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Abstract

Three-dimensional steady and oscillatory flows are simulated in a verti-
cal cylinder partially heated from the side. The vertical wall is heated in
a zone at mid-height and is insulated above and below this middle zone,
while both ends of the cylinder are cooled. The cylinder aspect ratio (A
= height/radius) ranges from 2 to 8, whereas a fixed Prandtl number,
Pr =0.021, is considered as well as a fixed length of the heated zone, equal
to the cylinder radius. Three-dimensional steady and unsteady simulations
as well as mode decomposition techniques and energy transfer analyses are
used to characterize the flows and their transitions. The flows that develop
from the steady toroidal pattern beyond the first instability threshold, break
the axisymmetry. At small A (2 < A < 2.5), the flow corresponds to a two-
roll rotating pattern which is triggered by a &k = 2 azimuthal mode as a result
of a hydrodynamic instability. At large A (3 < A < 8), the flow is steady
and corresponds to a main one-roll pattern in the upper part of the cylin-
der. The flow is triggered by a £ = 1 mode as a result of buoyancy effects
affecting this unstably stratified upper part (Rayleigh-Bénard instability),

but shear effects are involved in the instability for the smaller values of A.



These steady flows then transit at a higher threshold to a standing wave
oscillatory one-roll pattern associated with the breaking of symmetry of the
previous steady pattern. For intermediate values of A (2.7 < A < 2.9), the
transition is towards an oscillatory pattern, but hysteresis phenomena with
multiplicity of steady and oscillatory states have been found. Comparisons
with experiments performed at aspect ratios A = 4 and A = 8 are then

considered and discussed.



I. INTRODUCTION

Natural convection occuring in the melt during crystal growth processes has been
widely studied (see reviews in Refs"?) since it has been known that the melt flow can
significantly affect the homogeneity of the grown crystal. The transition to time de-
pendent convection is especially problematic because it can induce undesirable periodic
inhomogeneities (also known as striations) in the crystals. Among the numerous convec-
tion studies, several of them have focused on the convection induced in heated vertical
circular cylinders as it is a basic configuration of several crystal growth systems as vertical
Bridgman growth or vertical zone melting. The basic studies started with the Rayleigh-

Bénard configuration in vertical cylinders heated from below® ©.

This situation proved
to be particularly rich in pattern transitions as the temperature difference is increased,
from the onset of convection to oscillatory flow transition through steady transitions with
symmetry breakings. More complicated, but more realistic heating conditions have also
been considered such as parabolic temperature distributions on the cylindrical sidewall™®.
It was found that the axisymmetry breaking of convection or the transition to oscillatory
flow occur beyond certain values of the Rayleigh number (Ra) and these critical values of
Ra strongly depend on the cylinder aspect ratio. More specific heating conditions have
been recently used in order to investigate convection in a simulated vertical zone melting
configuration® !: they correspond to a local heating in an axial band at the mid-height
of the cylinder. The experimental work of Selver et al.® has shown different oscillatory
transitions depending on the aspect ratio, either direct transitions, or transitions through
a first steady transition. The two-dimensional work of Erenburg et al.'® has revealed
complicated bifurcation diagrams and the existence of multiple solutions. At last, the
recently published paper of Rubinov et al.'® has carefully studied the transition leading
to the three-dimensional axisymmetry breaking of the flow. They have presented the de-
pendence of the critical Grashof number on the aspect ratio and have shown that three
different modes are the most dangerous perturbations and that they replace each other
with the variation of the aspect ratio.

In this paper, three-dimensional calculations are performed in order to simulate the



experimental configuration proposed by Selver et al.?, i. e., a vertical cylinder partially
heated from the side. In the model, the vertical wall is heated in a zone at the mid-height
of the cylinder and is insulated above and below this middle zone while both ends of the
cylinder are cooled. The cylinder aspect ratio (A = height/radius) ranges from 2 to 8,
whereas a fixed Prandtl number, Pr = 0.021, is considered as well as a fixed length of
heated zone, equal to the cylinder radius. Our study is a continuation of the work of Ru-
binov et al.!': by linear stability analysis, they have determined the thresholds at which
the three-dimensional axisymmetry breaking of the flow occurs; by three-dimensional nu-
merical simulation, we will study the three-dimensional patterns appearing beyond these
thresholds and their further transitions. A finite volume approach based on multigrid SIM-
PLE scheme is used for the computation of steady states, while an improved fraction-step
finite difference method is used for the oscillatory cases. These numerical methods are
described in section 3 after the presentation of the mathematical model. The results are
then given through the different flow patterns obtained in the different ranges of values of
the aspect ratio. The instability mechanisms are then analyzed through mode decomposi-
tion techniques and energy transfer analysis. Comparisons with the experimental results’

are finally given and discussed.

II. MATHEMATICAL MODEL

We consider an incompressible Newtonian fluid confined in a vertical cylindrical
cavity of aspect ratio A = H/R, where H is the height and R is the radius of the cavity (see
Fig. 1). At all the boundaries, no-slip conditions are applied. Following the experimental
conditions reported in Ref.?, the top and bottom of the cylinder are assumed isothermal
and held at a low temperature T, the central section of the sidewall (H/2 — R/2 < z <
H/2 + R/2) is maintained at a high temperature T}, and the other parts of the sidewall
are considered to be adiabatic. All the physical characteristics are taken as constant,
except the density which, according to the Boussinesq approximation, is taken as a linear
function of temperature in the buoyancy term, p = po(1 — (T — Tp)), where [ is the

thermal expansion coefficient and T} the reference temperature (7y = 7).



The governing equations for the temperature 7', the pressure p and the velocity u are
the Navier-Stokes equations coupled with the energy equation. The length, time, velocity
and pressure are scaled by R, R*/a, a/R, p(a/R)?, respectively, where « is the thermal
diffusivity. Nondimensional temperature is defined by 6 = (T' — Tp)/(T), — T,). The non-
dimensional governing equations with Boussinesq approximation in cylindrical coordinates

(r,,2) can be written as

V-u=0 (1)
8'“1 2 —~
E+U.VU:—Vp+PrV u+ PrRafz (2)
o0
= Vo = V20 3
o )

where Pr = v/a is the Prandtl number, v is the kinematic viscosity, Ra = ¢5(T}, —
T.)R?/(av) is the Rayleigh number, g is the gravity acceleration, and Z is the unit vector in
the z direction. ¢ is such that ¢ = 0 deg. on the positive part of the z-axis and ¢ = 90 deg.
on the positive part of the y-axis. In the axial cross-section views, the z-direction is east
(0 deg. for ¢) and the y-direction is north (90 deg. for ).

The dimensionless boundary conditions can be written as follows:

v =0 on all the boundaries (4)
%:0 at r=1; 2z<A/2-1/2 or z>A/2+1/2 (5)
=0 at z=0 and z=A (6)
=1 at r=1 and A/2-1/2<z<A/2+1)/2 (7)

The initial conditions are specified by zero velocity field, and by zero temperature field
except on the boundary. In some cases, a random perturbation with small amplitude is
used for oscillatory flow calculations. Following the experiment of Ref.?, the parametric
study is performed in the parameter space defined by the Rayleigh number and the aspect

ratio.

III. NUMERICAL METHODS

To solve the governing equations, we use two different methods. A finite volume

approach based on multigrid SIMPLE scheme is used for the computation of steady states
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with a quick convergence, while a fraction-step finite difference method with accurate

time-stepping is used for the oscillatory cases.

A. Steady state solver

The governing equations are discretized on a structured grid in cylindrical coor-
dinates. The velocity components and the scalar variables (pressure, temperature) are
located on the grid in a collocated manner. We use a pressure-based flow solver'? which
is based on the SIMPLE algorithm!2. Uniform meshes are employed in the azimuthal
direction, while a nonuniform grid is used in the radial and axial directions with mesh
points concentrated towards the boundaries and the heated region.

In order to overcome the difficulties of a slow convergence, a multigrid acceleration is
implemented. The full approximation scheme (FAS) proposed by Brandt'* and which has
been widely used!?, is adopted here. The detailed description of SIMPLE and FAS can be

found in Ref.'2.

B. Unsteady time-splitting method

To accurately simulate the unsteady oscillatory convection, a time-splitting fi-
nite difference method, also known as fractional-step method!®, is used in cylindrical
coordinates'®. A mixed three-step Runge-Kutta/Crank-Nicholson algorithm is used to
solve the equations (1-3). The time discretization for the viscous term is based on a sec-
ond order Crank-Nicholson scheme, and a third order Runge-Kutta method is used for the
advective terms. A central difference method on a staggered grid is used for spatial dis-
cretization. The method can then achieve second order in time and space. The advantage
of this method is that the treatment of the boundary conditions for the intermediate ve-
locity field is simple, the computer memory used is small and the speed, without iterative
solver, is very high.

In natural convection in cylindrical containers, the azimuthal velocities near the axis
may be large. Thus, there is a significant stability limit for the selection of the time step

At. In fact, the azimuthal contribution to the CFL limit is the biggest for oscillatory



convection and about 10 times that obtained for the two other directions. So a fully
implicit treatment in the azimuthal direction is employed to overcome this difficulty and

speed up the calculation.

C. Validation of numerical techniques

Validations through mesh refinement studies have been done for the finite volume
SIMPLE method and finite difference method by a steady flow calculation at A = 4,
Ra = 700 and Pr = 0.021. The solution corresponds to a steady asymmetric flow.
Three mesh levels have been tested on a similar stretched grid which is concentrated
near the boundaries and the heated region. The results are given in Table I through the
maximum velocities in the azimuthal and vertical directions, the total kinetic energy, and
the heat transfer rate at the top plate, namely the Nusselt number (at r = 0.5), Nu =
% UQW (—%—E)Z:A d¢p, and the average Nusselt number, Nu = % OQW fol (—%—E)Z:A rdrdy. A
further validation of the calculation of the heat transfer rate at the top plate is shown in
figure 2 through the local Nusselt number which is given as a function of the azimuthal
angle ¢ for r = 0.75 (radial position where the local Nusselt number shows the highest

values). In any case, between the three mesh levels, the variation of the selected variables

is small and the difference is generally under 1%.

D. Mode decomposition

In order to analyse the solutions, it is interesting to decompose them into their main

azimuthal Fourier components defined for a variable ¢ as

Ny—1
~ 1 & . .
¢(k,T,Z,t) = F E QS((,O,T‘,Z,t) € L2m kj/NLp (8)
¥ §=0

The 0th Fourier mode represents the axisymmetric component of the flow and the other
modes are the asymmetric components. The relative intensity of the different modes can
also be globally estimated through the flow kinetic energy contained in each azimuthal

Fourier mode k:

Ean (k1) = / @k, v, 2, )2 rdrdz (9)
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where u(k,r, z,t) is the velocity field in the kth Fourier mode.

IV. RESULTS

The flows obtained in vertical cylinders partially heated from the side (fixed length
of heated region) correspond for low Rayleigh numbers to axisymmetric toroidal flows near
the heated zone. For large A geometry (Fig. 3(c,d)), the convective vortex is confined
around this heated zone, and the motions near the top and bottom are very weak. In the
upper part, the fluid is heated from below and then unstably stratified, while in the lower
part, the fluid is heated from above and then thermally stable. For small A geometry (Fig.
3(a,b)), the fluid motion nearly extends in the whole cylinder, and there is no quiescent
thermally unstable region as for larger A.

As has been shown by Rubinov et al.'! the flows which will bifurcate from these toroidal
flows will break the axisymmetry property. More precisely, they have shown that, depend-
ing on the aspect ratio of the cavity, different perturbation modes (defined by their az-
imuthal wave number k) are associated with this axisymmetry breaking. For 2 < A < 2.87,
the critical mode is an oscillatory mode with k = 2, for 2.87 < A < 2.9 it is an oscillatory
mode with £ = 1, and for 2.9 < A < 8 it is a steady mode with £ = 1. They also indi-
cate that both oscillatory modes at small A correspond to instabilities of hydrodynamic
origin whereas the steady mode at larger A corresponds to a Rayleigh-Bénard instability
triggered in the upper part of the cylinder where the fluid is unstably stratified.

We present in the following the developed three-dimensional states we have obtained
beyond the thresholds by three-dimensional non-linear steady and unsteady calculations
for different ranges of the apect ratio A. We first give the spatial patterns obtained, with
their temporal properties, then characterized them by energy transfer analysis, and at last
present a comparison between the numerical results and the experimental results of Selver

et al.®.



A. Patterns developing beyond the axisymmetry breaking
1. Supercritical Hopf bifurcation for 2 < A < 2.5

Non-linear time-dependent calculations have been performed for this range of A and
oscillatory periodic behaviours have been obtained for Ra above the axisymmetry-breaking
threshold. The amplitude of the oscillations for Ra near this critical threshold (denoted
as Ra,,) has been checked to be proportional to (Ra — Ra,,)'/? indicating a transition
to the oscillatory flow through a supercritical Hopf bifurcation. Concerning the period of
these oscillatory flows, near the thresholds, they are close to those obtained by stability
analysis by Rubinov et al.''. For example, for the aspect ratio A = 2, the threshold given

['' is around Ra., = 2000 and the nondimensional oscillation period

by Rubinov et a
obtained through the simulations at Ra = 2100 is 4.6, a value which is very close to
the value 4.53 deduced from their stability analysis. An analysis of the oscillatory flow
using Fourier decomposition has also been performed for this case. It shows that the
leading non-axisymmetric mode is a £k = 2 mode, which also corresponds to the critical

[, In fact, using the

perturbation mode found by stability analysis by Rubinov et a
kinetic energy FEj3q4, it has been observed that the non-zero even modes have an amplitude
decaying exponentially with the order of the mode, whereas the odd modes have zero
amplitude.

The flow pattern resulting from the combination of the basic mode £ = 0 and the main
fluctuation £ = 2 is a kind of two-roll structure with the flow going down near the axis
and going up preferentially in two zones oppositely situated along the vertical sidewall
(Fig. 4). The oscillatory flow is a travelling wave corresponding to the rotation of the
two-roll structure around the cylinder axis. Due to the symmetry properties of the £ = 2

mode, the fundamental period of the travelling wave corresponds to a 7 rotation of the

flow structure.



2. Multi-state coexistence for 2.7 < A < 2.9

A complicated hysteresis (multiplicity of steady and oscillatory states) is observed
in the interval 2.7 < A < 2.9 by direct numerical simulation. From the linear analysis'!,
the transition for these aspect ratios is from the steady axisymmetric flow to an oscillatory
flow, but this oscillatory flow is either triggered by the mode k =2 (2.7 < A < 2.87) or
by the mode k =1 (2.87 < A < 2.9). For the direct numerical simulation, the final stable
oscillatory flow pattern above Ra,, is triggered by a & = 1 mode perturbation which is
identified by mode decomposition of the solution. Fig. 5 gives the bifurcation diagram near
the axisymmetry breaking for the aspect ratio A = 2.9. Increasing the Rayleigh number
from an axisymmetric state, the flow pattern will be preserved until Ra.. = 2375 (given by
the stability analysis and indicated by the right dashed-line in Fig. 5) is reached, and then
the flow will transit to the oscillatory state with £ = 1 (O branch in Fig. 5). Now with the
decrease of the Rayleigh number, the flow will still be oscillatory down to Ra = 2050, and
then change to an asymmetric steady branch A2. A low frequency branch V' is observed in
the range 1740 < Ra < 1860. Then, as Ra is decreased, there is a jump to the asymmetric
steady branch Al. The flow patterns of branches A1 and A2 are similar, and all the flow
patterns for the different branches have a strong k£ = 1 component beside the £ = 0 basic
mode. As Ra is further decreased, the flow will transit from the asymmetric steady state
Al to the axisymmetric state at Ra, = 1310 (the left dashed-line in Fig. 5). The value Ra,
at which the axisymmetric mode is retrieved when decreasing Ra from supercritical states
is given in table II for A between 2.7 and 2.9. From these values, we see that the width
of the hysteresis domain is decreased when A is decreased. The existence of such multiple
states associated to different solution branches is very similar to what was found in the
case of the two dimensional cavity partially heated from the side'®. This multiplicity was
proposed to be the result of the combined mechanisms involved in the present situation:
the hydrodynamic instability of the toroidal flow, the Rayleigh-Bénard instability inside
the unstably stratified upper part of the cylinder and the flow damping inside the stably

stratified lower part.
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3. Pitchfork bifurcation for A > 3

A steady axisymmetry-breaking pitchfork bifurcation has been found by linear stabil-
ity analysis by Rubinov et al.!! for aspect ratio A > 2.9, and this bifurcation is associated
to a k = 1 mode. Three-dimensional numerical simulations have been performed for states
slightly above the thresholds for A > 3. The three-dimensional flow patterns associated
to the bifurcated solution and to the main modes obtained by mode decomposition are
shown in Figs. 6-9 for A =4 and A = 8.

For the larger aspect ratio (case A = 8 with Ra = 400) shown in Fig. 6, an unicellular
flow appears in the upper half of the cylinder, and it interacts with the existing toroidal
flow near the heated zone. The orientation of this unicellular flow is arbitrary, but in
practice it is given by the perturbations which have triggered the instability. For the
calculation presented in Fig. 6, the main flow plane is close to the plane z = 0. This
main flow plane is a plane of symmetry for the steady flow triggered at the pitchfork
bifurcation. This supercritical steady asymmetric flow can be decomposed into the basic
axisymmetric flow and the main asymmetric perturbation modes (Fig. 7). The mode with
maximum amplitude is a £ = 1 mode, which is consistent with the linear stability result
of Rubinov et al.''. All the asymmetric modes (Fig. 7) are concentrated in the upper part
of the cylinder, where the flow is unstably stratified, similarly to what was found for the
perturbation at the threshold by Rubinov et al.'!, and indicating a thermal instability.
Moreover, the £ = 1 perturbation component obtained by mode decomposition is very
similar to the critical mode given by Rubinov et al.''. As a result of the perturbations,
the isotherms in the upper half become quite strongly distorted (Fig. 6(a)), while those in
the lower half are almost undisturbed (the nondimensional temperature difference in the
cross-section z = 0.25H is less than 0.001 whereas it is more than 0.02 at z = 0.9H).

For the smaller aspect ratio (case A = 4 with Ra = 700) shown in Fig. 8, the
axisymmetric toroidal flow is distorted by the convection roll in the upper half of the
cavity in a similar manner as for the larger aspect ratio. But the asymmetric modes
components (Fig. 9) extend now into the whole cylinder. The mode with maximum

amplitude is still £ = 1, and this mode is here also very similar to the perturbation pattern
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.. The kinetic energy amplitudes of the asymmetric modes decay

given by Rubinov et a
exponentially with the order of the modes. Concerning the temperature perturbations
connected to the asymmetric mode k = 1 (Fig. 9(b)), they present in the upper part a
maximum which is two-time larger than that in the lower part. A similar remark can be

done for the azimuthal velocity. It seems then that the thermal instability is still dominant

in this axisymmetry-breaking transition for A = 4.

4. Comparison with the case heated from below for large aspect ratios

As we have seen that the axisymmetry-breaking transition for large aspect ratios
seems to be connected to a thermal instability related to the unstably stratified upper
part (z > A/2 + 1/2), it was worth comparing the thresholds obtained in the cylinder
partially heated from the side with the Rayleigh-Bénard thresholds obtained in a cylinder
heated from below with a size equal to this upper part (the corresponding aspect ratio
is then A, = A/2 — 1/2). First, for the aspect ratios A, > 1.1, the critical mode for
the Rayleigh-Bénard situation is also the mode k& = 1. Moreover, the thresholds for the
Rayleigh-Bénard situation in a cylinder have been calculated for large variations of the
aspect ratio by Charlson and Sani'” and by Buell and Catton'®. In both papers, the
thresholds for the mode k = 1 and large aspect ratios (height over radius) which we are
interested in, are given as critical curves from which it is difficult to extract precise data.
But in another paper of Buell and Catton!?, numerical data can be found which are given
in table III. These data can then be compared with the results of Rubinov et al.''. For
Ap = 2 (heated from below), the critical Rayleigh number is Ra..(A, = 2) = 471.25 which
agrees very well with Ra..(A = 5) = 473 (value extracted from Rubinov et al.'') for the
case partially heated from the side. In fact, the Rayleigh-Bénard thresholds seem to be
very similar (a little smaller) to those of Rubinov et al.!'* for larger aspect ratios (A > 5),
whereas for smaller aspect ratios clear differences appear, the Rayleigh-Bénard thresholds
becoming quickly stronger. This is coherent with the fact that for large aspect ratios
the upper part is really a quiescent unstably stratified zone as in the Rayleigh-Bénard

situation, whereas for smaller aspect ratios the motions generated by the middle zone
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heating are present in the upper part.

B. Kinetic energy transfer analysis

In order to understand the physical mechanisms responsible for the axisymmetry-
breaking transitions for the different aspect ratios, we analyze the kinetic energy transfer
around the different bifurcation points. For that we express the bifurcated solution as
the sum of a basic state (v°,0°) and a perturbation (v',6"). We then derive the equation

expressing the rate of change of the total kinetic energy dK/dt which is given by:
dK d 1
— = —/ —v'v'dQ = —/v'- ('v'-VUO)dQ—Pr/(V X v')ZdQ+PrRa/ vl 0'dQ

Q
0
ov? ov? ov? o’ v vl vy
:_/ (UI’U, T—|—’U’UI T+UIUI Z—|—’U’UI z+ a4 dQ
Q

T Or " 0z 2T Or 2 0z r
—Pr/(V x v')? dQ—l—PrRa/ vl 0'dQ
Q Q

=K, +Ki+ Ky =Ky + Ky + Ky + Koy + Kys + Kg + Ky, (10)

In this kinetic energy equation, K, and K, represent the perturbation kinetic energy
related to the shear of mean flow and to buoyancy forces, respectively, and Ky is the

viscous dissipation of the perturbation kinetic energy.

1. Transition to a steady asymmetric state

To analyze the transition from the basic axisymmetric state to a steady asymmetric
state, we decompose this steady state beyond the threshold into its basic axisymmetric
component (k = 0) and the contributions of the other modes, and use these two com-
ponents as basic state (v°,0°) and perturbation (v',0'), respectively, inside the energy
equations. The results of the analysis are given for two cases, one corresponding to a large
aspect ratio (A = 8) and the other to a smaller aspect ratio (A = 4).

For the larger aspect ratio A = 8, the axisymmetric flow will transit to a steady
asymmetric flow at Ra.. ~ 380. The basic axisymmetric flow for this case is similar to the
flow presented in Fig. 3(c,d) for Ra = 300 and showing the quiescent, unstably stratified

upper part. Fig. 10(a) gives the normalized main perturbation kinetic energy contributions
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as a function of Ra, beyond the threshold. The buoyancy term K, is the dominant
and most destabilizing term as in the case heated from below. The terms connected
to shear of the mean flow are really very weak, except K,3 (radial gradient of vertical
velocity) which contributes up to 10% in the balance, but with a negative sign indicating
a stabilizing contribution. All this confirms that the transition is really connected to a
thermal instability in this case. The fact that the thresholds are a little above those
obtained in the situation heated from below could be connected to the stabilizing term
K,3.

For the smaller aspect ratio A = 4, the axisymmetric flow will transit to a steady
asymmetric flow at Ra.. =~ 670. The basic axisymmetric flow for this case is similar to the
flow presented in Fig. 3(a,b) for Ra = 600 and showing an extension of the convection in
the whole cavity. The normalized main perturbation kinetic energy contributions are given
as a function of Ra in Fig. 10(b). We see that all terms K, and K, are now destabilizing
and counter-balance the viscous dissipation term. Among the shear terms, K3 is still the
dominant, but now strongly destabilizing. K,3 is even stronger than the buoyancy term
close to the threshold, but it decreases as Ra is increased, so that K, becomes quickly the
dominant destabilizing term. All this indicates that the transition is still connected to a
thermal instability, but that shear effects also have an influence on the development of
the instability in this case, particularly close to the thresholds. This can explain why the
thresholds become smaller than in the Rayleigh-Bénard situation.

As a conclusion, the dominant mechanism responsible for the axisymmetry breaking
to a steady asymmetric state is a thermal instability connected to buoyancy effects in the
unstably stratified upper part, but as the aspect ratio is decreased the shear terms play a

more and more important role in the development of the instability.

2. Transition to an oscillatory state

In the case of a transition to an oscillatory state, this oscillatory state beyond the
threshold is decomposed into its mean value in time and the oscillatory fluctuations which

are introduced in the kinetic energy equation (10) as basic state and perturbation, re-
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spectively. We analyse the case A = 2, which is a typical example for the axisymmetry
breaking to oscillatory state, and consider the flow for Ra = 2100, a value just above the
oscillatory threshold Ra., =~ 2000.

Fig. 11 gives the kinetic energy fluctuation analysis. It is clear from this figure that
the production of fluctuating kinetic energy K, by shear of meanflow is the dominant
destabilizing term, much larger than the term of production K by buoyancy. This confirms
that the transition is connected to a hydrodynamic instability. Among the shear terms,
the largest terms K3 and K, connected to the radial transport of the radial gradient of
the mean velocity, are destabilizing, whereas K3 and K,4, connected to the axial transport

of the axial shear, are stabilizing, due to the presence of the end walls.

C. Comparison with experimental results and further transitions

Experimental results on natural convection in a vertical cylinder partially heated
from the side have been obtained by Selver et al.’. They gave the results for different

aspect ratios, particularly for A =8 and A = 4. For A = 8, they mentioned a first steady

eTp

o1 ~ 510 and a further oscillatory transition at

axisymmetry-breaking transition at Ra
Ral® ~ 1310. They also gave the temperature data measured at the cylinder sidewall

for Ra = 1110 (asymmetric steady state) and for Ra = 1450 (oscillatory state). For

A = 4, they mentioned a direct transition from steady axisymmetric flow to oscillatory

erp _

oo = 1410 and gave the oscillatory temperature data obtained for

asymmetric flow at Ra
Ra = 2030. We present now some comparisons between our numerical simulations and

these experimental results.

1. Case A =28

Our direct numerical simulations show a qualitative agreement with the experiment
for A = 8: our results predict a steady axisymmetry-breaking bifurcation at Ra.., = 380,
and a further supercritical Hopf bifurcation at Ra.. = 810. Nevertheless these critical

values are clearly below the experimentally observed values. Unsteady time evolutions have
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also been done for Ra = 1450 and Ra = 1110, values for which experimental temperature
data are given.

For Ra = 1450, we obtain an oscillatory state as in the experiment. The period of
the oscillatory flow obtained numerically is equal to 2.6 (non-dimensional time, scaled by
R?*/a, where R = 0.955 x 1072m, o = 1.60 x 10~°m? /s for gallium at 37°C) corresponding
to about 15 seconds. This value is close to the experimental period which is given as
10 seconds’. Fig. 12(a) shows the time variations of temperature at eight points on
the sidewall (¢ = 0,90, 180,270 deg., where ¢ = 0deg. denotes x = R,y = 0, for two
heights, 2 = 0.875H and z = 0.125H). As in the experiment, the oscillation amplitudes in
the lower part of the cylinder (z = 0.125H) are much smaller than those obtained in the
upper part (z = 0.875H). Temperature data at 90 and 270 deg. show the largest oscillation
amplitudes, and they are also 180 deg. out of phase from each other. But the temperature
difference obtained numerically at z = 0.875H (about 0.2 if we compare temperature
values at ¢ = 0 and 180 deg.) is larger than that (about 0.1) obtained in the experiment.
Fig. 13 shows the axial velocity of the flow in the cross-section at z = 0.875H for four
times during the period. From these plots, we see that, for the upper part of the cylinder,
the fluid globally moves up in the left part (around 180 deg. angle) and flows down in the
right part (around 0 deg. angle). This global flow corresponds to the steady convective
roll triggered at Ra.; = 380. In the steady regime (from Ra.1 = 380 to Ra.o = 810),
this one-roll flow contains a reflection symmetry with respect to the plane of main flow
(close to the plane y = 0 for the case presented in Fig. 13). The contours given in Fig. 13
indicate that this symmetry is no more valid in the oscillatory regime (it has been broken
at the Hopf bifurcation point at Ra.-2), but that this symmetry is preserved between states
separated by half a period. In fact, the oscillation patterns correspond to a back-and-forth
rotation of the convective roll in the upper part of the cylinder, on both sides of the steady
main flow plane (standing wave behaviour). The larger temperature oscillation amplitudes
observed at 90 and 270 deg. angles on the sidewall can be explained by the fact that the
rotation of the roll there affects zones with large azimuthal temperature gradients.

For Ra = 1110 which is above the numerical threshold Ra..», = 810, we obtain an
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oscillatory state whereas the experiment gives a steady asymmetric flow. The numerically
computed flow pattern is similar to that obtained at Ra = 1450 with oscillations still
associated with a back-and-forth rotation of the unicellular structure in the upper half
of the cylinder. Fig. 12(b) shows that the temperature difference at the cross-section
z = 0.875H for Ra = 1110 is a little smaller than for Ra = 1450 because of the smaller
Rayleigh number involving a temperature field less distorted by the mean flow. The
temperature oscillations have quite the same amplitudes, but the oscillation period is
larger, about 3.6 corresponding to 21 seconds. The differences between the simulation and

the experiment are mainly due to the lower thresholds found in the numerical simulation.

2. Case A=4

For A = 4, the experimental results differ from the numerical results, as they give
a direct transition from the axisymmetric flow to an oscillatory flow at Ra.s = 1410
whereas the numerical results give a first pitchfork bifurcation from the axisymmetric flow
to a steady asymmetric unicellular flow at Ra.; = 670, and then a transition to oscillatory
flow near Ra.» = 1630. Because of the competition between the inertia and buoyancy
forces in this case, the flow transition is more complex. Above Ra.» = 1630, a very low
frequency oscillation first appears. But beyond Ra = 1830, the situation becomes very
similar to the back-and-forth rotation found in the numerical result for A = 8, which is
different from the experimental result showing that the oscillation pattern is a travelling
wave with a rotating flow pattern around the cylinder axis. For comparison, we have
done a simulation for Ra = 2000, a value close to Ra = 2030 for which experimental
temperature data are given.

Fig. 14 shows the time variations of temperature at eight points on the sidewall at two
heights (z = 0.75H and z = 0.25H). The temperature difference in given cross-sections
is here also smaller in the lower part of the cylinder (z = 0.25H) than in the upper part
(2 = 0.75H), but the oscillation amplitudes, although smaller in the lower part, do not
differ so much. In fact, for a given cross-section, the oscillation amplitudes are found

much smaller than the temperature difference (for example 0.008 compared to 0.45 for the
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cross-section at z = 0.75H ), indicating small flow oscillations compared to the mean flow
intensity. The main period of the oscillatory flow obtained numerically is equal to 1.4 (see
Fig. 14) corresponding to about 8 seconds, a value close to the experimental period which
is given as 10 seconds. Note that the oscillation period at ¢ = 0 and 180 deg. is one half
of that at ¢ = 90 and 270 deg. because of the symmetric oscillation on both sides of the
plane y = 0 (this was also valid for the oscillations obtained for A = 8). The axial velocity
contours given in Fig. 15 confirm that the flow oscillations in this case are weak and do
not much affect the mean flow pattern. For this case A = 4, there is no agreement on
the way to transit to oscillations between experiments and simulations. In fact, what has
been found experimentally for A = 4, i. e., a direct transition to oscillatory flow and a
travelling wave behaviour with a rotating flow pattern, is in better agreement with what

has been found numerically for A = 2 (see section 4.1.1).

3. Discussion

The comparisons between experimental and numerical results have shown some dis-
agreements. Different reasons can be found to explain these disagreements.

A potential reason for the discrepancy between simulations and experiments could
be the variation of the Prantdl number induced in the gallium by the temperature

20,21

differences™ =", variation which is not taken into account in the simulations. But, from

[ it can be stated that this variation has no consequence, as they have

Rubinov et a
shown that the thresholds do not change much when Pr is varied around 0.021. In fact
changes have only been found for smaller Pr, with a clear increase of the threshold and
even a change of the critical mode below Pr = 0.002.

The disagreements could also be related to differences in the thermal boundary
conditions’, as the boundary conditions for the simulations are strict conditions (bound-
aries either perfectly insulating, or with an imposed temperature) which are difficult to
impose exactly in the experiment. To test the influence of these boundary conditions, some

calculations have been done in slightly different conditions (hot zone at mid-height with

a slight linear variation of the temperature along z, cylinder slightly inclined). These test
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calculations have given very similar steady flows. Nevertheless, as convective problems
are very sensitive to the thermal conditions, we cannot get rid of the influence of thermal
conditions in this problem.

In fact, as already proposed by Rubinov et al.!', the differences betwen the experi-
mental and numerical results can be viewed as a shift in A between these results. The
imperfections in the experiment (compared to the numerical model) seem to have shifted
the experimental results to smaller effective aspect ratios. This could be the case if the
effective heated zone was larger than that where the ring heater is applied in the exper-
iment. This shift in A could explain why in the experiment for A = 4 there is a direct
transition to oscillatory flow and a travelling wave behaviour with a rotating flow pattern,
a result found numerically for A between 2 and 2.5. This would also lead us to compare
the experimental results for A = 8 to the numerical results obtained at smaller A, which

gives a better agreement between the values of the thresholds.

V. CONCLUSION

Three-dimensional steady and oscillatory flows have been simulated in a vertical
cylinder partially heated from the side. The vertical wall is heated at the mid-height
and is insulated above and below the middle zone, while both ends of the cylinder are
cooled. The cylinder aspect ratio A ranges from 2 to 8, whereas a fixed Prandtl number,
Pr =0.021, is considered.

The basic steady flow that develops in such situation is a toroidal pattern. As shown

I.'! by stability analysis, the first transition breaks the axisymmetry. For

by Rubinov et a
2 < A < 2.87, the critical mode is an oscillatory mode with £ = 2, for 2.87 < A < 2.9 it
is an oscillatory mode with £ = 1, and for 2.9 < A < 8 it is a steady mode with k = 1.
The spatial pattern and temporal properties of the developed three-dimensional states
beyond these thresholds have been studied by non-linear steady and unsteady calculations,
and the instability mechanisms have been studied by mode decomposition techniques

and energy transfer analyses. These results confirm that a hydrodynamic instability is

responsible for the onset of oscillations at small A, while the Rayleigh-Bénard mechanism
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is involved in the transition to a steady asymmetric state at large A in connection with
the thermally unstable stratification in the upper half of the cylinder. For small aspect
ratio, such as 2 < A < 2.5, the onset of oscillations is associated with a supercritical
Hopf bifurcation, and the leading non-axisymmetric mode in the resulting flow pattern is
k = 2, in agreement to what is given at the critical threshold by the stability analysis.
The oscillation pattern is a travelling wave corresponding to the rotation of the two roll
structure (combination of the axisymmetric basic flow and the k£ = 2 perturbation) around
the cylinder axis. A complicated hysteresis phenomenon due to the multiplicity of steady
and oscillatory states is then found in the narrow aspect ratio interval 2.7 < A < 2.9. For
larger aspect ratios 3 < A < 8, an unicellular steady flow appears in the upper half of the
cylinder beyond the pitchfork bifurcation, which interacts with the existing toroidal flow
near the heated zone. This last transition is connected to the Rayleigh-Bénard instability
and then, to buoyancy phenomena. For long enough aspect ratios (A > 4.5), the thresholds
even show a good agreement with those calculated for a vertical cylinder heated from below
with a height equal to the height of the unstably stratified upper part, whereas for smaller
aspect ratios the shear phenomena also have an influence on the thresholds.
Comparisons with the experiments of Selver et al.” at the aspect ratios A =4and A = 8
are then considered, which leads to further calculations for these aspect ratios, beyond
the pitchfork bifurcation and until the oscillatory transition. A qualitative agreement
is obtained at A = 8, namely a first pitchfork bifurcation breaking the axisymmetry
and leading to a steady unicellular flow, and then a transition to an oscillatory flow
characterized by a back-and-forth rotation of the unicellular flow around the cylinder axis.
Nevertheless, the value of the thresholds measured experimentally are smaller than those
obtained in the numerical calculations. For A = 4, there is no agreement between the
experiment and the calculations. Calculations predict a transition similar to what has
been shown for A = 8, whereas the experiment shows a direct transition from steady
axisymmetric to oscillatory flows, with the triggering of a rotating pattern. Nevertheless,
this experimentally observed transition is similar to what has been found numerically for

A between 2 and 2.5. The disagreements observed between experiments and calculations
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have then been discussed. The best explanation would be a kind of shift in A between
these results, the experimental results fitting in a better way the numerical results obtained

for smaller aspect ratios.
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TABLES

Method ~ Mesh(N, x Ny, X N;)  |Vilmaz — [Vilmas E}, Nu Nu(r =0.5)
FVM 32 x 32 x 128 0.44730  1.51245  1.13360  0.56295 0.56235
FVM 48 x 48 x 192 0.45256  1.51212  1.13577  0.56394 0.56339
FVM 64 x 64 x 256 0.45388  1.51184  1.13660  0.56442 0.56388
FDM 32 x 32 x 128 0.46885  1.50950  1.16186  0.56318 0.56281
FDM 48 x 48 x 192 0.46326  1.51039  1.15090  0.56405 0.56361
FDM 64 x 64 x 256 0.46069  1.51089  1.14625  0.56448 0.56401

TABLE 1. Mesh refinement tests of numerical accuracy for the steady flow at Ra = 700,

Pr=0.021 (A =4).
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A Ray,

2.7 1660
2.8 1480
2.9 1310

TABLE II. Values of the Rayleigh number Ra; at which the axisymmetric mode is retrieved

when decreasing Ra from oscillatory states for A between 2.7 and 2.9.
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Ay (Corresponding A) Rag,

1.429 (3.857) 908.95
2 (5) 471.25
2.857 (6.714) 361.01
4 (9) 371.875

TABLE III. Critical thresholds corresponding to k& = 1 mode for the Rayleigh-Bénard situa-

tion in a cylinder and for different aspect ratios (from Buell and Catton'?).
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Figures caption
Figure 1: Geometry of the problem.
Figure 2: Local Nusselt number at the top plate as a function of the azimuthal angle ¢
(in radians) for r = 0.75 (Ra = 700, Pr = 0.021, A = 4): test calculations for different
meshes and methods.
Figure 3: Streamlines (a) and isotherms (b) for the axisymmetric flow at Ra = 600
for A = 4 (Ra.. = 670); streamlines (¢) and isotherms (d) for the axisymmetric flow at
Ra = 300 for A =8 (Ra. = 380).
Figure 4: Axial velocity in the cross section z = 0.875H at four times during the period to
show the travelling wave oscillatory state obtained for A =2, Pr = 0.021 and Ra = 2100
(dashed lines correspond to negative values).
Figure 5: Multiplicity of steady and oscillatory states near the axisymmetry-breaking
transition for A = 2.9: (Al) and (A2) represent steady asymmetric states, (V) is an
oscillatory state with low frequency, and (O) is the oscillatory branch emerging at the
axisymmetry-breaking threshold.
Figure 6: Flow patterns of the steady asymmetric solution at A = 8 and Ra = 400: (a)
isotherms in four different axial cross-sections, (b) velocity field in the meridian planes
(r=0and y =0).
Figure 7: Mode decomposition of the three-dimensional steady asymmetric flow at A = 8,
Ra = 400 (Ra.- = 380): (a-d) are the four leading modes k = 0,1, 2, 3 of the temperature,
(e) is the leading mode k£ = 1 of the azimuthal velocity.
Figure 8: Flow patterns of the steady asymmetric solution at A = 4 and Ra = 700: (a)
isotherms in four different axial cross-sections, (b) velocity field in the meridian planes
(x =0and y =0).
Figure 9: Mode decomposition of the three-dimensional steady asymmetric flow at A = 4,
Ra =700 (Rae = 670): (a-d) are the four leading modes k = 0,1, 2, 3 of the temperature,
(e) is the leading mode k£ = 1 of the azimuthal velocity.
Figure 10: Main fluctuating kinetic energy contributions normalized by K, for Pr =
0.021. (a) A=8, (b) A =4.

Figure 11: Kinetic energy fluctuations analysis for A = 2, Ra = 2100, Pr = 0.021.
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Figure 12: Temperature oscillations at eight different locations on the side wall (four
azimuthal positions, two heights) for A = 8, Pr = 0.021 and two values of Ra (¢ = 0 deg.
denotes the position + = R and y = 0). (a) Ra = 1450, (b) Ra = 1110.

Figure 13: Axial velocity in the cross section z = 0.875H at four times during the period
to show the standing wave oscillatory state obtained for A = 8, Pr = 0.021 and Ra = 1450
(dashed lines correspond to negative values).

Figure 14: Temperature oscillations at eight different locations on the side wall (four
azimuthal positions, two heights) for A = 4, Pr = 0.021 and Ra = 2000 (¢ = 0 deg.
denotes the position + = R and y = 0). (a) 2 = 0.75H, (b) 2 = 0.25H.

Figure 15: Axial velocity in the cross section z = 0.875H at four times during the period
to show the standing wave oscillatory state obtained for A = 4, Pr = 0.021 and Ra = 2000

(dashed lines correspond to negative values).
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FIGURES

FIG. 1. Geometry of the problem.
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FIG. 2. Local Nusselt number at the top plate as a function of the azimuthal angle ¢ (in
radians) for » = 0.75 (Ra = 700, Pr = 0.021, A = 4): test calculations for different meshes and

methods.
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FIG. 3. Streamlines (a) and isotherms (b) for the axisymmetric flow at Ra = 600 for A = 4
(Raer = 670); streamlines (¢) and isotherms (d) for the axisymmetric flow at Ra = 300 for A = 8

(Rae, = 380).

g
ity

i Vi

FIG. 4. Axial velocity in the cross section z = 0.875H at four times during the period to
show the travelling wave oscillatory state obtained for A = 2, Pr = 0.021 and Ra = 2100 (dashed

lines correspond to negative values).
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FIG. 7. Mode decomposition of the three-dimensional steady asymmetric flow at A = 8,
Ra = 400 (Ra. = 380): (a-d) are the four leading modes k = 0,1, 2,3 of the temperature, (e) is

the leading mode k£ = 1 of the azimuthal velocity.

33



—~ (e»)
=
— — I
NNt NN
T =
= /7 !
_____ VNS AN a
N =~/ 7
DIIINNY g =
° ot 0= : =
= 3 =
v
NN
A T T T g
RN NSNS y ! o
NS =
T oo =
—
2 =
B e =
M=o S =
\\\\\\\\,d\qﬂ/ N ARRERRRRE ]
\\\\\\\\Wﬂ / “ o
Y /
ol AR /\ = / < 3
ol NN\ : & @ 3
AN N R = wn
VAN —~ e > =) % ©
N s = = =
S — o s 3]
- - =]
2 o
<]
>

)

FIG. 8. Flow patterns of the steady asymmetric solution at A = 4 and Ra = 700:

isotherms in four different axial cross-sections, (b
)

and y = 0).

)

670): (a-d) are the four leading modes k = 0, 1,2, 3 of the temperature, (e) is
34

FIG. 9. Mode decomposition of the three-dimensional steady asymmetric flow at A = 4

the leading mode k£ = 1 of the azimuthal velocity.
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FIG. 12. Temperature oscillations at eight different locations on the side wall (four azimuthal
positions, two heights) for A = 8, Pr = 0.021 and two values of Ra (p = 0deg. denotes the

position z = R and y = 0).

FIG. 13. Axial velocity in the cross section z = 0.875H at four times during the period to
show the standing wave oscillatory state obtained for A = 8, Pr = 0.021 and Ra = 1450 (dashed

lines correspond to negative values).
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FIG. 14. Temperature oscillations at eight different locations on the side wall (four azimuthal

positions, two heights) for A = 4, Pr = 0.021 and Ra = 2000 (¢ = 0 deg. denotes the position

z =R and y =0).

FIG. 15. Axial velocity in the cross section

z = 0.875H at four times during the period to

show the standing wave oscillatory state obtained for A = 4, Pr = 0.021 and Ra = 2000 (dashed

lines correspond to negative values).
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