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Abstract – The dipolar method associated with a nonlinear 

time domain simulation program make up a powerful tool to 

analyze high Q-factor circuits like quartz crystal oscillators. 

After a brief remainder of the dipolar method, the paper will 

attempt to identify the main amplifier characteristics such as 

limitation mechanism, input and output impedances, etc. and 

to point out their influence on the amplifier dipolar impedance. 

The effect of the amplifier nonlinearities on the oscillator cha-

racteristics, as well as the particular role of the crystal parallel 

capacitance are particularly emphasized. 

Keywords – Oscillators, modeling, dipolar method 

I. INTRODUCTION 

The dipolar analysis is a non-linear time domain method 

well suited to describe the behavior of high Q-factor crystal 

oscillators [1-3]. In this method, to overcome the unaccepta-

bly long transient time needed to reach the steady state of 

high-Q circuits, the oscillator amplifier is separated from the 

resonator and replaced by a sinusoidal current source. The 

amplifier then behaves like a dipole the impedance of which 

is evaluated at the resonator frequency. An electrical simula-

tion program like SPICE is used to perform a set of transient 

analyses of higher and higher amplitude so as to obtain the 

variation of both the dipolar resistance and reactance as a 

function of the current source amplitude. 

When such a dipole is connected to a crystal resonator, 

oscillation occurs when the non-linear dipolar impedance is 

equal and opposite to the resonator impedance [4-5]. This 

leads to a non-linear equation that can be used to obtain the 

oscillation start-up condition, the steady state current ampli-

tude and oscillation frequency or a time domain non-linear 

differential equation whose solution is the oscillation loop 

current. Because of the high resonator Q-factor, the oscilla-

tion loop current is almost perfectly sinusoidal so that 

asymptotic method, like slowly varying functions method 

[6-7] can be used to obtain both amplitude and frequency 

transients without having to solve the initial nonlinear diffe-

rential equation. The effect of noise can also be calculated 

by using a perturbation method in the vicinity of the steady 

state [8], and for noise Fourier components close to the car-

rier, perturbation results in both amplitude and frequency 

modulation from which amplitude and phase noise spectra 

are easily calculated. 

An implementation of the dipolar method achieved in 

the ADOQ program (“Analyse Dipolaire des Oscillateurs à 

Quartz”) is able to compute the steady state features of the 

oscillator: oscillation frequency, amplitude, drive level, sig-

nal shape and gives the start-up condition for oscillation to 

occur [2]. Also the program performs accurate oscillator 

sensitivity calculation to various parameters (component 

value, supply voltage, etc.) as well as amplitude and phase 

noise spectra [8]. 

II. SIMULATION PRINCIPLE 

The nonlinear dipolar method consists in representing 

an oscillator by the quartz motional branch connected across 

a non-linear dipole amplifier (Fig. 1). The parallel capacit-

ance and, if needed, the pulling capacitance, are included in 

the amplifier dipole. The impedance of the nonlinear dipole 

amplifier strongly depends on the current amplitude and 

weakly depends on the current frequency. It can be 

represented by a nonlinear resistance in series with a nonli-

near reactance, symbolized for convenience in Fig. 1 by an 

inductance, that vary with the amplitude of the current. 
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Fig. 1. Dipolar representation of a quartz crystal oscillator. 
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Fig. 2. Dipolar analysis of the oscillator amplifier. 

Because of the resonator’s high quality factor, the loop 

current in the oscillator is almost perfectly sinusoidal. Thus, 

the nonlinear behavior of the dipolar amplifier can be ob-



 

tained by replacing the resonator motional branch by a sinu-

soidal current source, and performing a set of transient ana-

lyses with increasing amplitudes by using an electrical simu-

lator like SPICE (Fig. 2). 

The complex impedance of the nonlinear dipole am-

plifier is obtained, for each current amplitude value by per-

forming a Fourier analysis on the steady state voltage across 

the dipole. Nonlinear amplifier resistance and reactance are 

obtained by giving the sinusoidal current a larger and larger 

amplitude (Fig. 3). 
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Fig. 3. Dipolar analysis of the oscillator amplifier. 

The nonlinear differential equation of the oscillator is 

given by (1), where q is the quartz series resonant frequen-

cy and a is the amplitude of the current fundamental com-

ponent i(t). In quartz crystal oscillator 
dq

LL   so that: 
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The solution of this equation is taken under the form 

shown in (3) where a(t) and (t) are slowly varying func-

tions of time. 

   )(cos)( tttai
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At low current amplitude level, the damping term of (1) 

should have a negative value to insure increasing amplitude 

solution. If Rds is the value of the nonlinear dipolar resis-

tance at very low current amplitude, the start-up condition 

takes the form (4). 
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dsq

RR  (4) 

As the oscillation amplitude increases, the dipolar resis-

tance increases so that the value of the damping term in-

creases. The steady state amplitude a0 is reached when this 

term becomes zero as given by (5) and Fig. 3. 
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The steady state frequency is then given by (6) where 

Ld(a0) is the value of the steady state dipolar inductance de-

duced from the curve in Fig. 3. 

III. OSCILLATOR AMPLIFIER CLASSIFICATIONS 

A large number of amplifier circuits can be used to 

build an oscillator each having its own advantages and 

drawbacks. The choice among the different circuits is of 

course dictated by the application the oscillator will be used 

in, and also by technical considerations such as: frequency 

range, output power range, frequency stability, output wave-

form, phase noise, etc. [9]. Even for a given set of specifica-

tions there are many different circuits able to meet them and 

a particular choice is often a matter of personal or collective 

experience or skill rather than the conclusion of a methodi-

cal analysis. It is not our claim to give a methodical reason-

ing leading to an optimal circuit, but more modestly, to give 

the designer an efficient tool to help him to make a good 

choice. 
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Fig. 4. Amplifier representation. 
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Fig. 5. Controlled current or voltage source representation of the amplifier 

with current (a) or voltage (b) controlled source. 
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Fig. 6. Reduced amplifier representation. 

From the dipolar point of view, the amplifiers used in 

the oscillator circuits can be classified according several 

ways described in the following sections. So as to explain 

the classification method, the black box amplifier shown in 

Fig. 1 will be taken under the form shown in Fig. 4 where Z1 

and Z2 are the amplifier input and output impedances in pa-



 

rallel with possible external impedances, while Z3 mainly 

represents the effect of the resonator’s parallel capacitance 

considered as a part of the amplifier circuit as stated in sec-

tion II in parallel with a possible biasing impedance. Al-

though it is possible, in a linear small signal analysis, to in-

clude Z3 into Z1 and Z2 by a simple circuit transformation, in 

some case it is wiser to keep it as a separate impedance be-

cause of the particular role it plays in the dipolar impedance 

as it will be shown later. 

The amplifier itself can be represented either by a vol-

tage controlled current source (Fig. 5.a) or by an equivalent 

voltage controlled voltage source (Fig. 5.b). In the linear 

case, by a simple circuit transformation, either one of the 

two representations in Fig. 5 can be reduced to the form 

shown in Fig. 6. Note that in Figs. 4, 5, and 6, the voltage 

reference node is not necessarily the ground node.  

A general expression of the small signal dipolar imped-

ance is obtained by replacing the resonator in Fig. 6 by a 

current source of same frequency as shown in Fig. 7. 
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Fig. 7. Dipolar impedance characterization. 

By expressing the dipolar voltage vd as a function of the 

current i, it is simple to obtain the small signal dipolar im-

pedance under the form (7). From the dipolar point of view, 

the transconductance G (or the voltage gain A) can be real or 

complex, linear or nonlinear moreover all variables of the 

right hand side in (7) might be function of the current ampli-

tude a, so that the nonlinear dipolar impedance take the form 

(8). 

  
2121

ZGZZZZ
ds

  (7) 

  )()( ajXaRZ
ddd

  (8) 

IV. AMPLITUDE LIMITATION 

It is well known that the oscillation amplitude is deter-

mined by the nonlinear behavior of the amplifier. From this 

point of view, the amplifier circuits can be split into several 

categories such as: saturation or cutoff limitation, hard or 

soft limitation, symmetrical or non-symmetrical limitation, 

with possible combination of these various limitation me-

chanisms.  

A. Hard Saturation Limiting 

In the simple behavioral oscillator circuit shown Fig. 

8.a, the amplifier is an ideal circuit having a real input im-

pedance R, and a linear real positive gain A limited by sym-

metrical saturation as shown in Fig. 8.b. In this case, be-

cause the amplifier is assumed ideal with a zero output im-

pedance , it cannot be reduced to a transconductance am-

plifier. 

The nonlinear transfer function of the amplifier is de-

termined by the conditions (9). 
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(a) (b)  
Fig. 8. Simple behavioral oscillator with saturation limiting.  

Values used are: A = 4, R = 100 , Vsat = 1 V. 

For small value of the current i, the dipolar impedance 

Zds given by (10) shows that it is constant, real and negative 

if the gain A is greater than the unity. 
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As the current amplitude a increases, the output voltage 

u2 reaches the saturation level and becomes square shaped 

(Fig. 9.a) while the dipolar voltage vd becomes distorted 

(Fig. 9.b). 
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Fig. 9. Output and dipolar waveforms (hard saturation case). 
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Fig. 10. Dipolar resistance (hard saturation case). 



 

By calculating the first harmonic of the dipolar voltage, 

it is possible to calculate the dipolar impedance as a function 

of the current amplitude a. In Fig. 10, it can be seen that the 

dipolar impedance Zd becomes nonlinear when the current 

amplitude is larger than the limit aL given by (11). 
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In the present case, because there is no reactive part in 

the amplifier circuit, the dipolar impedance remains purely 

real so that Xd = 0. Moreover, according to the expression of 

Rds given by (10), it is obvious that an inverting amplifier 

(A < 0) with real input and output impedances cannot be 

used in an oscillator circuit because Rd is always positive. 

B. Cutoff Limiting 

Another limiting mechanism often involved in the oscil-

lator circuits is the cutoff limitation an example of which is 

shown Fig. 11.  
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Fig. 11. Simple behavioral oscillator with cutoff limiting.  

Values used are: A = 4 , R = 100 , u0 = 0.6 V. 

The oscillator shown has the same features as the pre-

vious ones except that the nonlinear transfer function is now 

given by the conditions (12) and has the shape represented 

Fig. 11.b. 
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Fig. 12. Output and dipolar waveforms (cutoff case). 

In this case, the output and dipolar voltages are no long-

er symmetrical (Fig. 12). As in the saturation case, for small 

current amplitude, the dipolar impedance is given by (10) as 

long as the cutoff amplitude is not reached. For increasing 

current amplitude, the dipolar impedance increases as shown 

in Fig. 13, while the dipolar reactance remains null if there 

is no reactive part in the amplifier. 
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Fig. 13. Dipolar resistance (cutoff case). 

C. Soft Saturation Limiting 

 

u 1 

– 

+  
A mp 

R  u 2 

– 

+  

vd – +  

i  

(a) 

–15  

–10  

–5  

0  

5  

10  

15  

–6  –4  –2  0  2  4  6  

O
u

tp
u

t 
v

o
lt

a
g

e
 (

V
) 

Input voltage (V )  

(b)  
Fig. 14. Simple Van der Pol oscillator.  

Values used are: A = 4, R = 100 ,  = 2 10–2 V–2. 
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Fig. 15. Output and dipolar waveforms (soft saturation case). 

Let us examine now the case of a soft limiting mechan-

ism. A simple example of such a circuit is given by the Van 

der Pol oscillator that has the same representation as the 

previous ones, but in this case the limitation due to the non-

linear DC transfer function represented in Fig. 14.b is given 

by (13) where A is the small signal gain and  is the nonli-



 

near coefficient (A and  are assumed real and positive) 
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It is possible to show that in this case, the dipolar im-

pedance can be derived under the form given by (14). 
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For small current amplitude, the dipolar impedance has 

the same expression (10) as in the two previous cases. As 

the current amplitude increases, the output and dipolar 

waveforms become distorted (Fig. 15), but, if there is no 

reactive part in the amplifier circuit, Zd remains real and 

increases with amplitude according to the parabolic law (14) 

(Fig. 16).  
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Fig. 16. Dipolar resistance (soft saturation case). 

V. FREQUENCY LIMITATION AND PARALLEL CAPACITANCE 

The simple models presented so far are only ideal beha-

vioral models without any reactive component. Any actual 

amplifier has a reactive part at least because they have a 

limited bandwidth or because of the parallel capacitance that 

is included in the amplifier part as pointed out in section II. 

A. Amplifier Limited Bandwidth 

–350  

–300  

–250  

–200  

–150  

–100  

–50  

0  

0  10  20  30  40  50  60  70  80  

C urrent Am plitude (m A) 

Lim ited bandw idth  

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

50  

0  10  20  30  40  50  60  70  80  

C urrent Am plitude (m A)  

Lim ited bandw idth  

D
ip

o
la

r 
re

s
is

ta
n

c
e

 (
O

h
m

s
) 

D
ip

o
la

r 
re

a
c

ta
n

c
e

 (
O

h
m

s
) 

 
Fig. 17. Dipolar impedance of a limited bandwidth amplifier.  

Oscillation frequency: 10 MHz, cutoff frequency: 100 MHz. 

Assuming that the linear part of the amplifier gain A 

used in the previous cases in section IV has the form given 

by (15) where the cutoff frequency c is much larger than 

the oscillation frequency, it is quite simple to demonstrate 

that in any case, the small signal dipolar impedance take the 

form (16) where it is obvious that the dipolar reactance is no 

longer null. 
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When the amplifier has a limited bandwidth, it can be 

shown that the nonlinear part of the dipolar impedance does 

not depend strongly on the limiting mechanism, so it will be 

demonstrated only in the soft saturation case. Fig. 17 shows 

that the dipolar resistance remains practically unaffected 

while the dipolar reactance is now different from zero and 

decreases with the current amplitude.  

B. Parallel Capacitance 

As explained in section II, the parallel capacitance is in-

cluded in the amplifier part of the oscillator circuit so that it 

can be considered in parallel with the dipolar impedance of 

the amplifier alone. Nevertheless, it is not so simple to ex-

press the equivalent dipolar impedance of these two compo-

nents associated in parallel because the voltage across the 

dipole is no longer linear.  

 
Fig. 18. Influence of the parallel capacitance on the dipolar impedance. 

In Fig. 18 are compared the dipolar impedances of a li-

mited bandwidth Van der Pol oscillator, as described in sec-

tion IV C, with and without a parallel capacitance. As for 

the bandwidth effect, the dipolar resistance is practically not 

affected while the reactance exhibits a more important dis-

tortion. 



 

VI. INVERTING AMPLIFIER 

A. Representation 
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Fig. 19. Inverting amplifier. 

All the amplifier circuits presented so far had a positive 

gain with real input and output impedances so that, even at 

low frequency, they may have a negative dipolar resistance. 

This is the reason why an oscillator using such an amplifier 

type is often called “negative resistance oscillator.” Never-

theless, most of the current crystal oscillators are using an 

inverting amplifier that can be represented as in Fig. 19.a, 

the small signal dipolar impedance of which is given by (17) 

where the transconductance G is real and positive. 
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 (17) 

Obviously, this expression may have a negative real part 

only if the input and output impedances Z1 and Z2 both have 

an imaginary part. A simple form of such a case is 

represented in Fig. 19.b where Z1 and Z2 are parallel combi-

nations of a resistance and a capacitance.  

B. Small Signal Analysis 

The small signal dipolar impedance (17) can be ob-

tained by replacing Z1 and Z2 by their expression (18), thus 

the real part Rds and imaginary part Xds of the small signal 

dipolar impedance take the form (19) where 1 and 2 will be 

called the input and output time constant respectively. 
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By looking at the expression of Rds it should be demon-

strated that it can be negative only if two conditions are ful-

filled: the tranconductance G must be larger than the limit 

Gc given by (20) and the frequency must be higher than the 

limit c given by (21). 

The small signal dipolar impedance for a given pair of 

impedances Z1 and Z2 is represented in Fig. 20 where oscil-

lation cannot start if Rds is in the shaded area. Because Z1 

and Z2 play symmetrical roles in the expression of the small 

signal dipolar impedance, the same curves are obtained 

when they are reversed.  

Unlike the case of the non inverting amplifier with real 

input and output impedances, here the parallel capacitance 

strongly modify both the real and imaginary parts of the 

small signal dipolar impedance as shown in Fig. 20 where it 

can also be seen that the critical frequency c below which 

the oscillation cannot start, is not affected by the parallel 

capacitance. In addition, as for the case where the parallel 

capacitance is null, the same small signal dipolar impedance 

is obtained when the input and output impedances are re-

versed. It should be emphasized that the results presented so 

far in this section do not depend on the limiting mechanism 

but only on the small signal transconductance as well as the 

input and output impedance values. 

 
Fig. 20. Small signal dipolar impedance of an inverting amplifier. 

G = 100 mA/V, C1 = C2 = 75 pF, R1 = 100 , R2 = 1000 . 

C. Transconductance Amplifier with Cutoff Limiting 
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Fig. 21. Transconductance amplifier with cutoff limiting.  

G = 100 mA/V, u0 = 0.6 V. 

Several simulations performed on transconductance 

amplifiers with different limitation mechanisms have shown 

that the input and output impedances (or time constants) 



 

have similar effects on the nonlinear dipolar impedance. 

Thus, the attention will be focused only on the cutoff limit-

ing mechanism often involved in the oscillator circuits. In 

this case, the nonlinear transconductance represented in Fig. 

21.b is defined by the conditions (22). 
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Fig. 22. Output and dipolar waveforms  

(transconductance amplifier with cutoff limiting). 
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Fig. 23. Dipolar impedance of a transconductance amplifier.  

Z1: R1 = 100  // C1 = 75 pF, Z2: R2 = 1000  // C2 = 75 pF. 

The output and dipolar waveforms of the transconduc-

tance amplifier with cutoff limiting for a given pair of im-

pedances Z1 and Z2 are shown in Fig. 22, and its dipolar im-

pedance is represented in Fig. 23. Note that the dipolar resis-

tance looks like the one of a non inverting amplifier having 

the same limiting mechanism (Fig. 13) but with a much 

larger reactance value. As demonstrated in section VI B, 

when the two impedances Z1 and Z2 are reversed, the dipolar 

resistance and reactance keep the same value for small cur-

rent amplitude but, as the amplitude increases, the two 

curves may have a quite different location. As for the small 

dipolar impedance, the parallel capacitance strongly modify 

both the dipolar resistance and reactance of the amplifier 

(Fig. 23). By looking at (6) it is obvious that a negative reac-

tance corresponds to a positive frequency shift that can be-

come very large if the resonator motional inductance Lq is 

not much greater than the dipolar inductance Ld. In such a 

case, the oscillation frequency may be close to the resonator 

antiresonant frequency, this is the reason why these oscilla-

tors are often improperly called “parallel resonance oscilla-

tors.”  

D. Input and Output Impedances 

 
Fig. 24. Influence of the input resistance R1. 

C1 = C2 = 75 pF, R2 = 100 . 

 
Fig. 25. Influence of the output resistance R2. 

C1 = C2 = 75 pF, R1 = 1000 . 



 

Erreur ! 

Liaison incorrecte. 
Fig. 26. Influence of the input capacitance C1. 

R1 = 1000 , R2 = 100 , C2 = 100 pF. 

Figures 24 to 27 show how the dipolar impedance of the 

transconductance amplifier previously used is modified 

when one of the four components defining the input and 

output impedances Z1 and Z2 is modified, the three others 

being kept constant. Of course, these figures do not cover all 

the possible combinations but only demonstrate how it is 

possible to use the dipolar method to optimize a circuit. It is 

obvious in Figs. 24 and 25, for example, that modifying the 

input or output resistance R1 or R2 drastically changes the 

dipolar resistance and therefore the motional current ampli-

tude in the crystal, while the frequency shift due to the dipo-

lar reactance is more sensitive to a change in the output re-

sistance than in the input resistance. 

On the other hand, the dipolar resistance appears more 

sensitive to a change in the output capacitance than in the 

input capacitance, while both have an important effect in the 

dipolar reactance as shown in Figs. 26 and 27. 

VII. CONCLUSION 

In this work, the most important amplifier parameters 

that play a part in the behavior of quartz crystal oscillators 

have been studied by using the nonlinear dipolar that is a 

powerful and well suited method to analyze the characteris-

tics and performance of high Q-factor circuits. The dipolar 

analysis has been successfully implemented in a dedicated 

software (ADOQ) whose efficiency and accuracy have been 

checked experimentally [10]. In addition to the main fea-

tures described in the introduction, the program is currently 

being completed by a optimization module intended to help 

the designer in choosing the right circuit for a given purpose 

or to choose the right components for a given design. 

 
Fig. 27. Influence of the output capacitance C2. 

R1 = 1000 , R2 = 100 , C1 = 50 pF. 
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