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Hodge loci and absolute Hodge classes

Claire Voisin
Institut de mathématiques de Jussieu, CNRS,UMR 7586

0 Introduction

Let w: X — T be a family of smooth projective complex varieties. Assume X, 7, T
are defined over Q. An immediate consequence of the fact that there are only
countably many components of the relative Hilbert scheme for m, and that the
relative Hilbert scheme (with fixed Hilbert polynomial) is defined over @, is the
following: if the Hodge conjecture is true, the components of the Hodge locus in T’
are defined over Q, and their Galois transforms are again components of the Hodge
locus. (We recall later on the definition of the components of the Hodge locus.) In
[@], it is proven that the components of the Hodge locus (and even the components
of the locus of Hodge classes, which is a stronger notion) are algebraic sets, while
Hodge theory would give them only a local structure of closed analytic subsets (see
[id), 5.3.1).

In this paper, we give simple sufficient conditions for components of the Hodge
locus to be defined over Q (and their Galois transforms to be also components of
the Hodge locus). This criterion of course does not hold in full generality, and it
particular does not say anything about the definition field of an isolated point in the
Hodge locus. But in practice, it is reasonably easy to check and allows to conclude
in some explicit cases, where the Hodge conjecture is not known to hold. We give a
few examples of applications in section [J.

We will first relate this geometric language to the notion of absolute Hodge
classes (as we only deal with the de Rham version, we will not use the terminology
of Hodge cycles of [[f]), and explain why this notion allows to reduce the Hodge
conjecture to the case of varieties defined over Q, thus clarifying a question asked
to us by V. Maillot and Ch. Soulé.

Let us recall the notion of (de Rham) absolute Hodge class (cf [f]). Let X" be a
complex projective manifold and o € Hdg?*(X) be a rational Hodge class. Thus
« is rational and

a e FFHM (XM C) = H*(X™ QS&F). (0.1)

Here, the left hand side is Betti cohomology of the complex manifold X" and the
isomorphism of (D.1]) is induced by the resolution

im)F
0—c OiQX—>...—>Q§(—>O,n:dimX

of the constant sheaf C on X . The right hand side in (0.1]) can be computed, by
GAGA principle, as the hypercohomology of the algebraic variety X with value in



the complex of algebraic differentials:

H(X", Q5n) 2 P (X, Q5).
Let us denote by &£ the set of fields embeddings of C in C. For each element o of &,
we get a new algebraic variety X, defined over C, and we have a similar isomorphism
for X,. Thus the class a provides a (de Rham or Betti) complex cohomology class

a, € H*(X,, Q") = FrH? (X", C)
for each o € &.

Definition 0.1 (cf [i/) The class « is said to be (de Rham) absolute Hodge if o,
is a rational cohomology class for each o.

We will introduce in section [l] the notion of weakly absolute Hodge class. In the
definition above, we ask that each «, is proportional to a rational cohomology class.

We first prove in this Note the following statement, which answers a question
asked by Vincent Maillot and Christophe Soulé:

Proposition 0.2 Assume the Hodge conjecture is known for varieties Xo defined

over Q and (weakly) absolute Hodge classes o on them. Then the Hodge conjecture
is true for (weakly) absolute Hodge classes.

Remark 0.3 It is easy to see, (see Lemma )_that a weakly absolute Hodge class
o on a variety defined over X is defined over Q, that is a € H%(X@, Q;%k)

Remark 0.4 In the statement of the Proposition, we fix an embedding of Q into C,
and so a determines a class in H?*(Xc, Q;ik) = FFH?(X&" C), which is assumed
to be rational. If the Hodge conjecture is true for this class, then for any other
embedding ¢ of Q into C, the class a, is also rational, and the Hodge conjecture is
also true for this Hodge class. Thus the statement makes sense and is independent
of the choice of embedding.

We next turn to the problem of whether Hodge classes should be absolute. Let X
be a complex projective manifold, with a deformation family 7 : X — T defined over
Q, that is X is a fiber Xy, for some complex point 0 € T(C), and let o € Hdg?*(X)
be a primitive Hodge class. We show the following:

Theorem 0.5 1) Assume that for one irreducible component S passing through «
of the locus of Hodge classes, there is no constant sub-variation of Hodge structure
of R2k7{'5*@p”m on S, except for Qay. Then « is weakly absolute.

2) Let us weaken the assumptions on S by asking that any constant sub-variation
of Hodge structure of R?*75,Qprim on S is of type (k, k). Then, p(Syeq) is defined
over Q, and satisfies the property that its Galois translates are also of the form
p(S!.q) for some irreducible component S’ of the locus of Hodge classes.

Here mg : Xg — Syeq is obtained by base change p : S,eq — 7. In statement 2),
the Hodge locus of « is defined as the projection to T' (via the projection map p) of
the connected component of the locus of Hodge classes passing through . We will
describe in section [[ their natural schematic structure.



Statement 1) will imply, by Lemma [[.4 proven it next section, that under the
same assumptions, the Hodge locus of « is defined over Q and its image under any
element of Gal (Q/Q) is again a component of the Hodge locus.

An immediate Corollary of Theorem @,1) is the following simple statement :

Corollary 0.6 Assume that the infinitesimal Torelli theorem holds for the variation
of Hodge structure on RQkﬂ'*@prim. Assume that one component S passing through
a of the locus of Hodge classes has positive dimension, and that the only proper non
trivial sub-Hodge structure of H**(X, Q)prim s Qa. Then o is weakly absolute.

Note that the assumption that S has positive dimension is satisfied once hF~LF+1 .=
rk H* =121 (X)), im < dim T (cf [[I0], Proposition 5.14).

Proof. Indeed, a constant sub-variation of Hodge structure of R%WS*@I,WH on
S must then be (by taking the fiber at the point 0 corresponding to X)) either equal
to RQkﬂ's*me‘m or to Qa. The first case is impossible by the Torelli assumption,
and dim S > 0. Thus the assumptions of Theorem [.5,1) are satisfied. [ ]

Case 2) of Theorem . leads to the following generalization of Proposition [.2;

Proposition 0.7 Suppose the Hodge conjecture is true for Hodge classes on smooth
projective varieties defined over Q. Then under the assumptions of Theorem [).4,
2), the class « is algebraic.

Section [| is devoted to the discussion of absolute and weakly absolute Hodge
classes in terms of the corresponding components of the locus of Hodge classes and
components of the Hodge locus.

In section P, we prove the results stated in this introduction.

We give in the last section variants and applications of Theorem P.5. In Theorem
B, we give an algebraic (Zariski open) criterion on a Hodge class o € FFH? in
order that the assumptions of Theorem .J are satisfied at least at a general point
of the connected component S,, of the locus of Hodge classes passing through a. Of
course, except in level 2, where we can use the Green density criterion, it is hard to
decide if there are many Hodge classes in the Zariski open set of F¥H?* where this
criterion is satisfied. We give examples in level 2, where this criterion is satisfied in
a Zariski dense open set, in which there are “many” Hodge classes. In one of these
examples, the Hodge conjecture is not known to hold for these classes.

The second application (Theorem B.H) concerns the period map. Under a reason-
able assumption on the infinitesimal variation of Hodge structures on the primitive
cohomology of the fibers of a family « : X — T of projective varieties defined over
Q, we conclude that any component W dominating T' by the first projection of the
set of pairs (¢,t') € T x T such that the Hodge structures on H" (X, Q)ppim and
H™(Xyr, Q)prim are isomorphic, is defined over Q.

1 Absolute and weakly absolute Hodge classes

Let us introduce the following variant of the notion of absolute Hodge class.

Definition 1.1 The class « is said to be weakly (de Rham) absolute Hodge if for
each o € &, a, is a multiple A,7,, Wheie Ve € H?* (X% Q) is a rational cohomology
class (hence a Hodge class) and A\, € Q.



Remark 1.2 It turns out that the condition A\, € Q is automatically satisfied.
Indeed, consider the primitive decomposition of « with respect to the polarization
given by the projective embedding of X.

o= Z (L) Tap, n=dimX,

2k—2r>0,2r<n

where o, € H (X, Q)prim.-
Then the primitive decomposition of «, is given by

Qo = Z Cl(Lo)k_TO‘T,U’

2k—2r>0,2r<n
and thus, if ay = A\y7Ye, With v, € H2*(X2", Q), then for each r, we get

Qp o = )\J'Yo,ra (1'1)

where 7, is the degree 2r primitive component of v,, and thus is a rational coho-
mology class. But we know by the second Hodge-Riemann bilinear relations that if
a, # 0, we have fX c1(L)"~?"a2 # 0. This is a rational number, which is also equal
to [ x, C1 (LU)"*2"04270. On the other hand, as 75, is a rational cohomology class, we
also have [ X, ¢1(Le)" "% ~2, € Q, and thus, from the equalities

/ (L) o? = / e1(Lo)" a2, = A2 / a(lo)™ 2, (12)
X o o

we get A2 € Q.

Ceometrically, the meaning of these notions is the following (see also [f]): Let = :
X — T be a family of deformations of X, which is defined over Q (here T' is not
supposed to be geometrically irreducible, and thus the assumption is not restrictive
on X). There is then the algebraic vector bundle F kH2k on T, defined over Q, which
is the total space of the locally free sheaf FFH?F = RQkW*Q:YZ/; on T. We will use
the following terminology (see [[]). The locus of Hodge classes for the family above,
in degree 2k is the set of pairs (X3, o) € FFH?#(C), such that oy € H?*(X{, C) is
rational (hence a Hodge class).

The components of the Hodge locus are the image in T', via the natural projection
p: FFH* — T, of the connected components of the locus of Hodge classes. If o
is a Hodge class on X, the Hodge locus of « is the image in T of the connected
component of the locus of Hodge classes passing through a.

Notice that the locus of Hodge classes is obviously locally a countable union of
closed analytic subsets in F¥H?#(C) Indeed, if « € FFH?*(X" C) N H?*(X™,Q),
then in a simply connected neighbourhood U of t € T, we have a trivialization of the
locally constant sheaf R**79"C, which induces a trivialization of the corresponding
vector bundle H?* and gives a composed holomorphic map:

Vv FFH?* — qH?*  H?F(X,,C), (1.3)
where H?* is the total space of the locally free sheaf

H2k — R2k7T* :\’/T — RQkTF:m(C ® OT
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onT.

Then, over U, the locus of Hodge classes identifies to 11 (H?¥(X;,Q)), which is
a countable union of fibers of ). This defines a natural schematic structure on the
connected components of the locus of Hodge classes.

Similarly, the local description of the Hodge locus of « is as follows: we can locally
extend «a to a locally constant section & of R%*79"Q. Then & gives in particular a
holomorphic section of the vector bundle H?* := R?*79"C @ Op. Then the Hodge
locus of « is simply defined by the condition

where @<F~1 is the projection of & in the quotient H?*/F*H?*. This again defines
the schematic structure of the Hodge locus of a.

It is clear from these descriptions that the projection from the locus of Hodge
classes to the Hodge locus is a local immersion which is open onto an union of local
analytic branch of the Hodge locus.

Cattani, Deligne and Kaplan proved in fact the following much stronger result
concerning the structure of the locus of Hodge classes (cf [[]):

Theorem 1.3 The connected components of the locus of Hodge classes are algebraic
subsets of the algebraic vector bundle F*H?*,

The conjecture that Hodge classes are absolute Hodge is equivalent to saying
that the locus of Hodge classes is a countable union of algebraic subsets defined over
Q. To see this, note that a given Hodge class is absolute Hodge if and only if its
Q-Zariski closure in F*¥H?F is contained in the locus of Hodge classes. It is then
clear by the Noetherian property that for countably many generically chosen Hodge
classes «;, the locus of Hodge classes must be equal to the union of the Q-Zariski
closures of the a;’s.

The statement that Hodge classes are weakly absolute Hodge implies the facts
that the locus of Hodge classes is a countable union of algebraic subsets of F*H?*
defined over Q and that the Hodge locus is a countable union of algebraic subsets
of T defined over Q. More precisely, we have :

Lemma 1.4 Let o € H?**(X™ Q) be a weakly absolute Hodge class. Then the
connected component Se, of the locus of Hodge classes passing through « is defined
(schematically) over Q, and so is the Hodge locus of . Furthermore the Galois
images of the Hodge locus of o are also (schematically) components of the Hodge
locus.

Proof. @ We know by Theorem that S, is algebraic, and it is by definition
connected. We make the base change S, req — T', where we replace if necessary S,
by a Zariski open set, in order to make the reduced scheme goz,red smooth. Then
the corresponding family _

To @ Xo — Soz,red

admits the locally constant section & € H 0(§a,red, R%WQ*Q). By the global invariant
cycle theorem [fj, there exists a class 8 € H?*(X,,Q) which is of type (k,k) and
restricts to a; on each fiber X; of the family X,. In fact, we can even make this
class canonically defined by choosing an ample line bundle £ on X, which allows



to define a polarization on H**(X,, Q) (see also the proof of Proposition 0.3 or [J]
for more details). Then [ is canonically defined if we impose that g lies in the
orthogonal complement of Ker restx with respect to this polarization.

Let now o be weakly absolute. Then the class 3, on &, , restricts to a, = A\ss
on X,, where 7, is rational, and is in the orthogonal complement of Kerresty,
with respect to the polarization induced by L,. It thus follows that %ﬂo, which
restricts to -,, has to be rational (hence is a Hodge class). Let 4 be the locally
constant section of R%*m,,Q on §a7r6d obtained by restricting iﬂo We conclude
that we have an inclusion

1
)\_O-(Sa,red) C Sy, reds (1.4)

which is easily checked to extend in fact to a schematic identification
(1.5)

Indeed, this follows from the flatness of the sections &, and 7., from the fact that
Ao has to be constant along o(Sq,req) by formula (L.2), and from the fact that Sve
is by definition connected.

As

we conclude from ([.§) that the image via o of the Hodge locus of « is also a
component of the Hodge locus.

Finally, to see that if a is weakly absolute Hodge, then S, C FFH? is defined
over Q, we use equality (LH), applied to o € € together with the fact noticed in
Remark [[.4 that A2 € Q. It follows that the constant A, € Q can take only countably
many values, and in particular, there are only countably many Galois transforms
0(§a), and as we know that S, is algebraic, this implies that S, is defined over Q.

|

2 Proof of Theorem 0.5 and Propositions 0.2, [0.7.

Proof of Proposition 0.2. Let (X%, a) be a pair consisting of a projective
complex manifold and an absolute (resp. a weakly absolute) rational Hodge class. By
the geometric interpretation given above, and by Lemma [[.4 in the weakly absolute
case, it follows that there exist smooth irreducible quasi-projective varieties X, T
defined over Q, a projective morphism 7 : X — T, and a locally constant global
section

& € H)(T, R*r,Q),

such that X is one fiber of m and « is the restriction of & to this fiber.
Deligne’s global invariant cycle theorem [[f] says now that for any smooth com-
pletion X of X, there exists a Hodge class § € Hdg?*(X) such that

B\X = Q.



Of course, we may also choose X defined over Q. In order to conclude, we claim
that we may choose (3 to be absolute Hodge (resp. weakly absolute Hodge). Indeed,
we will deduce from this, under the assumptions of Proposition D.4, that 3 is the
class of an algebraic cycle, and then, so is its restriction «.

To prove the claim, consider the morphism of rational Hodge structures

H2k (Ian’ @) N HZk (Xan7 Q)

The left hand side can be polarized using a ample line bundle £ on X. (That is, we
use the Lefschetz decomposition with respect to this polarization, and change the
signs of the natural intersection pairing

(ar,Br) = /_Cl(L)NQTOZT UpBr, N=dimX
X

on the pieces of the Lefschetz decomposition with 7 even, in order to get a polarized
Hodge structure.) Thus we conclude that there is an orthogonal decomposition

H2k(yan,(@) _ A@ B

into the sum of two Hodge structures, where the first one identifies via restriction
to its image in H2F (X,Q), while the second one is the kernel of the restriction map.
B is a sub-Hodge structure of H?*(X™", Q) and A is then defined as the orthogonal
of B under the metric described above on H? (X", Q).

We define then 3 to be the unique element of A which restricts to a.

For each element o of Gal (Q/Q), we get a line bundle £, on X', a sub-Hodge
structure B, := Kerrestx,, and the isomorphism

H?** (X", C) = H* X", C) (2.1)

commutes with restrictions maps and is compatible with the polarizations given by
L and L,. Thus we get similarly a rational sub-Hodge structure A, of H zk(yzn, Q)
and there is a commutative diagram where the horizontal maps are restrictions maps
and thus are defined on rational cohomology, and the vertical maps are induced by
the comparison isomorphism (B.1]) :

A®C — H?(X,C)
I I .
A, ®C — H?¥™(X,,C)

It follows from this that if « is absolute Hodge (resp. weakly absolute Hodge), so is
0.

Proof of Theorem P.5. 1) Let (X, a) be as in the statement of the Theorem.
By Theorem [[.3, the component passing through « of the locus of Hodge classes is
an algebraic set. Let S be an irreducible component of this set containing (X, «),
and satisfying the assumption of Theorem D.5,1). Replacing S by a Zariski open
set of S,eq, we may assume that S is smooth. There is by base change a projective
family wg : Xg — S together with a tautological flat section

~ o>k
a e HO(S, R* 15,05 s



with value o4 at each t.

Let X'g be a smooth completion of Xg. The global invariant cycle theorem says
that there exists a class 3 € H**(Xg,Q) N FFH?** (X5, Q) such that Bix = a. On
the other hand, the vector space

H2k (257 @)|Xt N H2k (Xta @)prim

is a constant sub-Hodge structure of H?2* (X, Q)prim- Thus, by our assumption on S,
we conclude that it must be equal to Qay. It follows that the complex vector space

HQk (?57 Q%S)‘Xt N HQk (Xt7 ;(t )pT‘im

has rank 1 and is generated by «.
Let o0 € £. We want to show that the class

ap € HH¥(X,, Q") ¢ H™M(Xg",C)

is of the form A\,7,, where 7, is rational.
But o provides a new family X g, fibered over S, with fiber X; ,, such that the
vector space

H* (X5, 9%, )ix, VH* (X0, Q% Jprim (2.2)

has rank 1 and is generated by «,. It follows that the intersection of the image of
the restriction map

HM(XY,, Q) — H* (X2, Q), (2.3)

with H?*(X2", Q)prim has rank 1.

Thus we have a, = A\;7, for some rational primitive Hodge class 7, on X,, and
some non zero complex coefficient \,. By Remark [[.3, we have \, € Q, and thus «
is weakly absolute.

2) The proof of 2) is very similar. Indeed, with the same notations as above, we
find that a belongs to the sub-Hodge structure

H2k(?(j§n7 Q)‘X“" N H2k(Xan7 @)pTin’m
which is the fiber at 0 of the locally constant sub-Hodge structure
H2k(?(j§n7 Q)‘Xf" N H2k(Xtan7 Q)pT‘iM7 te S7

hence must be a trivial sub-Hodge structure. This assumption is algebraic, as it can
be translated into the fact that the vector space

H* (X5, 9% )ix NHP(X, Q% )prim

is equal to
H?*(Xg, Q'fsk)‘x NHZF (X, Q) prim.-

Let now o € £. We conclude from the above that the sub-Hodge structure

H2k(?§,®m Q)\Xg" N H2k(Xgn’ Q)prim,
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to which a, belongs, is trivial. Thus we can write a, = Z:jlv «;7;, where ~y; are

independent rational Hodge classes on X?" coming from f?fa and the \; are complex
coefficients. As «, gives a flat section of the bundle F¥H?* on ¢(S), and the 7; are
locally constant on o(S,eq), we conclude that the \;’s are constant on o(Syeq). We
claim that for a generic choice of rational coefficients X, 1 < i < N, 0(p(Syea)) is
equal to p(S?,;) where S” is an irreducible component of the locus of Hodge classes
passing through sz\[ i

Assuming the claim, this shows that there are only countably many Galois trans-
forms of p(Syeq) and thus, because p(S;.q) is algebraic, this implies that p(Syeq) is
defined over Q. The claim also gives the second part of the statement.

To prove the claim, we choose a simply connected neighborhood U of the point
a(0) € T(C). Over U, we can consider the map v : FkHﬁ}“ — H? (X C) of
(IL3). Then for any choice of complex coefficients y;, we know that p(¢ =1 (3, uivi))
contains p(o(Syeq)) NU, and that for (u1,...,un) = (A1,...,AN), p(6(Sprea)) NU
is the reduction of an irreducible component of p(»=*(>"; wivi)). By lower semi-
continuity of the dimension of the fibers of ¢, we conclude that the later property
remains true for (p;) € CV in a Zariski open set of coefficients, and thus in particular
for some N-uple (\}) € QV.

Having this, we proved that for some irreducible analytic component S’ of
P EN Niy), the two analytic subsets o(p(Sreq)) N U and p(S7,,) of U coin-
cide. Because o(p(Syeq)) is irreducible and reduced, and because by Theorem [L.3,
¢_1(Zi]1\[ M) is an open set in an irreducible algebraic subset S” of F¥H2k  (an
irreducible component of a connected component of the locus of Hodge classes), we
get by analytic continuation that o(p(Syeq)) = p(Sr.,)-

|

Remark 2.1 The schematic structure of the locus where a combination ), j1;7;
remains in FFH?* may depend on the i, even if we know that the corresponding
reduced algebraic set does not depend generically on the w;’s. This is why we have
to restrict here to the reduced subschemes.

Let us conclude this section by giving the proof of proposition .7.

Proof of Proposition 0.7. Indeed, with the same notations as above, we just
proved that S’ := p(Syeq) is defined over Q. We also know that the only locally
constant sub-Hodge structure of RZkTF*me'm is of type (k, k). As monodromy acts
in a finite way on the set of Hodge classes of X;, t € S’ generic, there is an étale
cover S” of the smooth part of S’, also defined over Q, on which this monodromy
action becomes trivial. Thus we have by base change a family «” : Xq» — S”,
together with a global section & of R%*r” Qprim, whose restriction to Xy is equal to
a. The global invariant cycle theorem now says that there exists a Hodge class 6 on
a smooth compactification X g», which we may assume defined over Q, restricting
to a. If the Hodge conjecture is true for Hodge classes on varieties defined over Q,
it is then true for 8 and thus also for a. [ |



3  Variants and applications

Let us give to start with an infinitesimal criterion which will guarantee that the
assumptions of Theorem .5, 1) are satisfied by an irreducible component of Se.
This will then give as a consequence of Theorem P.J an algebraic criterion (Theorem
B1) for a Hodge class a € FFH?#(C), to be weakly absolute.

We assume again that 7 : X — T is a family of projective varieties defined over
Q, and we denote as before by F¥H?* the algebraic vector bundle whose sheaf of
sections is (R%W*Q}Z/;)prim, which admits as a quotient the bundle H kE whose
sheaf of sections is (Rkw*Qljf /T)priw This is an algebraic vector bundle defined over
Q. We have the Op-linear map which describes the infinitesimal variation of Hodge
structure

Vo HPY — HPLT @ O,

which is defined using the Gauss-Manin connection and Griffiths transversality (cf
[d], 5.1.2). Here HP4 := (RQW*Q?,(/T)WM.

The assumption of positive dimension for the Hodge loci is automatically satisfied
if AF= 1AL (X),im < dim T. This is proved in [Id], where it is shown that the Hodge
loci in T for the variation of Hodge structure on H k*17k+1(Xt)prim can be defined
by at most hk_l’k“(X)pm-m < dimT. We assume below that T is smooth.

Let o € H?*(X, Q)prim be a Hodge class, where X = Xy is a fiber of 7, 0 € T'(C).
Let A € H®F be the projection of a € FFH?k in HF-*.

Let us assume that the map

p: Tro — HYHFH(X)

given by u(v) = V,()) is surjective. Let K be its kernel. K is the tangent space
of the Hodge locus of a at 0 (cf [I(]???). We have the following algebraic criterion
on A, for a to be weakly absolute:

Theorem 3.1 Assume that
1) py 1is surjective.
2) Forp >k, p+ q = 2k the map

Vo : HP9(X0)prim — HP 2 (X)) ® K3,

obtained by restriction of V, is injective.
3) The map
Hk’k(XO)prim N Hk*l,k‘Fl(XO) ® K;\k,

obtained by restriction of V, has for kernel the line generated by X.
Then « is weakly absolute.

Proof. Asthe map pu is surjective, the component S, of the Hodge locus determined
by « is smooth with tangent space K at 0 € T (cf [[L4], Proposition 5.14).

The conditions 2) and 3) imply that any constant sub-variation of Hodge struc-
ture of Rzkm@prim defined along an open set of S, containing the point 0 parame-
terizing X is equal to Qa. Indeed, if v7¢ is a locally constant section of RQkﬂ'*Cprim
which remains of type (p,q) near 0 on S,, where we may assume p > ¢ by Hodge
symmetry, then we have

ﬁ,yp,q — Qin gP~Latl ® Qg

10



and in particular, we have at 0,
VAP4(0) = 0in HP~ L9 (X)) prim © K.

Thus by assumptions 2) and 3), we conclude that v#»¢ = 0 for p > k and P is
proportional to A for p = k.
We conclude then by applying Theorem .5, 1). [ |

Remark 3.2 The same reasoning shows that if we only assume 1) and 2) in Theo-
rem [3.1, then the class o satisfies the conclusion of part 2 of Theorem [I.§. Thus in
particular, if 58 1s the irreducible component of S, passing through o (it is unique
and reduced because S, is now smooth at the point a), then p(§g) is defined over Q.

It is interesting to note that condition 1) is a Zariski open condition on the class
A € H** (non necessarily Hodge) and that conditions 2) and 3) are Zariski open in
the set where 1) is sastified. One can even note that the complementary set where
these conditions are not satisfied, is Zariski closed and defined over Q as are the
bundles H?¢ and the map V.

Of course, even if we can show that the Zariski open set of FFH?* defined by the
condition 1), 2), 3) above is non empty, it is not clear if there are any Hodge classes
in it. This is the case however if our variation of Hodge structure has Hodge level
2, that is h?? = 0 for p > k + 2. Indeed, in this case, we have the Green density
criterion (cf [[L], 5.3.4) which guarantees that if there is any A\ € H¥*(X})pmim
satisfying property 1), then the set of rational Hodge classes are topologically dense
in the real part of the vector bundle H**.

Example 3.3 The criterion above allows us to prove that many Hodge classes are
weakly absolute for surfaces in P2, without using the Lefschetz theorem on (1,1)-
classes.

More interestingly, it allows to show a similar result for certain level 2 subvaria-
tions of Hodge structure in the H?* of a variety X, without knowing the Hodge-
Grothendieck generalized conjecture for this sub-Hodge structure. We can construct
such examples on 4-dimensional hypersurfaces with automorphisms.

Example 3.4 Consider the action of the involution 1 onP5 given by 1(Xo, ..., X5) =
(—=Xo,—X1,X9,...,X5), and take for T the family of isomorphism classes of degree
6 hypersurfaces whose defining equation is invariant under v, and for sub-Hodge
structure the anti-invariant part of H*(X) under v. This Hodge structure has Hodge
level 2, because v acts trivially on the rank 1 space H*O(X). Thus the Green density
criterion applies once assumption 1) above is satisfied. The parameter space T has
dimension 226, and the number hb3 s equal to 208. One can check that assumptions
1), 2), 3) are satisfied generically on F2H*, thus proving that many Hodge classes
are weakly absolute, even if the Hodge conjecture is not known for them. This is done
following B, B] by computations in the Jacobian ring of the generic hypersurface
as above. In fact this can be done for X the Fermat hypersurface, and for a generic
class A € H*?*(X)_.
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We now turn to another application of Theorem P.§, which concerns the fibers
of the period map and the Torelli problem.

Let 7 : X — T be a family of smooth projective varieties which is defined over
Q, and consider the variation of Hodge structure on H™(X¢)prim. Here T' is assumed
to be smooth. The corresponding infinitesimal variation of Hodge structure at ¢t € T
is given by the map

Vo HPY Xy prim — HP P (X)) i, @ Q.

We will assume the following property : at the generic point 0 € T, the corresponding
map
it HPY(Xo)prim ® Trio — HP 5 (X0)prin,

n@ v Vy(n),

is surjective whenever HP9(Xg)prim # 0. (This property is satisfied for example by
the families of hypersurfaces or complete intersections in projective space.) We then
have :

Theorem 3.5 Let Z C T x T be the set of points (t,t') such that there exists an
isomorphism of Hodge structures between H™(Xy¢, Q)prim and H™( Xy, Q)prim. Let
W C T x T be (the underlying reduced scheme of) an irreductible component of
Z which dominates T. Then under the assumptions above, W is defined over Q
and any Galois transform of W is again (the underlying reduced scheme of) an
irreducible component of Z.

Proof. We apply Theorem P.5, 2). The set W above is I',oq for an irreducible
component I" of the Hodge locus corresponding to the induced variation of Hodge
structure of weight 0 on H" (X, Q)% .;,, ® H"(Xy, Q)prim on T' x T. What we have

prim
to prove in order to apply Theorem [0.§,2) is the fact that if W dominates T' by the
first (or equivalently second) projection, then any constant sub-Hodge structure of

H" (Xta @);rzm ® H" (Xt/ ) @)p”mv (t7 t/) = W’

must be of type (0,0).
By definition, for (¢,t') € W, the Hodge structures on

Hn(Xt7 Q)prim7 Hn(Xt/ ’ @)prima

are isomorphic. Thus the Hodge structures on

Hn (Xta @);rzm & Hn (Xt/ ’ @)pT’iﬂ% Hn(Xta @);rzm ® Hn(Xta @)prim

are isomorphic. Furthermore, ¢ is generic. Thus it suffices to prove that on any
finite cover of T, there is no constant sub-Hodge structure of H™(Xy, Q)
H"™(X¢,Q)prim which is not of type (0,0).

This is done by an easy infinitesimal argument. Let

o< Hn(Xt7 Q);mm ® Hn(Xta @)prim

*
prim ®

be of bidegree (r,s) with r > s, r + s = 0. Thus r > 0, and if we see a as an ele-
ment of Hom (H™(X¢)prim, H™ (Xt)prim), @ € H"™" means that a(HPY(X})prim) C
Hp+r7q_r(Xt)prim-
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We have to show that if there is a flat section & on T, extending « and staying
of type (r,—r), then a = 0. It suffices to show this at first order at 0 € T', where
this is equivalent to say that if

Va=0¢cH (X, x Xo) @ Qrp,
then a = 0. But to say that Va = 0 is equivalent to say that

vU(OZ(QS)) = O‘(vv(gb)), v¢ € Hp7q(X0)pM'm’ V(p, Q)’ b + q=n, Vv € TT,O' (31)

Equation (B.]) shows that « is in fact determined by its value on the first non 0
term HP9(X0)prim, because by assumption the map

Hp’q(XO)prim ® TT,O - Hp717q+1(X0)prim7

¢®U'_>vv(¢)

is surjective once HP'9(Xg)prim is different from 0.
On the other hand, o must be zero on the first non 0 term H?9(Xg)ppim, because
it sends it in HPT"9"(X0)prim = 0. [ |
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