
HAL Id: hal-00077510
https://hal.science/hal-00077510v1

Submitted on 1 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How Useful are Dag Automata?
Siva Anantharaman, Paliath Narendran, Michaël Rusinowitch

To cite this version:
Siva Anantharaman, Paliath Narendran, Michaël Rusinowitch. How Useful are Dag Automata?. 2004.
�hal-00077510�

https://hal.science/hal-00077510v1
https://hal.archives-ouvertes.fr

How Useful are Dag Automata ?

S. ANANTHARAMAN, LIFO, Orléans (Fr.)
P. NARENDRAN, SUNY at Albany-NY (USA)

M. RUSINOWITCH, LORIA, Nancy (Fr.)

Rapport No 2004-12

How Useful are Dag Automata ?

Siva Anantharaman1, Paliath Narendran2, Michael Rusinowitch3

1 LIFO - Orléans (France), e-mail: siva@lifo.univ-orleans.fr

2 University at Albany–SUNY (USA), e-mail: dran@cs.albany.edu

3 LORIA - Nancy (France), e-mail: rusi@loria.fr

Abstract

Tree automata are widely used in various contexts. They are closed under boolean
operations and their emptiness problem decidable in polynomial time. Dag automata are
natural extensions of tree automata, operating on dags instead of on trees; they can also
be used for solving problems. Our purpose in this paper is to show that algebraically they
behave differently: the class of dag automata is not closed under complementation, dag au-
tomata are not determinizable, their membership problem is NP-complete, the universality
problem is undecidable, and the emptiness problem is NP-complete even for deterministic
labeled dag automata.

Keywords: Tree automata, Determinism, Complementation, Universality problem, Empti-

ness problem, E-Unification.

1 Introduction

The expressive power of tree automata has proved to be very useful in several contexts, such as
rewriting (e.g., [8]), the analysis of XML documents (e.g., [14]), and formal program or protocol
verification techniques based on set constraints. They have also been employed in solving
unification problems over theories extending ACUI (AC with Unit element plus Idempotence),
see for instance [4] and [2]. Dag automata were first introduced as extensions of tree automata
in [6]; in brief, a dag automaton is a bottom-up tree automaton which runs on dags, not on
trees. A labeled dag automaton is a dag automaton where the transitions are labeled; it runs on
dags with labeled nodes; the runs have then to use transitions whose labels tally with those at
the nodes reached. It was shown in [2] that unification modulo ACUID (the theory obtained by
adjoining a binary operator assumed 2-sided distributive over a basic ACUI symbol) is decidable
with a DEXPTIME lower bound and a NEXPTIME upper bound complexity; this was done by
formulating the problem as one of emptiness of a deterministic labeled dag automaton (LDA)
that can be constructed naturally from the given unification problem, in exponential time.

Thus, if emptiness of deterministic LDAs could be shown to be decidable in polynomial
time, one could have deduced that ACUID-unification is DEXPTIME-complete. But we shall
be showing below that deciding emptiness is NP-complete for deterministic LDAs. We also es-
tablish that: (i) the class of dag automata is not stable under complementation, (ii) the uniform
membership problem is NP-hard for non-deterministic dag automata, and (iii) universality is
undecidable for dag automata.

The results on emptiness and membership are obtained via reduction from boolean satisfia-
bility, while that on universality is obtained via reduction from the Minsky 2-counter machine
problem. These results illustrate how different the algebraic behavior of dag automata can be,
as compared to tree automata. Observe, in this connection, that for non-deterministic tree
automata, the uniform membership problem is decidable in polynomial time, and universality

2

is known to be EXPTIME-complete, cf. TATA ([7]), Section 1.7, respectively Theorems 10
and 14.

Dag automata were studied in detail in [6]; the problem of their emptiness was shown there
to be NP-complete, and their membership problem was shown to be in NP. The stability under
complementation of the class of dag automata was raised as an open problem, closely linked with
that of their determinization. The proof of our Theorem 1 (Section 3) settles these questions
negatively.

Despite these negative results concerning their algebraic behavior, a positive message that
we want to convey in this paper is that dag automata can be the appropriate tools for handling
some practical situations. For the sake of completeness, we also reproduce in Appendix I, the
full details of the LDA approach for solving any given AC(U)ID-unification problem P , given
in a standard form. A labeled term dag t accepted by the LDA associated to P may not directly
give a solution to the problem P : the sets of ground terms derived from the labels of t may
not satisfy the necessary ‘closure property’; but this is repaired with the help of a grammar
associated with an accepting run. Several illustrative examples are presented in Appendix II.

2 Dag Automata with or without Labels

We first recall the notions of term-dags and of dag automata as developed in [6]. A term-dag
over a ranked alphabet Σ is a rooted dag where each node has a symbol from Σ such that: (i)
the out-degree of the node is the same as the rank of the symbol, (ii) edges going out of a
node are ordered, and (iii) no two distinct subgraphs are isomorphic. Every node represents
a unique term in a term-dag, so we often treat “node” and “term” as synonymous on a term-dag.

Definition 1 A term-dag automaton (or dag automaton, DA for short) over a ranked alphabet
Σ is a tuple (Σ, Q, F, ∆), where Q is a finite non-empty set of states, F ⊆ Q is the set of final
(or accepting) states, and ∆ is a set of transition rules of the form : f(q1, q2, ..., qn) → q, where
f ∈ Σ is of arity (rank) n, and the qi, . . . , qn, q are in Q.

Note that the dag automata are defined in a bottom-up style. A run r of a DA A =
(Σ, Q, F, ∆) on a term-dag t is a mapping from the set of nodes of t to the set of states Q that
respects the transition relation ∆; i.e., for every node u, if the symbol at u is f of arity k, then
f(r(u1), . . . , r(uk)) → r(u) must be a transition in ∆, where u1, . . ., uk are the successor-nodes
of u given in order. A run r is accepting on t if and only if r(t) ∈ F , i.e, it maps the root node
to an accepting state. A term-dag t is accepted by a DA iff there is an accepting run on t. The
language of a DA is the set of all term-dags that it accepts. It has been proved in [6], that
deciding the emptiness of a DA is in NP .

A labeled term-dag, or lt-dag for short, is a term-dag equipped additionally with a mapping
from the nodes of the dag to a given set of labels E. The motivation for adding labels is that,
in the case where the labels are boolean, i.e., when E = {0, 1}, a labeled term-dag can be used
to specify finite sets of terms. For instance, the labeled term-dag in Figure 1 represents the set
{a, g(g(a, a), b)} of terms. More generally, if the labels are boolean vectors of length m, then
each labeled dag corresponds to an m-tuple of finite sets of terms.

Definition 2 A labeled dag automaton (or LDA in short) over a ranked alphabet Σ is a quin-
tuple (Σ, Q, F, E, ∆), where Q is a finite non-empty set of states, F ⊆ Q is the set of final (or
accepting) states, E is a finite set of labels, and the transition relation ∆ consists of labeled

rewrite rules of the form f(q1, . . . , qk)
l

−→ q, where k is the rank of f , l is a label from E, and
q1, . . . , qk, q are in Q.

A run r of an LDA (Σ, Q, F, E, ∆) on an lt-dag t with label E is a mapping from the nodes
of t to Q that respects the labels and the transition relation ∆ in the following sense:

3

g

g

a b

1

0

01

Figure 1: A labeled term-dag

• for every node u on t, if the symbol at u is f of arity k, and the label of t at u is l, then

transitions are possible via rules in ∆ of the form f(r(u1), . . . , r(uk))
l

−→ r(u), where u1,
. . ., uk are the successor nodes of u on t given in order.

The above condition says, in intuitive terms, that the label on an LDA-transition must be the
one at the node reached. A run r is said to be accepting on t iff r(t) ∈ F , i.e, it maps the
root node to an accepting state. An lt-dag t is said to be accepted by an LDA iff there is an
accepting run on t. The language of an LDA is the set of all lt-dags that it accepts.

We shall also be using the notion of deterministic DAs and LDAs in the sequel. A dag
automaton is said to be deterministic iff any two distinct transition rules have distinct left-
hand-sides. A labeled dag automaton is deterministic iff no two distinct transition rules have
the same left-hand-side and the same label.

Remark 1. If A is a deterministic DA and L its language, then the set of terms represented
by the dags of L is a regular tree language: indeed, if an automaton is bottom-up deterministic,
then there is no difference whether it runs on a tree or on the dag representing this tree.

Lemma 1 The emptiness of any given LDA is decidable in non-deterministic polynomial time.

Proof: This is a consequence of the NP complexity of the emptiness of the language for any
given DA ([6]). Here are the details. Given the LDA A, construct an associated unlabeled DA
denoted A′, as follows: the states of A′ are the pairs of form (q, Lq), denoted as q̂, where q is
a state of A and Lq is the set of all labels of the transitions of A which have q as target; the

(unlabeled) transitions of A′ are of the form f(q̂1, . . . , q̂k) −→ q̂, whenever f(q1, . . . , qk)
l

−→ q

is a (labeled) transition on the given LDA A; the accepting states of A′ are the q̂’s corresponding
to the accepting states q on A. Note that A′ is constructed from A in linear time: its number
of states is the same as for A (since Lq is completely determined by q on A), and its number
of transitions is at most that of A.

We claim that the language of the LDA A is non-empty if and only if the unlabeled DA A′

accepts some term-dag. The ‘only if’ part of the assertion is trivial; so consider any term-dag
t′ accepted by A′, and choose some accepting run r of A′ on t′; then transform the term-dag
t′ into an lt-dag (named t) by labeling any given node u on t′ as follows: if r(u) = q̂ and the
transition used by the run r to reach u is f(q̂1, . . . , q̂k) −→ q̂, then pick any label l such that

f(q1, . . . , qk)
l

−→ q is a transition on A. It is obvious that there is then an accepting run of
the LDA A on the lt-dag t thus constructed.

Remark 2. Note that, even if the LDA A is deterministic, the associated DA A′ constructed
as above will in general be non-deterministic.

4

3 Algebraic Properties of DAs and LDAs

3.1 Complementation and Determinization

One can prove, by standard arguments, that the class of all DAs (resp. LDAs) is stable under
union and intersection; cf. e.g. [6]. The question of stability under complementation of the
class of DAs, was left open in [6]. We give a negative answer here to this question.

Theorem 1 The class of dag automata is not stable under complement.

Proof: Consider the infinite set M of term-dags defined recursively over the signature {a(0), g(2)},
as follows (the superscripts are the arities):

i) a ∈ M

ii) if t ∈ M then g(t, t) ∈ M

iii) nothing else is in M

We first show that there is no DA that accepts precisely the dags of M . The proof is by
contradiction. Suppose there is such an automaton with its number of states |Q| = k. Consider
then a term-dag t in M with at least k + 2 nodes. Then in any accepting run r of the DA on
the dag t, there must be 2 distinct nodes s1 and s2 on t, neither of them the root node of t,
such that r(s1) = r(s2) = p for some p ∈ Q. Since neither s1 nor s2 is the root node of t, there
must be a node u on the dag t corresponding to g(s2, s2). We can then construct (see Figure 2)
an accepting run r′ for the term-dag which is the same as before except for the first edge out
of u which goes to the node s1 instead of going to s2. In other words, the term at node u in
the new dag is g(s1, s2). But this term-dag clearly should not be accepted.

g

s_2

u u

g s_2

g g s_1

g

s_1

g

==>

g g

Figure 2: Transformation used in the proof of Th. 1

We show next that the complement M ′ of M (with respect to the set of all ground terms
generated by {a(0), g(2)}), is accepted by a DA. We begin with the observation that M ′ is the
set of all ground terms containing at least one subterm not in M ; more precisely, for any ground
term t, we have t ∈ M ′ iff t contains a subterm of the form g(t1, t2) with t1 6= t2. Our claim is
that the following DA accepts precisely the dags of terms in M ′:

a −→ q0

a −→ q1

g(q0, q0) −→ q0

g(q0, q0) −→ q1

g(q1, q1) −→ q0

g(q1, q1) −→ q1

g(q0, q1) −→ qa

g(q1, q0) −→ qa

g(qa,) −→ qa

g(, qa) −→ qa

5

(where qa is the only accepting state and stands for any state). The claim is proved as
follows.

Observe that the above dag automaton does not accept any term in M ; indeed, for all terms
in M with the symbol g as root, the two strict subterms of maximal height must be the same
by definition, so must be represented by the same node with only one corresponding state in
any run: either q0 or q1, but not both; so the transitions g(q0, q1) → qa and g(q1, q0) → qa

are never applicable; therefore the state qa is never reached. On the other hand, if t is a term
in M ′, observe that one of the transitions g(q0, q1) → qa, g(q1, q0) → qa is applicable at the
subterm t′ of minimal height t which is not in M ; this is because the two strict subterms of
maximal height in t′ are different, so there is a run of the DA assigning to one of them the state
q0, and q1 to the other; the four right-hand-side rules above can then lead to a successful run
of the automaton on the term-dag of t.

Remark 3. Along with that of stability under complement for the class of DAs, the following
two questions were also raised in [6]:

(1) Are DAs determinizable?

(2) Does there exist a set T of term-dags recognized by a DA such that the set of all terms
represented by the dags in T is not a regular tree language?

Our above construction also settles these two questions: indeed the set M defined above, as
well as its complement M ′, are both non-regular tree languages (this is easily checked via the
same pigeon-hole principle argument as above); but we just saw that the set of terms-dags of
M ′ is recognized by the DA constructed above; we thus get a positive answer to question (2).
Question (1) gets a negative answer therefrom: the DA recognizing M ′ cannot be determinized.
This is so because a deterministic DA can only recognize regular tree languages (Remark 1).

3.2 The Emptiness and Membership Problems

Deciding emptiness of (general, non-deterministic) dag automata has been shown to be NP-
complete in [6], where it was also observed that the membership problem (i.e., checking if t is
accepted by A for an arbitrarily given term-dag t and DA A) is decidable in non-deterministic
linear time. Since a non-deterministic LDA can be translated into a non-deterministic DA, the
above two conclusions hold also for the same problems on LDAs.

The situation is different, however, when we consider deterministic DAs or LDAs. We ob-
served above, at the end of the previous sub-section, that deterministic DAs behave exactly like
(bottom-up) deterministic tree automata, so deciding their emptiness can be done in polyno-
mial time. It turns out however that deciding emptiness is NP-hard for deterministic LDAs;
which, therefore, do not behave like deterministic labeled tree automata.

Theorem 2 The emptiness problem is NP-hard for deterministic LDAs.

Proof: The proof is by reduction from boolean satisfiability (somewhat similar to the proof of
NP-hardness given in [6]). Let B be any arbitrarily chosen boolean formula over a given set of
boolean variables {x1, . . . , xn}, and the usual boolean connectives {∧,∨,¬}.

Let tB be a term-dag for B, and m its number of distinct nodes. The idea is then to construct
an LDA A with 2m states, such that A accepts exactly the term-dag tB labeled suitably with
boolean values 0, 1 if and only if B is satisfiable. The construction goes as follows.

Corresponding to each node we have two states which stand for that sub-formula getting
the corresponding truth-value. For ease of exposition we represent the states in the form q(s,0)

or q(s,1) where s is a subterm of tB. The labels are 0 and 1. The transition rules on A are of
the following form:

xi
0

−→ q(xi,0), xi
1

−→ q(xi,1)

6

and, for h ∈ {∧,∨}, transition rules of the form: h(q(s1,b1), q(s2,b2))
h(b1,b2)

−−−−−−→ q(h(s1,s2),h(b1,b2))

where b1, b2 are boolean values and h(s1, s2) is a subterm of tB; for the connective ¬, the

transitions will be of the form: ¬(q(s,b))
¬b
−→ q(¬s,¬b) The only accepting state is q(tB ,1).

It follows directly from these definitions that the lt-dags accepted by the LDA A are exactly
those obtained by labeling the nodes of tB with 0 or 1, in such a way that the formula B is
satisfiable; i.e., the language of A is non-empty iff B is satisfiable.

Finally, note that the LDA A is deterministic: for a given left-hand-side node and a label,
at most one transition can be fired; for instance, if the node xi on tB is given the boolean label

1, then the only legal labeled transition is xi
1

−→ q(xi,1).

The construction used in the above proof helps us also to derive a lower bound for the
(uniform) membership problem for DAs and LDAs.

Theorem 3 The membership problem for LDAs is NP-hard.

Proof: The same construction as above works, except that we replace now the transition labels
0 and 1 with a single ‘don’t-care’ boolean label x and adopt the boolean conventions: x =
x ∨ 0 = x ∧ 1, x ∧ 0 = 0 = x ∧ ¬x, ¬¬x = x, x ∧ x = x = x ∨ x, x ∨ 1 = 1 = x ∨ ¬x. Then,
with the above notation, the given boolean formula B is satisfiable iff there is an accepting run
of the LDA (thus modified) on the term-dag tB. Note however that the modified labels render
the LDA non-deterministic, and the LDA thus modified may accept several other term-dags.

Remarks 4. i) Theorem 2 above is not in conflict with the observation made in Remark 2,
namely, that deterministic DAs behave like deterministic bottom-up tree automata (for which
emptiness is decidable in polynomial time). The reason is that a deterministic LDA can be
‘translated’ in general only to a non-deterministic DA, cf. Remark 1.

ii) This also brings into evidence that deterministic LDAs do not behave like deterministic
labeled tree automata: indeed, on a tree the same subterm can be at two different nodes with
different labels. Thus, a deterministic labeled tree automaton can be easily constructed to
accept the boolean formula a ∧ ¬ a as a suitably labeled tree.

iii) The above results, combined with the upper bounds obtained in [6], imply that the
uniform membership problem for (general, non-deterministic) LDAs is NP-complete; and the
same holds also for the emptiness problem on deterministic LDAs. Note however, that this
does not follow directly from the results of [6], established for the non-deterministic case.

4 Universality of DAs is Undecidable

For the sake of being complete in this study, we consider now the universality problem for DAs.
This problem is formulated as follows:

Input: A dag automaton A

Question: Does A accept all inputs?

Theorem 4 The universality problem for DAs is undecidable.

As an immediate consequence, we deduce that:

Corollary 1 It is undecidable if two arbitrarily given DAs are equivalent.

The proof of the theorem, to be given below, is via reduction from the halting problem for
a deterministic 2-counter machine (q0, F, Q, ∆) where Q is a finite set of states, F ⊆ Q is the
set of final states, q0 is the initial state and ∆ is a transition relation. Each transition of the

7

machine must correspond to a ‘correct’ instruction, e.g., as described in [13] or in [3]; the only
difference here is that a computation of the machine is accepted if it leads from the ‘initial’
state q0, with initial counter values both 0, to an accepting state in F . We shall actually design
a non-deterministic dag automaton A accepting precisely all the non-accepting or incorrect
computations of the deterministic 2-counter machine.

The non-universality of A is then equivalent to the existence of an accepting correct compu-
tation of the 2-counter machine. The automaton A is designed by encoding the non-accepting
or incorrect computations of the machine in terms of an appropriate set of ground rewrite rules,
which will define the transition rules of A. For this encoding, we first consider the alphabet
Q ∪ {s, 0} where every symbol of the set of states of the machine, Q = {q0, . . . , qn}, will be
seen as a ternary symbol, s is a new unary symbol and 0 is a constant. The integer value n for
a counter will be represented as sn(0). A machine configuration can be represented as a triple
〈q, c1, c2〉, where q is the current state and c1, c2 are the current counter values. The transitions
of the machine are of the following two types:

type (i): 〈q′, x, y〉 ⊢ 〈q, s(x), y〉,
type (ii): 〈q′, 0, y〉 ⊢ 〈q, 0, y〉,

or 〈q′, s(x), y〉 ⊢ 〈q′′, x, y〉;

the former increments the first counter, the latter tests for zero the first counter. (We also have
similar transitions for the second counter.) The counter machine is deterministic, by definition,
iff any two distinct transition rules have distinct left-hand-side triples 〈q′, x, y〉.

We shall be encoding the machine configurations as term-dags. The initial configuration of
the machine – i.e., the triple 〈q0, 0, 0〉 – will be encoded as the dag representation of the term
t0 = q0(0, 0,⊥), where ⊥ is the empty dag; a correct computation of length n corresponding to
a sequence of machine instructions will be encoded as the dag representation of the term

qin
(sln(0), srn(0), qin−1

(sln−1(0), srn−1(0), tn−1))

where qin−1
(sln−1(0), srn−1(0), tn−1) encodes a correct computation of length n − 1 and the

transition from configuration 〈qin−1
, sln−1(0), srn−1(0)〉 to 〈qin

, sln(0), srn(0)〉 is possible with
the given counter machine. (Note: When a machine state q is seen as a ternary function
symbol, its first two arguments stand for the two respective counter values of the machine.)

Proof of Theorem 4:
The desired dag automaton A will be defined as the union of four auxiliary automata

A1,A2,A3,A4 that we define below. (From Proposition 6 in [6], we know that the class
of DAs is stable under union.) All these automata will be defined over the ranked alphabet
Σ = Q ∪ {s, 0,⊥}.

The auxiliary automata A1,A2,A3,A4 are designed as follows:

1. A1 accepts the dags that are ill-formed, i.e., dags that do not encode a sequence of
machine configurations.

2. A2 accepts all the dags that correspond to runs not starting at the initial state 〈q0, 0, 0〉.

3. A3 accepts all the dags that correspond to runs that do not end in a final state 〈q, x, y〉
for some q ∈ F and x, y ∈ {sn(0) | n ≥ 0}.

4. A4 accepts all the dags that violate the transition relation of the 2-counter machine at
some sub-dag q(x, y, q′(x′, y′, z′)).

The states of the four auxiliary automata will be chosen from the following sets of symbols:

{σq | q ∈ Q} ∪ {Qs,Q0,Q1,Q2,0, error, q⊥}
∪ {τ(q′,i,j,q) | i ∈ {1, 2},

j ∈ {0, 1, 2, zero, 6= zero}, q′, q ∈ Q};

and their accepting states will be chosen from:
{error, q⊥} ∪ {σq | q 6∈ F} ∪ {Qs}

where F is the set of accepting states of the deterministic 2-counter machine.

8

Before defining the automata Ai, a few words of explanation on the semantics of their state
symbols. State symbol σq corresponds to current machine state q. Qi, i = 0, 1, 2, respectively
are states where a given counter has value ≥ i; and Qs is the state where it is checked that
counter values are built from 0 and s. The symbol 0 stands for a state where the counter
considered (corresponding to the first or second argument position of the ternary symbol q)
has value 0. The symbol q⊥ is the starting state, ‘error’ a state for an incorrect machine
configuration. The τ(q′,i,j,q) are states where the current counter-machine state is q′, q is the
state to which a transition is envisaged, and counter i has ‘value’ j ∈ {0, 1, 2, zero, 6= zero};
as concerns the arguments of τ : the symbols 0, 1, 2 as values of j mean that the counter i

appearing as the 2nd argument of τ has value at least 0, 1 or 2, respectively; while the zero

symbol indicates that this counter i has exact value 0, and 6= zero indicates that it has some
value > 0.

Automaton A1:

1. The set of states of A1 is
{σq | q ∈ Q} ∪ {Qs,0, error, q⊥}

2. The set of accepting states is
{Qs,0, error, q⊥}

3. The transition relation δ1 consists of the rewrite rules specified below.

(a) Rules for eliminating ill-formed terms:
0 −→ Qs

s(Qs) −→ Qs

(check if counters are built with 0, s)
⊥ −→ q⊥
q(, ,) −→ σq for all q ∈ Q

s(q⊥) −→ error

s(σq) −→ error for all q ∈ Q

q(, ,Qs) −→ error for all q ∈ Q

(no counting symbol in third position)
q(σq′ , ,) −→ error for all q, q′ ∈Q (no state symbol in first position)
q(, σq′ ,) −→ error for all q, q′ ∈ Q

(no state symbol in second position)
q(q⊥, ,) −→ error for all q ∈ Q

(⊥ not allowed in the first position)
q(, q⊥,) −→ error for all q ∈ Q

(⊥ not allowed in the second position)

(b) Rules for propagating errors up to the root:
q(error, ,) −→ error

q(, error,) −→ error

q(, , error) −→ error

s(error) −→ error

We may assume now that the other automata A2,A2,A3 run on well-formed dags, since
A1 accepts all the ill-formed ones.

Automaton A2:

1. The set of states of A2 is
{σq | q ∈ Q} ∪ {error, q⊥,Q0,Q1},

2. The set of accepting states is {error}

9

3. The transition relation δ2 consists of the rewrite rules specified below.

(a) The initial state is q0, counters are initially 0:
⊥ −→ q⊥
0 −→ Q0

s(Q0) −→ Q1

s(Q1) −→ Q1

q(, , q⊥) −→ error if q 6= q0

q0(Q1, , q⊥) −→ error

q0(,Q1, q⊥) −→ error

(b) Rules for propagating errors up to the root:
Same as in the set 3.(b) of the automaton A1.

Automaton A3:

1. The set of states of A3 is
{σq | q ∈ Q} ∪ {q⊥,Qs,0},

2. The set of accepting states is {σq | q 6∈ F}
(recall that F is the set of accepting states of the counter machine).

3. The transition relation δ3 consists of the rewrite rules specified below.

0 −→ Qs

⊥ −→ q⊥
s(Qs) −→ Qs

q(, ,) −→ σq for all q ∈ Q

Note that if the extracted state at the root of the dag is not accepting (i.e., σq with q 6∈ F)
then the dag will be accepted by our automaton A3 (since it will not encode a successful
computation).

Automaton A4:

1. The set of states of A4 is
{σq | q ∈ Q} ∪ {Q0,Q1,Q2, error, q⊥}

∪ {τ(q′,i,j,q) | q′, q ∈ Q, i ∈ {1, 2},
j ∈ {0, 1, 2, zero, 6= zero}, }

2. The set of accepting states is {error}

3. The transition relation δ4 consists of the rewrite rules to be specified below.

I) Rules for transitions of
type (i): 〈q′, x, y〉 ⊢ 〈q, s(x), y〉

incrementing the first counter. (The q, q′ in these rules are the same as in the machine transition;
and q′′ is any state of the counter machine.)

(a) rules to count s:
0 −→ Q0

s(Q0) −→ Q0

s(Q0) −→ Q1 count at least one s

s(Q1) −→ Q2 count at least two s

s(Q2) −→ Q2 count more than two s

(b) rule to ensure that next state is the right one:
q′′(, , σq′) −→ error for all q′′ 6= q

10

(c) rules to ensure that the counter is not
incremented by more than 1:

q′(Q0, ,) −→ τ(q′,1,0,q)

q(Q2, , τ(q′,1,0,q)) −→ error

(d) rules to ensure that the counter value is not
the same as before:

q′(Q1, ,) −→ τ(q′,1, 6=zero,q)

q(Q1, , τ(q′,1, 6=zero,q)) −→ error

q′(0, ,) −→ τ(q′,1,zero,q)

q(0, , τ(q′,1,zero,q)) −→ error

(e) rules to ensure that first counter value is not
less than previous value:

q′(Q1, ,) −→ τ(q′,1,1,q)

q(Q0, , τ(q′,1,1,q)) −→ error

(f) rules to ensure that the second counter is
not modified:

q′(,Q0,) −→ τ(q′,2,0,q)

q(,Q1, τ(q′,2,0,q)) −→ error

q′(,Q1,) −→ τ(q′,2,1,q)

q(,Q0, τ(q′,2,1,q)) −→ error

q(,Q2, τ(q′,2,1,q)) −→ error

q′(,Qj ,) −→ τ(q′,2, 6=zero,q) if j 6= 0
q(,0, τ(q′,2, 6=zero,q)) −→ error

We omit the similar sets of rules for transitions of type (i) which increment the second
counter, of the form: 〈q′, x, y〉 ⊢ 〈q, x, s(y)〉.

II) Rules for transitions of type (ii) with zero-test on first counter:
〈q′, 0, y〉 ⊢ 〈q, 0, y〉 and
〈q′, s(x), y〉 ⊢ 〈q′′, x, y〉.

(In these sets of rules q, q′, q′′ are as above, and q1 is any state of the counter machine.)

(a) rules to force the correct branch:
q′(0, ,) −→ τ(q′,1,zero,q)

-records first counter at q′ is zero
q1(, , τ(q′,1,zero,q)) −→ error

for all q1 6= q (forces branch to q)
q′(Q1, ,) −→ τ(q′,1, 6=zero,q′′)

q′(Q2, ,) −→ τ(q′,1, 6=zero,q′′)

-records first counter at q′ is 6=zero

q1(, , τ(q′,1, 6=zero,q′′)) −→ error

for all q1 6= q′′ (forces branch to q′′)

(b) rules to ensure that second counter is
not modified:

q′(,Q0,) −→ τ(q′,2,0,q)

q′(,Q0,) −→ τ(q′,2,0,q′′)

q′(,Q1,) −→ τ(q′,2,1,q)

q′(,Q1,) −→ τ(q′,2,1,q′′)

q(,Q1, τ(q′,2,0,q)) −→ error

q(,Q0, τ(q′,2,1,q)) −→ error

q(,Q2, τ(q′,2,1,q)) −→ error

q(,0, τ(q′,2, 6=zero,q)) −→ error

11

q′′(,Q1, τ(q′,2,0,q′′)) −→ error

q′′(,Q0, τ(q′,2,1,q′′)) −→ error

q′′(,Q2, τ(q′,2,1,q′′)) −→ error

q′(,Qj ,) −→ τ(q′,2, 6=zero,q) if j 6= 0
q′(,Qj ,) −→ τ(q′,2, 6=zero,q′′) if j 6= 0
q′′(,0, τ(q′,2, 6=zero,q′′)) −→ error

(c) rules to ensure that first counter remains 0
(if the branch is to q):

q(Q1, , τ(q′,1,zero,q)) −→ error

(d) rules to ensure that first counter is
decremented by 1 (if the branch is to q′′):

q′(Q1, ,) −→ τ(q′,1,1,q′′)

q′′(Qj , , τ(q′,1,1,q′′)) −→ error for j 6= 0
q′(Q2, ,) −→ τ(q′,1,2,q′′)

q′′(Q0, , τ(q′,1,2,q′′)) −→ error

Similar sets of rules are also added for test instructions on the second counter. The rules
3.(b) (of automaton A1) for propagating errors up to the root are to be added too.

Note: the rule I)(b) for A4 is correct, since the counter machine is assumed deterministic.

It is not hard to check that the language accepted by the dag automaton A constructed
above, as the union of the dag automata Ai, i = 1..4, is the set of all term-dags which correspond
to machine configurations which are either incorrect or unaccepted by the 2-counter machine:
the transitions and the accepting states have actually been tailored exactly with such a purpose.

Note in this connection that, in the set of rules I)(a) for A4, the rule s(Q0) −→ Q0 is needed
in order that the rules of I)(b) can correctly play the role they are specified for. For instance,
here is an accepting run on A, for the incorrect machine configuration q1(s

2(0), 0, q0(0, 0,⊥)).
We have:

⊥ −→ q⊥ and 0 −→ Q0,
so the subdag with root at q0 can be mapped, via

s(Q0) −→ Q0 and q0(Q0, , q⊥) −→ τ(q0,1,0,q1)

to the state τ(q0,1,0,q1); then, the entire term-dag rooted at q1 can be mapped to the accepting
state ‘error’ on A, under the transition q1(Q2, , τ(q0,1,0,q1)) −→ error.

Remark 5. A tree automaton accepting precisely the incorrect or non-accepting counter ma-
chine computations cannot be constructed along the same lines of reasoning. For instance,
rules like II)(b) on A4 will not suffice to ensure that two values are the same. Besides, on
a tree automaton with these transitions, the terms s2(0) and s(0) can be mapped indepen-
dently to Q2 and to Q0 respectively; and a run can be conceived to map the root of the term
q2(s

2(0), 0, q1(s(0), 0, q0(0, 0,⊥))) to the state error, although it defines a correct machine con-
figuration; this is obviously not possible on a DA.

5 Conclusion

We have shown in this work that dag automata behave algebraically very differently from tree
automata. We saw in Section 4 however, that they could be conveniently used for encoding
some complex situations; and we also saw (proofs of Theorems 2, 3) that labels at nodes and
on transitions can be used (as do the LDAs), to render the analysis finer. We are therefore
led to believe that DAs and LDAs may have some practical applications, such as e.g., for the
representation and/or analysis of semi-structured XML documents. Indeed, XML contains
a mechanism of references where unique identifiers are associated to elements as attributes;
the natural representation for such documents are dags; cf. [12] for some complexity results

12

on evaluating XPath on dags. Moreover, the dag representation is clearly space efficient for
compressed XML documents, cf. [5, 9]. Dag automata, with or without labels, may therefore be
useful for the treatment of certain classes of XML/XPath queries; investigating this potential
application area is part of our planned future work.

References

[1] A. Aiken, D. Kozen,, M. Vardi, E. Wimmers. The Complexity of Set Constraints. In Proc.
CSL’93, EACSL, September 1993, pp. 1–18.

[2] S. Anantharaman, P. Narendran, M. Rusinowitch, ACID-Unification is NEXPTIME-
Decidable, In Proc. MFCS’03, Springer-Verlag, LNCS 2747, pp. 169–179.

[3] S. Anantharaman, P. Narendran, M. Rusinowitch, Unification modulo ACUI plus Distribu-
tivity Axioms, In Journal of Automated Reasoning, Vol. 33, n01, 2004.

[4] F. Baader, P. Narendran. Unification of Concept Terms in Description Logics. Journal of
Symbolic Computation 31 (3):277–305, 2001.

[5] P. Buneman, M. Grohe, C. Koch. Path queries on compressed XML. In Proc. of the 29th

Conf. on VLDB, 2003, pp. 141–152, Ed. Morgan Kaufmann.

[6] W. Charatonik. Automata on DAG representations of finite trees. Technical Report MPI-
I-99-2-001, Max-Planck-Institut für Informatik, Saarbrücken, Germany.

[7] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi.
Tree Automata Techniques and Applications. http://www.grappa.univ-lille3.fr/tata/

[8] T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proc. 17th
CADE, vol. 1831 of LNAI, pp. 271-290, Springer-Verlag, 2000.

[9] M. Frick, M. Grohe, C. Koch. Query Evaluation of Compressed Trees. In Proc. LICS’03,
IEEE, pp. 188–197.

[10] R. Gilleron, S. Tison, M. Tommasi. Set Constraints and Tree Automata. Information and
Computation 149, 1–41, 1999. (cf. also Technical Report IT 292, Laboratoire-LIFL, Lille,
1996.)

[11] R. Gilleron, S. Tison, M. Tommasi. Solving Systems of Set Constraints using Tree Au-
tomata. In Proc. STACS’93, Springer-Verlag, LNCS 665, pp. 505–514.

[12] M. Marx. XPath and Modal Logics for Finite DAGs. In Proc. TABLEAUX 2003, vol. 2796
of LNAI, pp. 150–164, Springer-Verlag, 2003.

[13] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall International,
London, 1972.

[14] F. Neven. Automata Theory for XML Researchers, In SIGMO Record 31(3), September
2002.

13

6 Appendix I: Using Dag Automata for ACID-Unification

In what follows, by ACUID we mean the following equational theory:

x + (y + z) ≈ (x + y) + z, x + y ≈ y + x

x + x ≈ x, x + 0 ≈ x, x ∗ 0 ≈ 0, 0 ∗ x ≈ 0

x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z), (u + v) ∗ w ≈ (u ∗ w) + (v ∗ w)

If we eliminate the element 0 and drop the equations involving it in ACUID, we get the theory
that we denote as ACID. This set of equations can be converted naturally to a convergent
rewrite system, modulo the ACI-axioms for ‘+’; every ground term (over any given set of free
constants) in normal form w.r.t. this system can be viewed as a finite set of terms over ‘∗’ and
the constants: indeed ‘+’ can be viewed as set union. An ACUID-unification problem with
free constants is that of solving, modulo the above equational theory, a family of equations of
the form: {s1 = t1, . . . , sk = tk} as finite sets of such ground terms for the variables of the
problem. An ACID-unification problem with free constants can also be seen as one of solving
a family of equations of the same form, with the additional restriction that the solution for the
variables must all be finite non-empty sets.

In [3], unification modulo ACUID or ACID were both shown to be DEXPTIME-hard;
and their NEXPTIME-decidability was deduced from that of ACID-unification. In the current
paper we will thus be concerned only with ACID-unification. An ACID-unification problem
is said to be in standard form, iff every equation in the problem has one of the following forms
(respectively referred to as of type ‘product’, ‘sum’, or ‘constant’):

x = y ∗ z, u = v + w, u = c

where u, v, w, x, y, z are variables and c is any constant or 0. A given ACID-unification
problem can be reduced to a standard form in more than one manner (via normalization and
decomposition steps). Since ‘+’ is idempotent and ‘∗’ distributes left and right over ‘+’, we may
view this ACID-unification problem as a set constraint problem; e.g. in the first case, if y and
z are interpreted as sets of terms over ∗ and the constants, then y ∗ z = {s ∗ t | s ∈ y, t ∈ z}.

To every such problem P , we shall associate a labeled dag automaton (LDA) in such a way
that solving the former amounts to showing that the language of the latter is non-empty. For
doing that we shall assume, as we may, that the problem is ‘pruned’ in the following sense: If
P contains a ‘constant’-equation of the form Xk = a, then Xk is not the lhs (‘left-hand-side’)
of any ‘product’-equation in P .

6.1 The LDA associated to an ACID-Unification Problem

We suppose given a (pruned) ACID-unification problem P , and denote by {Xi}i=1..n the set of
its variables. The lt-dags on which we shall consider runs of our LDA’s (to be defined), are term
dags over the symbol ‘∗’ and the given ground constants, labeled with n-bit vectors at their
various nodes. These labels will in general be denoted by (m1, m2, . . . , mn), mi ∈ {0, 1}, i =
1..n. They have the semantics that mi = 1 iff the subterm of the lt-dag at the current node is
an element of the set Xi.

The term label will denote any n-bit vector. For any lt-dag t, the subterm of the dag at a
node w will be denoted by tw; the underlying term at the root node will be denoted t. The
label of t at node w will be denoted by lw; and for any i, the i-th entry of this label is denoted
by lwi .

Definition 3 A label m is said to be initial w.r.t. a ground constant a iff:
- mk = 0 for any k for which P contains an equation of the form Xk = Xi ∗ Xj;
- mi = 1 for every i ∈ 1..n for which Xi = a is in P;
- mj = 0 for every j ∈ 1..n for which P contains an equation Xj = b, b 6= a.

14

The above definition is coherent: if there is an equation of the form Xk = a, then Xk cannot
be the lhs of a ‘product’-equation (since the problem P is assumed pruned).

Definition 4 Let t be any given lt-dag. For any i = 1..n, the set value deduced for Xi from
the labels of t is the set of ground terms: {tw | w node on t such that: lwi = 1}.

Definition 5 An lt-dag t is said to have the ‘closure property’, (or is said to be a closed lt-dag),
iff the following condition holds:

• Suppose i, j, k ∈ {1..n} are any 3 indices such that t has two nodes u, v with lui = 1 = lvj ,
and P contains a ‘product’-equation Xk = Xi ∗Xj; then there is a node w on t such that
lwk = 1, with subterm (tu ∗ tv).

Remark 1. It seems unlikely that a ‘global’ condition such as the above closure property can
be checked by an automaton-based approach; thus, an lt-dag t accepted by the automaton to
be associated below to the ACID-problem P , may not be closed; and so, the solution that we
shall derive from an accepted t for the problem P , will not necessarily be the set values deduced
from the labels of t.

6.2 The States of the LDA with their Defect Sets

The LDA that we shall be associating with our ACID-problem is somewhat similar to the tree
automata with free variables defined in [11]; the differences come from the fact that we are
trying to solve for the Xi in terms of finite, non-empty sets. Recall that n denotes the number
of set variables of the given ACID-problem. Let S be the set of all 2n-bit vectors of the form
{..., li, ...; ..., hi, ...} such that li ≤ hi for all i ∈ 1..n; the elements of S will be referred to as
pstates (‘p’ stands for ‘preliminary’); we shall denote them by barred capital letters such as
A, B, For any pstate A ∈ S, we shall also refer to its first and second half n-bit vectors as
its lower and upper half, and denote them by A.l, A.h respectively.

Any state A of our LDA will have two components: its first component is a pstate, i.e. an
2n-bit vector, that we denote A; this corresponds to two sets of boolean valuations on the set
expressions {Xi}i=1..n ; the ‘lower i-th bit’ A.li of the state A on the LDA will signify (when 1)
that the term at the current node on an lt-dag mapped to A under a given run r is accepted
as element of Xi; the ‘upper i-th bit’ A.hi is meant to signify (when 1) that some subterm
below the current node has been accepted in Xi by the run; this explains why we only consider
pstates A with A.l ≤ A.h.

An accepting state on the LDA will then be in particular such that A.hi = 1 for all i = 1..n;
but as we shall see below, this is not a sufficient condition for acceptance: many of the ‘product’-
equations of P may still remain unsatisfied. To circumvent this, we add as a second component
to any state A of the LDA a set of equalities formed from new symbols, giving information on
the ‘products of terms accepted below the current node, that still have to be covered’. This
second component at A will be referred as the defect set at A; for defining it formally, we need
a few preliminaries.

Definition 6 i) A triple (k, i, j) of indices in 1..n is said to be conjugate w.r.t. the ACID-
problem P iff there is an equation of the form Xk = Xi ∗Xj in the problem P; a pair of indices
(i, j) is said to be conjugate iff they are the second and third components of some conjugate
triple.

ii) A label l is said to be conjugate to a label m w.r.t. an equation Xk = Xi ∗ Xj of the
ACID-problem P if and only if: li = 1 = mj.

iii) A pstate A is said to be ‘unmarked’ iff the following holds: whenever there is an equation
Xk = Xi ∗ Xj in the problem P, we have A.li = 0 = A.lj.

15

Next we introduce new symbols X i

A
for every i = 1..n, and every pstate A ∈ S; and also

an additional new symbol T (signifying ‘to be covered’); these symbols will be referred to as
dsymbols (the ‘d’ stands for ‘discriminating’). Two dsymbols X i

A
, X

j

B
are said to be conjugate

iff the pair of indices (i, j) is conjugate. A defect equality over the dsymbols is, by definition,
an equality having one of the two following forms:

Xk

C
= X i

A
X

j

B
, T = X i

A
X

j

B

where A, B, C ∈ S, and (k, i, j) is a conjugate triple. Equalities of the first type are said to
be ‘closed’, and those of the second type ‘open’. Note that the number of all such equalities is
polynomial in the size of S.

Definition 7 (i) A defect set is any finite (possibly empty) set M containing dsymbols and
defect equalities. Such a set M is said to be closed iff: M contains no open defect equalities,
and for any two dsymbols X i

A
, X

j

B
in M which are conjugate, there is a closed equality in M

with X i

A
X

j

B
as its rhs. The empty defect set is closed, by definition.

(ii) A state A of the LDA is a pair (A,MA) such that A is a pstate, and MA is a defect
set; A is called the first component of A, and the defect set MA its second.

(iii) A state (A,MA) is said to be closed iff: the pstate A is unmarked, A.hi = 1 for all i,
and the defect set MA is closed in the sense defined in (i) above.

(iv) To any label m = (m1, ..., mn) we associate a state (Cm,Mm), such that:
- Cm is the (unique) pstate with Cm.l = m = Cm.h;
- the dsymbols in Mm are the X

p

Cm

, for all p ∈ {1, .., n} such that Cm.lp = 1;

- the defect equalities in Mm are of the form T = X i

Cm

X
j

Cm

, taken over

all conjugate pairs of indices (i, j) such that Cm.li = 1 = Cm.lj.

For example, let X3 = X1 ∗X2 be the given ACID-problem, and {X1, X2, X3} its variable list.

If m = (110) is the given label, then the associated state is such that: Cm = C = (110; 110)
and Mm is the defect set {X1

C
, X2

C
, T = X1

C
X2

C
}; this state is not closed. States associated

to labels will be those reached under initialization steps for the runs of the LDA that we shall
be associating with the given ACID-problem.

6.2.1 Construction of the LDA associated: The Details

As previously, P denotes the ACID-unification problem given in (standard) pruned form. In
the following definition, for any defect set M we shall denote by M(s) (resp. by M(e)) the set of
all dsymbols (resp. defect equalities) elements of M; M is thus the disjoint union of its subsets
M(s) and M(e).

Definition 8 The LDA associated to P is the quintuple (Σ,Q,F, ∆,L), where:

- Σ is the signature of the problem P; and the set of states Q is the set of all pairs A =
(A,MA) of pstates and defect sets such that the following holds:

• A.lk = A.li ∨ A.lj for every sum-equation Xk = Xi + Xj in the problem P;

- The set F of accepting states is that of all closed states in Q (cf. Definition 7).

- The set of labels L for the LDA is the set of all n-bit vectors (l1, l2, . . . , ln).

• (initialization) For any constant a ∈ Σ and any label m initial w.r.t. a, there are tran-

sitions in ∆ of the form: a
m
−→ (Cm,Mm) (cf. Definition 7).

16

• (progression) For any A, B, C ∈ Q and label m = (m1, m2, . . . , mn), there is a transition

rule in ∆ with label m of the form A ∗ B
m
−→ C, if and only if:

(1) Conditions on the pstates at A, B, C: (‘Coherence of labels’)

• m = C.l (‘transition’s label must be the one at the node reached’);

• If p ∈ 1..n is such that there is some ‘constant’-equation Xp = a in P,
then C.lp = 0;

• for every equation Xk = Xi ∗ Xj in P, we have: C.lk = A.li ∧ B.lj;

• C.hi = C.li ∨ (A.hi ∨ B.hi), for all i = 1..n.

(2) Conditions on the defect sets MA,MB,MC:

• M
(s)
C = M

(s)
A ∪ M

(s)
B ∪ {Xj

C
| C.lj = 1};

• M
(e)
C is the set M′ obtained as follows, from M

(e)
A ,M

(e)
B , and M

(s)
C :

- Start with M′ = ∅; put into M′ every closed defect equality from M
(e)
A

(resp. from M
(e)
B) for which M

(e)
B (resp. M

(e)
A) does not contain

an open equality with the same ‘rhs’ (right-hand-side).
- Add to M′ all the closed equalities of the form Xk

C
= X i

A
X

j

B
for

all conjugate triples (k, i, j) with A.li = B.lj = C.lk = 1.
- Eliminate from M′ the (closed) defect equalities whose

rhs contains a dsymbol indexed by the current pstate C.

- For every conjugate pair X i

A′
, X

j

B′
of dsymbols in M

(s)
C not forming

the rhs of any closed equality in M′, add T = X i

A′
X

j

B′
to M′.

A run of the LDA on an lt-dag is defined as in the case of DA’s, subject to the above
initialization and progression conditions; we also assume (as we may) that any run r is coherent
in the sense that: for any node w on t, we have r(w).l = lw = label of t at w.

Remarks 2. i) If the defect set MT at state T contains a dsymbol X i

A
, the semantics is that:

some node at or below the current node got mapped to a state whose pstate is A, and the
subterm there got accepted in the set Xi.

ii) The condition that the left-half n-bit vector at an accepting state is ‘unmarked’ has the
following semantics: Let C be a state image of a node w under a run, and suppose C.h = 1;
suppose there is an equation Xk = Xi∗Xj in the problem P , and suppose we also have C.li = 1;
then tw is accepted in Xi by the run at w; on the other hand, since C.hj = 1 there is a node v

below w such that tv got accepted in Xj; then (for the ACID-equation to be satisfied) the set
Xk must contain the superterm tw ∗ tv ; which cannot be accepted at the node w, so C cannot
be an accepting state.

iii) The progression conditions (2) have the following semantics: The open defect equalities
of MC in the definition represent the products which have gone uncovered at or below C; such
an open equality can come either from MA or from MB, or get created at C because the term
accepted there contributes to a product.

In particular, If (A, B) −→ C is a transition and (k, i, j) is a conjugate triple of indices such
that A.li = B.lj = 1 = C.lk, the defect set MC at C may not necessarily contain the closed

equality Xk

C
= X i

A
X

j

B
(cf. Examples 4, 6 below).

iv) It is important to note that our LDA is deterministic: Given two states A and B and a
label m, there is a unique transition with label m from A, B to a state C. (This fact will be
used in proving the completeness of our approach, cf. Section 4.1.)

Example 2. The ACID-unification problem: X + Z = X ∗ Y + U may be transformed into
the following standard (pruned) form:

V = X + Z, V = W + U, W = X ∗ Y

17

Let us show that the lt-dag in Figure 3 is accepted by the associated LDA. Arrange the set
variables into an ordered list, say as {X, Y, Z, U, V, W}.

*

a

a*a (001011)

(110110)

Figure 3: lt-dag solving V = X + Z, V = W + U, W = X ∗ Y

The states on the LDA are therefore 12-bit vectors. From the node ‘a’ on the lt-dag with
label m = (110110) we first have an initial transition to a state A:

a
110110

−−−−−−→ A = (110110 ; 110110 ;MA)

where MA = {X
A
, Y

A
, U

A
, V

A
,T = X

A
Y

A
} representing the fact that at the current node

the values X = Y = a = V = U have been accepted (and a product X ∗ Y remains to
be covered). Next we have a transition, with label (001011), from A ∗ A to the state B =
(001011; 111111;MB), where MB = {X

A
, Y

A
, U

A
, V

A
, Z

B
, V

B
, W

B
, W

B
= X

A
Y

A
}; at this node,

the assignments W = a ∗ a = Z = V have been accepted. The state reached at the root node
is an accepting state. So the lt-dag is accepted.

In Example 2 above, the set values deduced from the labels of the accepted lt-dag is a
solution to the unification problem. We shall see below that this may not be true in general.
(It happened to be true above because the lt-dag was itself closed.) The following result throws
some light on the connection between the closure property of an lt-dag, and the defect set at the
state image of its root node. It will be used in proving the completeness of our LDA approach
(cf. section 5.5).

Proposition 1 Let r be a run on an lt-dag, and u any node on t such that the state r(u)
on the LDA associated to P is not closed, i.e. to say contains an open defect equality of the
form X i

A′
X

j

B′
. Then there exist two nodes u′, v′ on t (at or) below u, satisfying the following

conditions:
- The labels at u′, v′ are non-null and conjugate; and (r(u′), r(v′)) = (A′, B′).
- No node (at or) below u on t has as subterm the product term tu′ ∗ tv′ .

Proof: Let C = r(u). We reason by induction on the height of the node u on t. If u is
of height 0, there is nothing to prove. Similarly, if the open defect equality of the hypothesis
‘gets created’ at C, then it if of the form T = X i

C
X

j

D
(or : T = X

j

D
X i

C
) for some state D

image under the run r of some node w below u; in this case we can take u′ = u, v′ = w (resp.
u′ = w, v′ = u), to satisfy the assertions of our proposition.

We thus assume that node u is of height ≥ 1, of the form u = u1 ∗u2, where u1, u2 are nodes
of smaller height than u on t; and that the open defect equality of the hypothesis does not get
created at C = r(u); this implies in particular:

(i) A′ 6= C, B′ 6= C.

Let A1 = r(u1), A2 = r(u2); so the open defect equality of MC of the hypothesis comes from
MA1

(or MA2
, or both), and is not replaced by a closed defect equality under the transition

from (A1 ∗ A2) to C; then the following must hold:

(ii) (A′, B′) 6= (A1, A2).
(Otherwise we would have by (i) above: A1 6= C, A2 6= C; so by the progression condition
(2) the open defect equality under study – by assumption not created at C – would have been
replaced by a closed one of the form: Xk

C
= X i

A1

X
j

A2

.)

18

Suppose the open defect equality under study comes e.g. from MA1
. Then, by induction

hypothesis, there exist nodes u′, v′ at or below u1 such that (r(u′), r(v′)) = (A′, B′), and such
that no node at or below u1 on t has as subterm the product term tu′ ∗ tv′ . There remains a
priori the possibility that this product term is the subterm of t at some node at or below u,
but above u1; but this would imply u′ = u1, v

′ = u2, which is ruled out by (ii).

We now show that an lt-dag accepted by the LDA may not necessarily be a closed lt-dag,
i.e. may not have the closure property (cf. Definition 5).

Example 3. Consider the ACID-problem: Z =? X ∗Y , and the solution set X = {a, c}, Y =
{b, d}. The following run is accepting on the lt-dag rooted at the term (a∗b)∗(c∗d), with nodes
at the subterms a, b, c, d, (a∗b), (c∗d) respectively labeled (100), (010), (100), (010), (001), (001),
but which has no node with (c ∗ b) or (a ∗ d) as subterm; this lt-dag is not closed):

a
100

−−−−−−→ A = (100; 100; {X
A
}) c

100
−−−−−−→ A = (100; 100; {X

A
})

b
010

−−−−−−→ B = (010; 010; {Y
B
}) d

010
−−−−−−→ B = (010; 010; {Y

B
})

A ∗ B
001

−−−−−−→ C = (001; 111; {X
A
, Y

B
, Z

C
, Z

C
= X

A
Y

B
})

C ∗ C
000

−−−−−−→ D = (000; 111;MD = MC})

This example shows that if a solution to the ACID-problem is to be recovered from an
accepted lt-dag, in general it is not the set values deduced from its labels. But it also gives a
clue to what can be done to make the LDA approach work. The idea is as follows: instead of
looking individually at the ground constants, we may consider them as ‘equivalent’ when they
get mapped to a same state. For instance in Example 3, we may consider a, c as equivalent,
and represent their class by A; and similarly represent b and d with B. From the accepting
run in the above example, we can then derive as solution to the given unification problem, the
assignment: {X = A, Y = B, Z = A ∗ B}, where the value for the set Z is deduced from the
closed defect equality Z

C
= X

A
Y

B
at D (image of the root node of the lt-dag). We formalize

such an idea in the coming section, by associating a grammar to any accepting run.

6.3 Grammar for Deriving a Solution from Accepting Run

Throughout this section, we consider a given run r of the LDA associated to the given ACID-
problem P on a given lt-dag t, mapping t to an accepting state. From the run r we propose to
build a grammar G = G(r) that will allow us to derive a solution to our unification problem.
The non-terminals of our grammar are the pstate symbols of the LDA; and its terminals are
the ground constants appearing in P .

Definition 9 Let w be any given node on t such that r(w) = E is an accepting state.

i) For every closed defect equality in ME of the form Xk

C
= X i

A
X

j

B
, add a ‘product’-

production rule C −→ A ∗ B to G.

ii) Let u be any node on t below w, and r(u) = B; if B.l 6= 0 and B is not the lhs of any
‘product’-production, then add to G the production rule B −→ tu.

iii) For any i ∈ 1..n, the contribution Ci(w) of the run r to any set variable Xi, at the node
w, is the set of all terms over the ground constants, that are frontiers of derivation trees from
non-terminals C in G, for which X i

C
∈ ME, i.e. such that C.li = 1.

We proceed now to prove, successively, that: (i) the sets Ci(w), i = 1..n, are all non-empty,
(ii) the assignments Xi = Ci(w) satisfy the set constraints problem associated to P ; and (iii)
the Ci(w), i = 1..n, are all finite sets.

Proposition 2 The Ci(w) as defined above are non-empty sets of terms over the ground con-
stants and ‘∗’, for all i.

19

Proof: (We assume that w is the root node of t.) By assumption r(w) = E is closed, so for
every i = 1..n, we have E.hi = 1, so there is at least one state reached by r at some node u on
t such that r(u).li = 1. Let p ∈ 1..n be given, and u any node on t such that r(u).lp = 1. Our

claim is that the subterm tu of t at u is in Cp(w), and is produced by the non-terminal r(u) of
G; we prove this by induction on the height of the node u on t.

Let r(u) = C. If u is of height 0, then tu is a ground constant; the state C is then reached
under initialization of r, so C.l must be an initial label (cf. Definition 2); therefore C cannot
be the lhs of any ‘product’-production, and G = G(r) must contain the production C → tu,
and our claim is trivial in this case.

Assume then that u is of height > 0; as above, we may assume that C is the lhs of some
‘product’-production in the grammar G; this must correspond to some ‘product’-equation Xk =
Xi∗Xj in the problem P such that C.lk = 1. Now u = u′∗u′′ for two sub-nodes u′, u′′ of smaller
height; let r(u′) = A, r(u′′) = B; then we must have A.li = 1 = B.lj. Then the grammar G
must contain the ‘product’-production C → A ∗B; now, by inductive assumption, the subterm
tu′ (resp. tu′′) is produced by A (resp. by B), and is in Ci(w) (resp. in Cj(w)). It follows
that the term tu = tu′ ∗ tu′′ is produced by C, and is in Ck(w) of course, but also in Cp(w) by
definition, since C.lp = 1.

Proposition 3 Let r be any run on an lt-dag t, and w any node on t such that r(w) = E is
an accepting state on the LDA. Then the assignments Xi = Ci(w), i = 1..n, satisfy the set
constraints associated to the ACID-problem.

Proof: We suppose that w is the root node of t; and show that every equation in the
ACID-problem is satisfied under the set assignments Xi = Ci(w).

Step i): The equations of the form X = a in P are all satisfied.

Let i be given such that we have an equation Xi = a in P . Then there is a state A reached
under the run r at initialization; then the production A −→ a in G(r) contributes a to Xi. We
have to check that no other productions of G contribute any terms to the set Xi. These may
be:

- either of the form B −→ b for B 6= A, and b 6= a: but these cannot contribute to the
given Xi by our definition of initial labels (cf. Definition 2), and by the coherence of labels
under transitions (cf. Definition 7);

- or ‘product’-productions in G of the form R → P ∗ Q corresponding to ‘product’-
equations in P ; such productions cannot have R.li = 1 again by the coherence of labels under
transitions; and so, cannot contribute to the Xi considered.

Step ii): The ‘sum’-equations in P of the form Xk = Xi + Xj are all satisfied.

A term contributed to Xk is derived from a non-terminal C, corresponding to a state C

reached by the run such that C.lk = 1. But C.lk = 1 iff C.li ∨ C.lj = 1; so either or both,

of the dsymbols X i

C
, X

j

C
must be in ME . So any term in the contribution Ck(w) is either in

Ci(w), or in Cj(w), or both. So we deduce: Ck(w) = Ci(w) ∪ Cj(w).

Step iii): The ‘product’-equations in P , of the form Xk = Xi ∗ Xj are all satisfied.

We first prove that the contribution under r to the set Xk is contained in the product of
those to the sets Xi and Xj .

Such a variable Xk is not ≻∗-minimal; so by definition, any term in Ck(w) is derived from a
C, for some state reached C such that C.lk = 1, and for which we have closed defect equalities
of the form Xk

C
= X i

A
X

j

B
in ME; the presence of such a closed defect equality implies that

there has been a transition to state C from two other states A, B also reached under r, with
X i

A
, X

j

B
∈ ME , that is to say we have A.li = 1 = B.lj = 1; and this holds whatever be the

pair of states (A, B) from which the run has transited to C. By definition, one deduces then
that any term in the contribution Ck(w) of the run to Xk is the product of a term in the set

20

Ci(w) with a term in the set Cj(w). This proves the inclusion Ck(u) ⊂ Ci(u) ∗ Cj(u).

Conversely suppose that the contribution of r to the set Xi contains a term s′ derived from
some A such that A.li = 1, and that to the set Xj contains a term s′′ derived from some B,
such that B.lj = 1, where A, B are two states reached under r; the defect set ME contains then

the two conjugate dsymbols X i

A
, X

j

B
. Now r being accepting, the defect set ME at E = r(w)

must contain a closed defect equality of the form Xk

C
= X i

A
X

j

B
for some state C on the LDA

for which C.lk = 1. The grammar G(r) contains then, by definition, a production C −→ A∗B;
one deduces then that the contribution Ck(w) of the run to Xk contains the product term
s′ ∗ s′′. This proves the reverse inclusion Ci(w) ∗ Cj(w) ⊂ Ck(w).

Proposition 4 The sets Ci(w) as defined above are all finite, for i = 1..n.

Proof: (As above E is the image of the root node of t under the run.) Suppose there is an
index p ∈ 1..n such that Cp(w) is infinite. By our definition of the sets Ci(w), this is possible
only if e.g. a situation of the following type arises:

i) there is a chain of ‘product’-productions in G, of the form:

C1 −→ A1 ∗ B1, C2 −→ A2 ∗ B2, . . . , Cm −→ Am ∗ Bm, such that:

ii) for each j, 2 ≤ j ≤ m, we have Cj = Aj−1; and C1 = Am.

If such a situation arises, then (with the above notation) we shall say that the non-terminal
C1 of G(r) creates a cycle for G. Let u be a node of least height on t such that the run r

maps u to a state C1, whose pstate C1 creates a cycle. There can be no ‘product’-productions
from the pstate of a state reached under initialization, so this node u cannot be a leaf-node
on t. We infer then that u = u1 ∗ v1 for two nodes of smaller height than u on t, such that:
r(u1) = A1, r(v1) = B1. Now the ‘product’-production from C1 by definition must correspond
to a closed defect equality of the form Xk

C1

= X i

A1

X
j

B1

in ME, which implies that the subterm

tu of t is accepted in Xk at the state C1; it follows that tu1
is accepted in Xi at the state r(u1),

and tv1
at r(v1). But then u1 is a node of smaller height than u, and gets mapped to r(u1)

whose pstate A1 also creates a cycle for G - contradiction.

We deduce our principal claim by putting together the above three Propositions 3, 4 and 5:

Theorem 5 The LDA-approach is sound: if there is an lt-dag accepted by the LDA associated
to a given ACID-unification problem P , then P is solvable.

Remark 3. We saw already that an lt-dag t accepted by the LDA associated a given problem
P may not have the closure property, so the set values derived from its labels cannot be a
solution to P . The role of the grammar G(r) derived from an accepting run r on t, is precisely
to help us construct an lt-dag t′ (from the labels of t and the run), such that t′ has the closure
property and is a solution to P .

6.4 The LDA-approach is Complete

Theorem 6 Suppose given an ACID-unification problem P in pruned form, and let A be the
associated LDA. Suppose the problem P solvable, and assume given a solution to P as sets
of terms over the ground constants and ‘∗’. Then we can construct a closed lt-dag t that is
accepted by A, and such that the given solution is exactly the set values deduced from the labels
of t.

Proof: Let Xi, i = 1..n, denote as usual the variables of the problem P given in pruned
form, and assume given a solution to P in terms of finite non-empty sets of terms (that we also
denote by Xi). From the given solution it is not difficult to construct, in a natural and unique
manner a set D of lt-dags, which share all their common nodes and are such that: for every i,

21

Xi is the set of subterms at the nodes on D where the i-th bit of the label is 1. We can then
complete this construction if necessary, (in a non unique manner) to obtain one ‘global’ lt-dag
t such that: every lt-dag in D is a sub-lt-dag of t, and the label of t is null at any node where
the subterm is not in the solution set given, in particular at nodes of t strictly above those of
D (e.g. see Example 5 in the Appendix II).

Since t has been constructed from a solution for the set variables in P , t is necessarily a
closed lt-dag; that is to say: if u, v are any two nodes on t with conjugate labels, then t contains
a node w such that tw = tu ∗ tv. Actually the set of all nodes of D must already be ‘closed’ in
this sense, for the same reason.

Remains then to construct an accepting run of the LDA associated to P , on this lt-dag t.
Now recall that our LDA is deterministic; so the transitions of the run looked for are uniquely
determined at every node of D, by its label. (Note: because of the determinism, this is true
also for the nodes ‘under D’ with label 0, i.e. where the subterm is not in the given solution
set.) On the other hand, the labels at the nodes of maximal height in D – which correspond to
the terms of maximal height in the given solution of P – have to be unmarked (cf. Definition 6:
otherwise the solution given for P would contain product terms situated at nodes strictly above
them.

Once this part of the run is constructed at all the nodes of the solution set D, completing
it to cover the nodes of t which are not in D is straightforward: these will again be transitions
to nodes with a null label.

Remains finally to show that the run constructed in this manner is accepting on the ‘global’
lt-dag; i.e. to say, that the defect equalities are all closed at the state image of the root node
under our run. But this follows from Proposition 2: indeed, if ui, i = 1, 2 are any two nodes with
non-null (and conjugate) labels, then the ui must be nodes on D where our run is defined; so
there is also a node on D where the label is non-null and the subterm is the product tu1

∗tu2
; this

node must therefore be at or below the root node of ‘global’ lt-dag constructed; by Proposition
7, we conclude that the image of this root node cannot contain any open defect equalities.

Theorem 7 ACID-unification and ACUID-unification are NEXPTIME-decidable.

Proof: We first consider the theory ACID, and assume that the ACID-unification problem
is in standard, pruned, form. We saw that such a problem admits a solution iff there is an
accepting (coherent) run of the LDA associated to the problem, on an lt-dag. Now the LDA
is of size exponential w.r.t. the number of variables in the problem; on the other hand we saw
that finding an lt-dag accepted by this LDA is decidable in time NP w.r.t. the number of states
of the LDA. This proves the assertion of NEXPTIME-decidability for ACID-unification.

That of ACUID-unification can then be deduced as follows: Choose non-deterministically
the set of variables which are assigned the value U = 0; and solve for the others using the
ACID-algorithm just described.

Appendix II: Examples of ACID-Unification

Example 2. (revisited) For the ACID-unification problem, given in standard (pruned) form:
V = X + Z, V = W + U, W = X ∗ Y , we obtained above an accepting run on an lt-dag
t rooted at (a ∗ a), for which the set values deduced from the labels of t is a solution to the
ACID-problem; here the run is injective and the lt-dag t is itself closed (i.e. has the closure
property).

Let us look at the solution given by the grammatical approach that we developed above.
There are two productions in the grammar of the run: B −→ A∗A, A −→ a. The contribution
of the run to the variables are therefore the sets of terms representable as: X = {A} = Y =
U, V = {A, A ∗ A}, Z = W = {A ∗ A}; that is to say:

22

X = {a} = Y = U, V = {a, a ∗ a}, Z = W = {a ∗ a}

which is the same as the set values deduced from the labels of the lt-dag.

Example 3 (revisited). We go back to the problem Z =? X ∗ Y , and the accepting run r of
the LDA on the lt-dag rooted at the term t = (a∗b)∗(c∗d), with nodes at a, b, c, d, (a∗b), (c∗d)
as given previously. The grammar at the root node of t has the following productions: C −→
A ∗ B, A −→ a | c, B −→ b | d. The contributions to the set variables at the root node give
then the following assignment: X = {a, c}, Y = {b, d}, Z = {a ∗ b, a ∗ d, c ∗ b, c ∗ d}, which is a
correct solution.

If we considered the accepting sub-run on the sub-dag of t rooted at (a ∗ b), we would have
derived the (correct) solution: X = {a}, Y = {b}, Z = {a ∗ b};

The more complex example below illustrates in detail how a run of an LDA associated to
ACID-problems climbs up an lt-dag.

Example 4. We consider again the ACID-problem Z =? X ∗ Y , and the list of variables
ordered as {X, Y, Z}. Let a, b, c, d be ground constants; we construct an accepted lt-dag rooted
at (c∗ (c∗ (a∗ b)))∗ (c∗d), with leaves at a, c put into X ; and at b, d put into Y ; in addition the
nodes at (a ∗ b), (c ∗ (a ∗ b)) are put into Y ; cf. figure below. From the labels of this accepted
lt-dag we can only get the following terms in the set Z: (a∗ b), c∗ (a∗ b), c∗ (c∗ (a∗ b)), (c∗d),
so this lt-dag is not closed.

The accepting run is as follows (in the figure, the states to which the nodes get mapped are
indicated in italic capitals).

a, c
100

−−−−−−→ A = (100; 100; {X
A
}); b, d

010
−−−−−−→ B = (010; 010; {Y

B
});

A ∗ B
011

−−−−−−→ C = (011; 111; {X
A
, Y

B
, Y

C
, Z

C
, Z

C
= X

A
Y

B
, T = X

A
Y

C
});

A ∗ B
001

−−−−−−→ D = (001; 111; {X
A
, Y

B
, Z

D
, Z

D
= X

A
Y

B
});

A ∗ C
011

−−−−−−→ C = (011; 111; {X
A
, Y

B
, Y

C
, Z

C
, Z

C
= X

A
Y

B
, T = X

A
Y

C
});

(A word of explanation on this last transition: The open T = X
A
Y

C
in MC does not get

replaced here by a closed defect equality Z
C

= X
A
Y

C
, since the term accepted at C contributes

to a product with a term in the set X .)

Then: A ∗ C
001

−−−−−−→ F = (001; 111;MF), where
MF = {X

A
, Y

B
, Y

C
, Z

C
, Z

C
= X

A
Y

B
, Z

F
, Z

F
= X

A
Y

C
};

And finally: F ∗ D
001

−−−−−−→ G = (000; 111;MG), where
MG = {X

A
, Y

B
, Y

C
, Z

C
, Z

C
= X

A
Y

B
, Z

D
, Z

D
= X

A
Y

B
, Z

F
, Z

F
= X

A
Y

C
};

where D = F . The states D, F, G are all accepting; so the sub-dags rooted at the nodes
mapped to these states are accepted. The solution for the problem derived at the node mapped
to D is the simplest; the assignment is: X = {A}, Y = {B}, Z = {A ∗ B}. where
A −→ a | c, B −→ b | d; this is a correct solution.

Let us compute the contribution of the run to X, Y, Z on the sub-dag rooted at node F , by
looking at MF : The productions of the grammar w.r.t. this accepting sub-run are as follows:

F −→ A ∗ C, C −→ A ∗ B, A −→ a | c, B −→ b | d.

So the contribution of the run is the assignment: X = {A}, Y = {B, A ∗ B}, Z = {A ∗
B, A ∗ (A ∗ B)}, where A −→ a | c, B −→ b | d; which is again a correct solution.

The grammar for the accepting run at the root node G has an additional production:
D −→ A ∗ B, with D = F . The solution derived here is the same as at F : the terms derivable
from this production are also derivable from C.

Example 5. (5.1) The following ACID-unification problem in pruned form

W = X ∗ Y, W = U + V, U = U1 ∗ U2, V = V 1 ∗ V 2,

23

C

c

a b

(a*b)

(c*(a*b))

(c*(c*(a*b)))

(c*(c*(a*b))) * (c*d)

d

(c*d)

(100) (010)

(010)

(011)
(100)

(001)
(011)

(001)

(000)

B

B

A

C
A

D

F

G

Figure 4: An accepted non-closed lt-dag for Z =? X ∗ Y

U1 = a, U2 = b, V 1 = a, V 2 = c.

admits as a solution the substitution X = {a}, Y = {b, c} on the end-variables X, Y . The lt-dag
to the left of Figure 3 is constructed from this given solution; it is accepted by the LDA associ-
ated to the problem(the variables arranged as the ordered list {U1, U2, V 1, V 2, X, Y, U, V, W}).

(5.2) The ACID-unification problem in pruned form: Z = U + Z, Z = X ∗ Y , admits
as a solution the substitution: X = {a}, Y = {a, b}, U = {c}, Z = {c, a ∗ a, a ∗ b}; the lt-dag
to the right of the Figure 3, constructed from this solution, is accepted by the LDA associated
(the ordered variable list is {U, X, Y, Z}).

The lt-dags with the ‘full lines’ in the figure correspond in both cases to what was denoted
by D in the proof of Theorem 6.

Our final example shows that reasoning with the 2n-bit vectors (the first components) alone

(0000)

a b

(000000101)*

c
(010001000)(101010000) (000101000)

* *

lt−dag solution for 5.1

* (0001)(0001)

lt−dag solution for 5.2

*
(000000000)

(000000011)

(0000)*

c a b
(1001) (0110) (0010)

*

Figure 5: lt-dags constructed from given solutions: Example 5

24

at the LDA states would lead to incorrect conclusions.

Example 6. The following ACID-problem is unsolvable with finite non-empty sets:

X1 = X2 + X3, X1 = X4 + X5, X1 = X6 + X7, X4 = X2 ∗ X8, X6 = X9 ∗ X3

Indeed Occur-Check returns ‘Fail’ on the problem: the variable X1 is ‘∗’-above X2 as well
as X3 in the first ‘sum’-equation. Let us try constructing a run of the associated LDA on an
lt-dag, whose unique leaf is a, root node at ((a ∗ a) ∗ (a ∗ a)), and (a ∗ a) as the subterm at an
intermediary node. The variables being arranged into a list under their natural order, this run
goes as follows:

a
111010111
−−−−−−→ A = (111010111; 111010111,MA) where

MA = {X1
A, X2

A, X3
A, X5

A, X7
A, X8

A, X9
A, T = X9

AX3
A, T = X2

AX8
A})

A ∗ A
110101000
−−−−−−→ B = (110101000; 111111111;MB), where

MB = {X1
A, X2

A, X3
A, X5

A, X7
A, X8

A, X9
A, X1

B, X2
B, X4

B, X6
B, X6

B = X9
AX3

A, T = X2
BX8

A})

And finally: B ∗ B
000000000
−−−−−−→ C = (000000000; 111111111;MC = MB)

The state C is not an accepting state: the defect set MC at C is not closed; so the run is not
accepting. What we want to point out here is that, if we went only by the first components of
the states of the LDA, state C would have appeared as accepting: because C.l = 0 is unmarked,
and C.h = 1.

25

