendix presents an algorithm for constructing the maximal priority run for any
basic query automaton over any given document. Its complexity is polynomial
on the number of nodes of the document.

2 Tree/Dags

Definition 1 A tree/dag, or trdag for short, over an unranked alphabet Σ is a
rooted dag (directed acyclic graph) t = (Nodes(t), Edges(t)), where:

- every node u ∈ Nodes(t) has a name ∈ Σ, denoted name(u),
- and the edges going out of any node are ordered.

Given any node u on a trdag t, the notion of the sub-trdag of t rooted at u is
defined as usual (it can be identified with u). If v is any node, γ(v) = u1 . . . un

will denote the string of all its not necessarily distinct children nodes; for every
1 ≤ i ≤ n, the i-th outgoing edge from v to its i-th child node ui ∈ γ(v) will be

denoted as e(v, i); we shall also write then v
i

−→ ui. For any node u other than
the root node of t, we set: Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

A trdag t is said to be a tree iff for every node u on t other than the root,
Parents(u) is a singleton. For any trdag t, we define the set Pos(t) as the set
of all the positions post(u) of all its nodes u, these being defined recursively, as

2

follows: if u is the root node on t, then post(u) = ε, otherwise, post(u) = {α.i |
α ∈ post(v), v is a parent of u, u is an i-th child of v}. The elements of Pos(t)
are words over natural integers, and the set Pos(t) is totally ordered under the
usual lexicographic ordering on such words, that we shall denote by ≤l, and refer
to as the document ordering on t.

Definition 2 Given two trdags t and t′ over an alphabet Σ, a bisimilarity rela-
tion between t and t′ is a relation ∼ between Nodes(t) = V and Nodes(t′) = W ,
satisfying the following conditions:

(i) root(t) ∼ root(t′);
(i) the relation ∼ is compatible with the document orderings on t, t′:

if v1, v2 ∈ V , w1, w2 ∈ W are such that vi ∼ wi, i = 1, 2,
then v1 ≤l v2 on t if and only if w1 ≤l w2 on t′;

(iii) for every v ∈ V there exists at least one w ∈ W with v ∼ w,
and for every w ∈ W there exists at least one v ∈ V with v ∼ w;

(iv) if v ∼ w then name(v) = name(w);

(v) if v ∼ w, then for all i, there exists v
i

−→ v′ on Edges(t) if and

only if there exists w
i

−→ w′ on Edges(t′), such that v′ ∼ w′.

A trdag is said to be a tdag, or fully compressed, if in addition to the con-
ditions of Definition 1 above, the following condition is satisfied too: no two
distinct subgraphs are bisimilar. Otherwise it is said to be partially compressed.
A tree over Σ which is bisimilar to a trdag t is said to be its tree equivalent. For
example, the tree to the left of Figure 1 is bisimilar to the partially compressed
trdag to the right, and also to the fully compressed tdag to the middle.

Tree

a a a

f f

Compressed

f

a a a

Partially compressed

Fig. 1. tree, tdag, and trdag

Remark 1. It is possible to redefine the notion of (bottom-up) run of a tree
automaton A on a trdag t, by adding assignments of states to the edges of t, in
such a way that A accepts t in this extended sense, if and only if A accepts the
tree-equivalent of t under a run in the classical sense. For details, see [4].

3 Querying Compressed Documents: Preliminaries

Given a trdag t, one can naturally construct a regular tree grammar associated
with t, which is straightline (cf. [3]), in the sense that there are no cycles on

3

the dependency relations between its non-terminals, and each non-terminal pro-
duces exactly one sub-trdag of t. Such a grammar will be denoted as Lt, if it is
normalized in the following sense:

(i) for every non-terminal Ai of Lt, there is exactly one production of the
form Ai → f(Aj1 , . . . , Ajk

), where i < jr for every 1 ≤ r ≤ k; we shall then set
Sons(Ai) = {Aj1 , . . . , Ajk

}, and symbLt
(Ai) = f ;

(ii) the number of non-terminals is the number of nodes on t.
Such a normalized grammar Lt is uniquely defined up to a renaming of the non-
terminals. For instance, for the trdag t to the left of Figure 2 we get the following
normalized grammar:

A1 → f(A2, A3, A4, A5, A2), A2 → c, A3 → a(A5), A4 → b, A5 → b.

Such a grammar is easily constructed from t, for instance by using a standard
algorithm which computes the ‘depth’ of any node (as the maximal distance
from the root), to number the non-terminals so as to satisfy condition (i) above.

F

tD

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

t:

b

ba

f

c

A2(c,_)

A2(c,_)

(,_)aA3

b,)_(4A

A5 b,)_(

:1F

A5 b,)_(

A1)_f(,

0:F

:3

:

Fig. 2. trdag t, associated rlag Dt, and chiblings of Lt

The dependency graph of the normalized grammar Lt associated with t, and
denoted as Dt, consists of nodes named with the non-terminals Ai, 1 ≤ i ≤ n,
and one single directed arc from any node Ai to a node Aj whenever Aj is a son
of Ai. The root of Dt is by definition the node named A1. The notion of Sons

of the nodes on Dt is derived in the obvious way from that defined above on Lt.
Furthermore, to any production Ai → f(Aj1 , . . . , Ajk

) of Lt, we associate a
rooted linear graph composed of k nodes respectively named Aj1 , . . . , Ajk

, with
root at Aj1 and such that for all l ∈ {2, . . . , k} the node named Ajl

is the son
of the node named Ajl−1

. This graph will be called the chibling of Lt associated
with the (unique) Ai-production; it is denoted as Fi. We also define a further
chibling denoted F0, as the linear graph with a single node named A1, where A1

is the axiom of Lt

In the sequel, we designate by G either Dt or any of the chiblings F of Lt.
We complete any of these acyclic graphs G into a rooted labeled acyclic graph
(rlag, for short), by attaching to each node u on G, with name(u) = Ai, a label
denoted label(u), and defined as label(u) = (symbLt

(Ai),−); cf. Figure 2.

4

3.1 Positive Core XPath Queries on trdags

In this paper we restrict our study to positive Core XPath queries on trdags.
Recall that the Core XPath is the navigational segment of XPath, and is based
on the following axes of XPath (cf. [15]): self, child, parent, ancestor,

descendant, following-sibling, preceding-sibling, sibling. A location
expression is defined as a predicate of the form [axis::b], where axis is one of
the above axes, and b is a symbol of Σ. Given any trdag t over Σ, a context node
u on t and b ∈ Σ, the semantics for axis is defined by evaluating this predicate
at u. The semantics for the axes self, child, descendant are easily defined,
exactly as on trees (cf. [15]). For defining the semantics of the remaining axes,
we first recall that Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

Definition 3 Given a context node u on a trdag t, and b ∈ Σ:
i) [parent::b] evaluates to true at u, if and only if there exists a

b-named node in Parents(u);
ii) [ancestor::b] evaluates to true at u, iff either [parent::b] evaluates

to true at u, or there exists a node v ∈ Parents(u) such that [ancestor::b]

evaluates to true at v;
iii) [following-sibling::b] evaluates to true at u, iff there exists a

b-named node u′, and a node v on t such that γ(v) is of the form ...u...u′...;
iv) [preceding-sibling::b] evaluates to true at u, iff there exists a

b-named node u′, and a node v on t such that γ(v) is of the form ...u′...u...;
v) [sibling::b] evaluates to true at u iff either [following-sibling::b]

or [preceding-sibling::b] (or both) evaluate(s) to true.

The semantics for the axes descendant-or-self and ancestor-or-self are
then deduced in the obvious manner. And finally, for any set S of nodes on t, the
sets of nodes following(S) and preceding(S) are defined formally, following
[1], as follows:

following(S) =
descendant-or-self(following-sibling(ancestor-or-self(S))),

preceding(S) =
descendant-or-self(preceding-sibling(ancestor-or-self(S))).

Remark 2. i) Unlike on a tree, the ancestor, descendant, following, self

and preceding axes do not partition the set of nodes on a compressed document.
ii) One can always switch from the format ‘axis(b)’ to the format ‘axis::b’.

For instance: for any b, the set of nodes ancestor-or-self(b) is the answer to
the query //*[descendant-or-self::b].

Here are some easy consequences of our definitions.

Proposition 1 (1) For any set of nodes X on any document (trdag) t, we have:
ancestor-or-self(X) =

⋃
x∈X{ //*[descendant::x or self::x] }

descendant-or-self(X) =
⋃

x∈X{ //*[ancestor ::x or self::x] }
following-sibling(X) =

⋃
x∈X{ //*[preceding-sibling::x] }

preceding-sibling(X) =
⋃

x∈X{ //*[following-sibling::x] }

5

(2) For any trdag t, and any node with name b on t, we have:
(i) //*[preceding::b] =⋃

u,name(u)=b

{ descendant-or-self(following-sibling(

//*[descendant::b or self::b]))}
(ii) //*[following::b] =⋃

u,name(u)=b

{ descendant-or-self(preceding-sibling(

//*[descendant::b or self::b]))}

We shall refer to the axes self, child, descendant, parent, ancestor,

preceding-sibling, following-sibling as basic. A basic Core XPath query
is defined as a query of the form //*[axis::σ], where axis is a basic axis. More
generally, the queries we propose to evaluate on trdags are defined formally as
the expressions Q generated by the following grammar, where σ stands for any
node name on the documents:
A ::= self | child | descendant | parent | ancestor |

preceding-sibling | following-sibling

Q ::= //*[A::σ] | /*[A::σ] | Q or Q | Q and Q | //*[A::*[Q]]

Core XPath queries Q of this format will be said to be in standard form. It is
not hard to translate any positive Core XPath query into one in standard form;
e.g., the query //c[following-sibling::g]/d is equivalent to //*[self::d]

and //*[parent::*[//*[self::c] and //*[following-sibling::g]]], in
standard form. The components in a disjunction (resp. conjunction) under a
‘*’ can be evaluated separately: indeed, //*[A::x conn A’::x′] is equivalent
to //*[A::x] conn //*[A’::x′], where conn is or (resp. and).

We shall be henceforth considering positive queries in the format //*[A::σ],
essentially; note that for evaluating a query of the form /*[A::σ], one can retain
the answers for //*[A::σ] that are at depth 1.

4 Automata for the Basic Queries

4.1 The Semantics of the Approach

We first consider basic Core XPath queries. Composite or imbricated queries will
subsequently be evaluated in a stepwise fashion; see Section 6.

To any basic query Q = //*[axis::σ], we shall associate a word automaton
(actually a transducer), referred to as AQ. It will run top-down, on the rlag Dt

if axis is non-sibling, and on each of the chiblings F of Lt otherwise. In either
case, a run will attach, to any node traversed, a pair of the form (l, x), where
the component l of the pair has the intended semantics of selection or not, by Q,
of the corresponding node on t, and the component x will be a 1 or 0, with the
intended semantics that x = 1 iff the corresponding node on t has a descendant
answering Q. At the end of the run, label(u), at any node u of Dt, will be replaced
by a new label derived from the ll-pairs attached to u by the run.

To formalize these ideas, we introduce a set of new symbols L = {s, η,>,>′}
referred to as llabels (the term ‘llabel’ is used so as to avoid confusion with the

6

term label). We define ll-pairs as elements of the set L × {0, 1}, and the states
of AQ as elements of the set {init} ∪ (L × {0, 1}). For any Q, the automaton
AQ is over the alphabet Σ ∪ {s, η}, has {init} as its initial state, and has no
final state. The set ∆Q of transitions of AQ will consist of rules of the form
(q, τ) → q′ where q ∈ {init}∪ (L×{0, 1}), q′ ∈ (L×{0, 1}), and τ ∈ Σ ∪ {s, η}.

For any rlag G, we define a function llab : Nodes(G) → Σ ∪ {s, η}, by setting
llab(u) = π1(label(u)), the first component of label(u). The automaton AQ asso-
ciated to a basic query Q =//*[axis::σ]will run top-down on the rlag G, where
G is Dt if axis is a basic non-sibling axis, and G is any chibling F of Lt if axis
is a basic sibling axis. A run of AQ on G is a map r : Nodes(G) → (L × {0, 1}),
such that, for every u ∈ Nodes(G), the following holds:

- if u is rootG , then the rule (init, llab(u)) → r(u) is in ∆Q;
- otherwise, for every v ∈ γ(u) the rules (r(u), llab(v)) → r(v) are all in ∆Q.

(Note: when axis is non-sibling, this amounts to requiring that, for any node v,
the state r(v) must be in conformity with the states r(u) for every parent node
u of v, with respect to the rules in ∆Q.)

From the run of the automata AQ and from the labels it attaches to the
nodes of Dt, we will also deduce, at every node u of t, a well-determined ll-pair
as label at u (note: Nodes(t), Nodes(Dt) are in natural bijection). The ll-pairs
thus attached to the nodes of t will have the following semantics (where x stands
for the name of the node on t, corresponding to the ‘current’ node on Dt):

- (>′, 1) : x = σ, current node on t is selected by (i.e., is an answer for) Q;
- (>, 1) : x = σ, current node is not selected, but has a selected descendant;
- (>, 0) : x = σ, current node is not selected, and has no selected descendant;
- (s, 1) : x 6= σ, current node is selected;
- (η, 1) : x 6= σ, current node is not selected, but has a selected descendant;
- (η, 0) : x 6= σ, current node is not selected, and has no selected descendant.

Only the nodes on Dt, to which the run of AQ associates the labels (s, 1)
or (>′, 1), correspond to the nodes of t that will get selected by the query Q.
The ll-pairs with boolean component 1 will label the nodes of Dt corresponding
to the nodes of t which are on a path to an answer for the query Q; thus the
automata AQ will have no transitions from any state with boolean component
0 to a state with boolean component 1. Moreover, with a view to define runs
of such automata which are unique (or unambiguous in a sense that will be
presently made clear), we define some priority relations between the ll-pairs:

(η, 0) > (η, 1) > (s, 1), and (>, 0) > (>, 1) > (>′, 1).

A run of the automaton AQ will label any node u on G only with an ll-pair of
one of the two groups {(>, 0), (>, 1), (>′, 1)} or {(η, 0), (η, 1), (s, 1)}, and this
group will be determined by llab(u).

For ease of presentation, we agree to set η′ := s, and often denote either of
the above two groups of ll-pairs under the uniform notation {(l, 0), (l, 1), (l′, 1)},
where l ∈ {η,>}, with the ordering (l, 0) > (l, 1) > (l′, 1).

We shall construct a run r of AQ on G that will be uniquely determined by
the following maximal priority condition:

7

(MP): at any node v on G, r(v) is the maximal ll-pair (l , x) for the ordering >

in the group {(l, 0), (l, 1), (l′, 1)} determined by llab(v), such that AQ contains
a transition rule of the form (r(u), llab(v)) → (l , x), for every parent u of v.

Such a run will assign a label with boolean component 1 only to the nodes
corresponding to those of the minimal sub-trdag t containing the root of t and
all the answers to Q on t.

4.2 Re-labeling of Dt by the Runs of AQ

We first consider a non-sibling basic query Q on a given document t, and a given
run r of the automaton AQ on the Dt; at the end of the run, the nodes on Dt will
get re-labeled with new ll-pairs, computed as below for every u ∈ Nodes(Dt):

labr(u) = (s, 1) iff r(u) ∈ {(s, 1), (>′, 1)},
labr(u) = (η, 1) iff r(u) ∈ {(η, 1), (>, 1)},
labr(u) = (η, 0) iff r(u) ∈ {(η, 0), (>, 0)}.

The rlag obtained in this manner from Dt, following the run r and the associated
re-labeling function labr, will be denoted as r(Dt).

For a basic query Q over a sibling axis, the situation is a little more complex,
because several different nodes on one chibling of Lt can have the same name
(non-terminal), or several different chiblings can have nodes named by the same
non-terminal, or both. Thus the runs of AQ on the various chiblings of Lt will
in general assign more than one ll-pair to a node of Dt. We therefore proceed
as follows: for every complete set r̂ of runs of AQ, one run on each chibling F ,
we will define r̂(Dt) as the re-labeled rlag derived from Dt, under r̂. With that
purpose we first associate to r̂ and any u ∈ Nodes(Dt), a set of ll-pairs:

llbr(u) =
⋃

rF∈ br

{rF (v) | v ∈ Nodes(F), and name(v) = name(u)}

where rF is a run of AQ on a chibling F ; we then derive, at each node of Dt

a unique ll-pair in conformity with the semantics of our approach, by using the
following function:

λbr(u) = s ⇐⇒ llbr(u) ∩ {(s, 1), (>′, 1)} 6= ∅,
λbr(u) = η ⇐⇒ llbr(u) ∩ {(s, 1), (>′, 1)} = ∅.

From Dt and this function λbr, we next derive an rlag λbr(Dt) by re-labeling
each node u on Dt with the pair (λbr(u),−). And finally we define r̂(Dt) as the
rlag obtained from λbr(Dt), by running on it the automaton for the basic non-
sibling query //*[self::s], as indicated at the beginning of this subsection.
In practical terms, such a run amounts in essence to setting, as the second
component of label(u) at any node u, the boolean 1 iff u is on a path to some
node with s as its llab, and 0 otherwise. All these details are illustrated with an
example in the following subsection.

4.3 The Automata

We first present the automata for the basic queries //*[self::σ] and for
//*[following-sibling::σ], and give an illustrative example using the for-
mer for σ = s, and the latter for σ = b. The automata for the other basic queries
are given after the example.

8

• Automata: for //*[self::σ] and for //*[following-sibling::σ]

σ

init

η , 1

’T, 1=σγ

=σγ

=σγ

=σγ
=σγ

=σγ

=σγ

η , 0

init

η , 0

s, 1

T, 0

’T, 1

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ
=⁄γ σ

σ σ
σ

σ
σ

σ

σ

σ

Figure 3 below illustrates the evaluation of Q = //*[following-sibling::b],
on the trdag t of Figure 2. The sub-trdag of t, formed of nodes whose labels have
boolean component 1, contains all the answers to Q on t.

s 2 A3

A5

4A

)(

(,)(,)

,)(η

A1

)(

,η 1

1s s 1 ,

0

s 1

A1

A3A2

A5

4A

)(,_η

(,_)s(,_)s

,)_(η

,)_(s

Dt)λr(:

(,)η 1

,)η 0(

A1

A3A2

A5

4A
T ’,1)(T ’,1)(T ’,1)(

r
(Dt):for //*[self : : s] on

run of the automaton
λ rlag:r(Dt)

final re−labeled

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

s,()1
η ,()0

s,()1

T,()0

,)η 0(

T ’,1)(

r3r10r ,, on Dt:

A2(c,_)

s,()1

η ,()0

T,()0

s,()1

A2(c,_)

(,_)aA3

b,)_(4A

A5 b,)_(

T ’,1)(

,)η 0(A1)_f(,

T,()0A5 b,)_(

0r 0Fon :

r3 3Fon :

r1 1Fon :

)(,_η

(,_)s(,_)s

,)_(η

,)_(A

Fig. 3.

9

• Automaton for the query //*[parent::σ]

σ
init

T, 1

s, 1

η , 0

T, 0

=⁄γ σ
=⁄γ σ

η , 1

’T, 1

=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ

σ

σ

σ

σ
σ σ

σ

σ

σ

σ

• Automaton for the query //*[child::σ]

σ

, 1

T, 0

T, 1

’T, 1

init

η , 1

η , 0

=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ

=⁄γ σ =⁄γ σ

=⁄γ σ=⁄γ σ=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

=⁄γ σ
=⁄γ σ

=⁄γ σ

σ
σ

σ σ

σ

σ

σ

σ

s

• Automaton for the query //*[ancestor::σ]

σ

, 0

init s, 1

’T, 1η , 1

T, 0

=σγ

=σγ

=σγ =σγ

T, 1

=σγ

=σγ

=σγ

=σγ
=σγ

σ
σ

σ

σ
σ

σ

σ

σ

η

10

• Automaton for the query //*[preceding-sibling::σ]

σ

init

η , 1

T, 1

=⁄γ σ

’T, 1

s, 1

=⁄γ σ
=⁄γ σ

T, 0

=⁄γ σ
η , 0

=⁄γ σ

=⁄γ σ =⁄γ σ

σ

σ

σ

σ

σ

σ

• Automaton for the query //*[descendant::σ]

σ

init

’T, 1

η , 0

s, 1
=σγ

=σγ

=σγ
=σγ

=σγ

=σγ

=σγ

T, 0
=σγ

σ

σ

σσ

σ

A few words on some of the automata by way of explanation. First, the
reason why the automaton for self does not have the states (>, 0), (>, 1), (s, 1):
for (>, 0), (>, 1), by the semantics of subsection 4.1 we must have x = σ, where
x is the name of the current node on t, but then the query //*[self::σ]

should select the current node, so one cannot be at such a state; as for (s, 1),
the reasoning is just the opposite. Next, the reason why the automaton for
descendant does not have the states (η, 1), (>, 1): if the semantics attribute
one of these pairs to any node u, that would mean the node u has a selected
descendant u′; which means that u′ has some σ-descendant node, which would
then be a σ-descendant for u too, so Q should select u.

5 Maximal Priority Runs of Basic Query Automata

Note that the following properties, required by our semantics of subsection 4.1,
hold on the automata AQ constructed above, for any basic Core XPath query
Q = //*[axis::σ]:

i) There are no transitions from any state with boolean component 0 to a state
with boolean component 1;

11

ii) The σ-transitions have all their target states in {(>, 0), (>, 1), (>′, 1)}; and
for any γ 6= σ, the target states of γ-transitions are all in {(η, 0), (η, 1), (s, 1)}.

Theorem 1 Let Q be any basic Core XPath query, t any given trdag, and let G
denote either the rlag Dt, or any given chibling F of Lt. Assume given a labeling
function L from Nodes(G) into the set of ll-pairs, which is correct with respect
to Q, i.e., in conformity with the semantics of subsection 4.1. Then there is a
run r of the automaton AQ on G, such that :

i) r is compatible with L; i.e., r(u) = L(u) for every node u on G;
ii) r satisfies the maximal priority condition (MP) of subsection 4.1.

Proof. We first construct, by induction, a ‘complete’ run (i.e., defined at all the
nodes of G) satisfying property i). For that, we shall employ reasonings that will
be specific to the axis of the basic query Q. We give here the details only for the
axis parent; they are similar for the other axes.

Q = //*[parent::σ]: (The axis considered is non-sibling so G = Dt here.) At
the root u node of Dt, we set r(u) = L(u); we have to show that there is a
transition rule in AQ of the form (init, llab(u)) → L(u). Obviously, for the axis
parent, the root node u cannot correspond to a node on t selected by Q, so the
only ll-pairs possible for L(u) are (l, 0), (l, 1), with l ∈ {η,>}; for each of these
choices, we do have a transition rule of the needed form, on AQ.

Consider then a node v on Dt such that, at each of its ancestor nodes u on
Dt, the part of the run r of AQ has been constructed such that r(u) = L(u);
assume that the run cannot be extended at the node by setting r(v) = L(v). This
means that there exists a parent node w of v, such that (L(w), llab(v)) → L(v) is
not a transition rule of AQ; we shall then derive a contradiction. We only have
to consider the cases where the boolean component of L(w) is greater than or
equal to that of L(v). The possible couples L(w), L(v) are then respectively:

 L(w) : (>, 0) | (>, 1) | (>, 1) | (>′, 1) | (>′, 1)
 L(v) : (η, 0) | (>, 1) | (η, 1) | (>, 1) | (η, 1)

In all cases, we have llab(w) = σ because of the semantics, so the node (on t

corresponding to the node) v has a σ-parent, so must be selected; thus the above
choices for L(v) are not in conformity with the semantics; contradiction.

We now prove that the complete run r thus constructed, satisfies property ii).
For this part of the proof, the reasoning does not need to be specific for each Q;
so, write Q more generally, as //*[axis::σ] for some given σ. Suppose the run
r does not satisfy the maximal priority condition at some node v on G; assume,
for instance, that the run r made the choice, say of the ll-pair (l, 1), although the
maximal labeling of the node v, in a manner compatible with the ll-pairs of all
its parents, was the ll-pair (l, 0). Since L is assumed correct, and r is compatible
with L, the maximal possible labeling (l, 0) would mean that the node (on t

corresponding to the node) v has no descendant selected by Q; whereas, the
choice that r is assumed to have made at v, namely the ll-pair (l, 1), has the
opposite semantics whether or not llab(v) = σ; in other words, the labeling L
would not be correct with respect to Q; contradiction. The other possibilities for
the ‘bad’ labelings under r also get eliminated in a similar manner. ut

12

Theorem 2 Let Q, t,Dt,F ,G be as above. Let r be a (complete) run of the
automaton AQ on G, which satisfies the maximal priority condition (MP) of
subsection 4.1. Then the labeling function L on Nodes(G), defined as L(u) = r(u)
for any node u, is correct with respect to the semantics of subsection 4.1.

Proof. Let us suppose that the labeling L deduced from r is not correct with
respect to Q; we shall then derive a contradiction. The reasoning will be by case
analysis, which will be specific to the axis of the basic query Q considered. We
give the details here for Q = //*[descendant::σ]. The axis is non-sibling, so
we have G = Dt here. The sets Nodes(t), Nodes(Dt) are in a natural bijection,
so for any node u on Dt we shall also denote by u the corresponding node on t,
in our reasonings below.

We saw that the automaton AQ for the descendant axis does not have the
states (η, 1), (>, 1). Consider then a node u on Dt such that: for all ancestor nodes
w of u, the llabel r(w) is in conformity with the semantics, but the ll-pair r(u) is
not in conformity. Now, AQ has only 5 states: (init), (>′, 1), (s, 1), (>, 0), (η, 0),
of which only the last four can llabel the nodes. So the possible ‘bad’ choices
that r is assumed to have made at our node u, are as follows:

(a) r(u) = (>′, 1), but the node u is not an answer to the query Q. Here
name(u) must be σ, so the choice of r ought to have been (>, 0);

(b) r(u) = (s, 1), but the node u is not an answer to the query Q. Here
name(u) 6= σ, so the choice of r ought to have been (η, 0);

(c) r(u) = (η, 0), but the node u is an answer to the query Q. Here
name(u) 6= σ, so the choice of r ought to have been (s, 1);

(d) r(u) = (>, 0), but the node u is an answer to the query Q. Here
name(u) must be σ, so the choice of r ought to have been (>′, 1).

In all the four cases, we have to show:
i) that the “ought-to-have-been” choice ll-pair is reachable from all the

parent nodes of u;
ii) and that, with such a new and ‘correct’ choice made at u, r can be

completed from u, into a run on the entire dag Dt.
The reasoning will be similar for cases (a), (b), and for the cases (c), (d).

Here are the details for case (a): That u is not an answer to Q means that u has
no σ-descendant node, so for all nodes v below u on Dt, we have llab(v) 6= σ.
Therefore, assertions i) and ii) above follow from the following observations on
the automaton for Q= //*[descendant::σ]:

i) if r could reach the state (>′, 1) at node u (via a σ-transition) from any
parent node of u, then (>, 0) is also reachable thus at u, from any of them;

ii) if, from the state (>′, 1), r could reach all the nodes on Dt below u (with
state (η, 0)), via transitions over γ 6= σ, then it can do exactly the same now,
with the ‘correct’ choice ll-pair (>, 0) at u.

As for case (c): Node u is an answer to Q here, so u has a σ-descendant; let v

be a σ-node below u on Dt; the ll-pair r(v) that r assigns to v must then be either
(>′, 1) or (>, 0); this implies that r passed from the state (η, 0) – supposedly
assigned by r to u – to (>′, 1) or (>, 0) somewhere between u and v; which
is impossible, as is easily seen on the automaton AQ for the axis descendant

13

considered. The reasoning for case (d) is even easier: from state (>, 0), no state
with an outgoing σ-transition is reachable. ut

6 Evaluating Composite Queries

Given a trdag t, we consider now queries which are disjunctive or conjunctive, of
the form: Q = //*[axis1::x] conn //*[axis2::y], where conn ∈ {and, or}.
To show how our approach is applied for evaluating such a query, we may assume
wlog that axis1 and axis2 are basic. We apply the method described earlier,
separately for Q1 = //*[axis1::x] and for Q2 = //*[axis2::y], thus getting
two respective evaluating runs r1, r2. Any node u of the dag Dt will then be re-
labeled, by the composite query Q, with ll-pairs computed by a function AND
when conn = and (resp. OR when conn = or), in conformity with the semantics
presented in the subsection 4.1:

AND(u) = (s, 1) iff r1(u) = (l′, 1) = r2(u);
AND(u) = (η, 0) iff r1(u) = (l, 0) or r2(u) = (l, 0);
AND(u) = (η, 1) otherwise.
OR(u) = (s, 1) iff r1(u) = (l′, 1) or r2(u) = (l′, 1);
OR(u) = (η, 0) iff r1(u) = (l, 0) = r2(u);
OR(u) = (η, 1) otherwise.

Figure 4 illustrates the above reasoning, for the evaluation of the composite
query Q = //*[self::b] and //*[parent::a], on the trdag t of Figure 2:

//*[parent : : a]

1)(η,1

A2(,)0η A3(,1η) 4A ,)(0η

A5 ,)(1s

Dt()AND

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,

η ,0() η(,1)

η(,1)

T ’,1)(

T ’,1)(

//*[self : : b]

A2(c,_) (,_)aA3 b,)_(4A

A5 b,)_(

A1)_f(,η(,1)

η ,0() T,(1) T,(0)

s,1()

A

Fig. 4.

We next consider queries of the form Q = //*[axis 1::*[//*[axis 2::σ]]],
that are imbricated; we again assume wlog that the two axes are basic. For their
evaluation, we first consider a maximal priority evaluating run r2 (resp. a set
of runs r̂2) of the automaton associated to the inner query //*[axis 2::σ], on
Dt (resp. the set of all chiblings of Lt). This run (resp. set of runs) will output
the rlag r2(Dt) (resp. r̂2(Dt)), as described in subsection 4.2. Evaluating the
imbricated query Q on the dag t is then done by running the automaton for the
(basic) outer query //*[axis1::s] on r2(Dt) (resp. r̂2(Dt)).

14

7 Conclusion

Information retrieval from compressed structures, without having to uncompress
them, is a field of active research, cf. e.g., [14, 9]. Our concern in this paper has
been the evaluation of queries on XML documents that may be in a compressed
form. Limiting our concern to positive Core XPath queries, we have presented
a method for evaluating them on any trdag t without having to uncompress t:
we first break up the given query into several sub-queries of a basic type; with
each basic query, an automaton is associated such that a single unambiguous
run of this automaton can evaluate the query. Such single runs of the automata
are determined effectively by semantic labels that get attached to each node
that the runs traverse. A direction for possible future work would be to adapt
the approach presented here for evaluating more general XPath queries, such as
those involving the namespace, or comprising negated sub-queries.

References

1. P. Buneman, M. Grohe, C. Koch, Path queries on compressed XML. In Proc. of
the 29th Conf. on VLDB, 2003, pp. 141–152, Ed. Morgan Kaufmann.

2. G. Busatto, M. Lohrey, S. Maneth, Grammar-Based Tree Compression. EPFL
Technical Report IC/2004/80, http://icwww.epfl.ch/publications.

3. G. Busatto, M. Lohrey, S. Maneth, Efficient Memory Representation of XML
Documents. In Proc. DBPL’05 (to appear), LNCS 3774, Springer-Verlag, 2005.

4. B. Fila, S. Anantharaman, Automata for Analyzing and Querying Com-
pressed Documents, Research Report, RR-2006-03, LIFO, March 2006,
http://www.univ-orleans.fr/lifo/prodsci/rapports/

5. M. Frick, M. Grohe, C. Koch, Query Evaluation of Compressed Trees, In Proc. of
LICS’03, IEEE, pp. 188–197.

6. G. Gottlob, C. Koch, Monadic Queries over Tree-Structured Data, In Proc. of
LICS’02, IEEE,

7. G. Gottlob, C. Koch, Monadic Datalog and the Expressive Power of Languages for
Web Information Extraction, In Journal of the ACM, 51(1):12–28, 2004.

8. G. Gottlob, C. Koch, R. Pichler, L. Segoufin, The complexity of XPath query
evaluation and XML typing In Journal of the ACM 52(2):284-335, 2005.

9. M. Lohrey, Word problems and membership problems on compressed words In SIAM
Journal of Computing, 35(5):1210-1240, 2006.

10. M. Marx, XPath and Modal Logics for Finite DAGs. In Proc. of TABLEAUX’03,
pp. 150–164, LNAI 2796, 2003.

11. W. Martens, F. Neven, On the complexity of typechecking top-down XML trans-
formations, In Theoretical Computer Sc., 336(1): 153–180, 2005.

12. F. Neven, Automata Theory for XML Researchers, In SIGMOD Record 31(3),
September 2002.

13. F. Neven, T. Schwentick, Query automata over finite trees, In Theoretical Com-
puter Science, 275(1–2):633–674, 2002.

14. W. Rytter, Compressed and fully compressed pattern matching in one and two
dimensions, In Proceedings of the IEEE, 88(11):1769–1778, 2000.

15. Worl Wide Web Consortium, XML Path Language (XPath Recommendation),
http://www.w3c.org/TR/xpath/

15

Appendix: Constructing the Maximal Priority Run

Given a trdag t, we give here the algorithm constructing the maximal priority
run of the automaton AQ for any basic non-sibling query Q. (It is easily adapted
for the sibling queries by replacing Dt by the chiblings of Lt.) We set n :=number
of nodes of Dt. The nodes on Dt are referred to by their names: Ai, 1 ≤ i ≤ n.
Recall that ∆Q is the set of transition rules of AQ.

INPUT: The rlag Dt; and the automaton AQ;
BEGIN :

next(η, 0) := (η, 1); next(η, 1) := (s, 1); next(s, 1) := ∅;
next(>, 0) := (>, 1); next(>, 1) := (>′, 1); next(>′, 1) := ∅;
r(A0) := init; Sons(A0) := {A1};
For all j ∈ {1, . . . , n}

If llab(Aj) 6= σ, Ej := [(η, 0), (η, 1), (s, 1)] /* See as lists */
Else Ej := [(>, 0), (>, 1), (>′, 1)];

i := 1;
(1) r(Ai) := first(Ei); /* Choose the first ll-pair in Ei */

If for all Aj with Ai ∈ Sons(Aj), (r(Aj), llab(Ai))) → r(Ai) ∈ ∆Q

i := i + 1;
If i ≤ n goto (1)
Else return r(Ak) for all k ∈ {1, . . . , n} ;

/* Case of no selection: each Ai gets ll-pair (l, 0), corresp. to its llabel */
Else /* Now case with selection*/
E1 := E1 \ [(η, 0), (>, 0)]; /* First element in E1 is removed */
i := 1;

(2) r(Ai) := first(Ei); /* Choose the first ll-pair in Ei */
(3) If for all Aj with Ai ∈ Sons(Aj), (r(Aj), llab(Ai))) → r(Ai) ∈ ∆Q

i := i + 1;
If i ≤ n goto (2)
Else return r(Ak) for all k ∈ {1, . . . , n} ;

Else

(4) If next(r(Ai)) 6= ∅ {
r(Ai) := next(r(Ai));
goto (3); /* Try with next ll-pair at Ai */

}
Else {i := i − 1; goto (4)} ; /* Try with next ll-pair at Ai−1 */

END.

Remark 3; The above algorithm computes the word of length n over the alpha-
bet formed of ll-pairs, which is maximal for the descending lexicographic order
defined by the priority relation >. At each position i on the word (correspond-
ing to a node on Dt), 3 ll-pairs are possible (determined by the symbol at that
node on Dt). The worst case complexity of the algorithm is O(n6): there are n3

possible words, and the construction of each costs at most n3 steps.

16

