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Abstract

We introduce a new approach to take into account the
memory architecture and the memory mapping in High-
Level Synthesis for data intensive applications. We
formalize the memory mapping as a set of constraints for
the synthesis, and defined a Memory Constraint Graph
and an accessibility criterion to be used in the scheduling
step. We use a memory mapping file to include those
memory constraints in our HLS tool GAUT. It is possible,
with the help of GAUT, to explore a wide range of
solutions, and to reach a good tradeoff between time,
power-consumption, and area.

1. Introduction

To tackle the complexity of memory design, we
consider as essential to take into account memory
accesses directly during the behavioral synthesis,
assuming that a reasonable trade-off between the design
time and the quality of the results is reached.

In this paper, we propose a new and simple technique
to take into account the memory mapping in the high level
synthesis. Indeed, our aim is to produce a simple
algorithm to achieve the synthesis of even complex
designs in a reasonable time. We focus on the definition
of a memory mapping file that is used in the synthesis
process. We introduce an original scheduling in the
synthesis flow, to obtain an optimized RTL design, and
present a formalism to resolve scheduling under memory
constraint. Our methodology was implemented in our
HLS tools GAUT[1]. Several syntheses were performed
that exhibit the interest of our approach. Experimental
results are discussed in conclusion.

2. Memory integration

2.1. Memory aware synthesis

We introduce memory synthesis in the standard HLS
design flow.

The difference between the standard and the memory
aware design flow is illustrated on Fig 1. A Signal Flow
Graph (SFG) is first generated from the algorithmic
specification. In the new approach, this SFG is parsed and
a memory table is created. This memory table is then
completed by the designer who can select the variable
implementation (memory or register) and place the
variable in the memory hierarchy (which bank). The
resulting table is the memory mapping that will be used in
the synthesis. In the standard flow, the processing unit is
synthesized without any knowledge on the memory
mapping. The memory architecture is designed afterward
and a lot of optimization opportunities are definitely lost.

Figure 1 : Standard and memory aware design
flows

The memory mapping file contains information about
every data structure in the algorithm (mainly arrays in
DSP applications) and its allocation in memory (bank
number and physical address). Scalars can also be
defined. This memory table represents all data vertices
extracted from a SFG. This data distribution can be static
or dynamic. In the case of a static placement, the data stay
at the same place during the whole execution. If the
placement is dynamic, data can be transferred between
different levels in the memory hierarchy. Thus, several
data can share the same location in the circuit memory.
The memory mapping file explicitly describes the data

Optimization 
opportunities

Behavioral level

SFG

Synthesis

RTL level

Behavioral level

SFG

Synthesis under
 memory constraint

RTL level

Memory Constraint
Graph

Memory placement
variable distribution

Standard design
flow

Memory aware design
flow



transfers to occur during the algorithm execution. Direct
Memory Address (DMA) directives will be added to the
code to achieve these transfers. Definition of the memory
architecture is performed in the first step of the overall
design flow. To achieve this task, advanced compilers
such as Rice HPF compiler, Illinois Polaris or Stanford
SUIF could be used[2]. Indeed, these compilers
automatically perform data distribution across banks,
determine which access goes to which bank, and then
schedule to avoid bank conflicts. The Data Transfer and
Storage Exploration (DTSE) method from IMEC[3] and
the associated tools (ATOMIUM, ADOPT) are also a
good mean to determine a convenient data mapping.

2.2. Signal Flow graph

The input of our HLS tool is an algorithmic
description specifies the circuit’s functionality at the
behavioral level, disregarding any potential
implementation solutions. This initial description is
compiled in order to obtain an intermediate
representation, the Signal Flow Graph (SFG). The
difference between a Signal Flow Graph and Data Flow
Graph resides in the introduction of delay operators (z-1).
These operators are necessary to express the use of data
whose value was computed in a preceding iteration of the
algorithm. A vertex represents one of the following
operations: arithmetic, logical, data or delay. An edge Ei,j
= (vi, vj) represents a data dependence between
operations vi and vj such as for any iteration of the SFG,
operation vi must start its execution before that of vj. For
the data dependencies, the execution of vj can start only
after the completion of operation vi.

2.3. Memory Constraint Graph

As outlined in section 2.1, all data vertices are
extracted from the SFG to construct the memory table.
The designer can choose the data to be placed in memory
and defines a memory mapping. For every memory in the
memory table, we construct a weighted Memory
Constraint Graph (MCG). It represents conflicts and
scheduling possibilities between all nodes placed in this
memory. The MCG is constructed from the SFG and the
memory mapping file. It will be used during the
scheduling step of the synthesis. Memory Constraint
Graphs are used during the scheduling process to
determine the accessibility criterion and the time of every
memory access.

2.4. Scheduling under memory constraint

The classical list scheduling algorithm relies on
heuristics in which ready operations (operations to be
scheduled) are listed by priority order. In our tool, an

early scheduling is performed. In this scheduling, the
priority function depends on the mobility criterion. This
mobility is computed, for each cycle, as the difference, in
number of cycles, between the current cycle and the
operation deadline. Whenever two ready operations need
to access the same resource (this is a so called resource
conflict), the operation with the lower mobility has the
highest priority and is scheduled. The other is postponed.
To perform a scheduling under memory constraint, we
introduce fictive memory access operators and add an
accessibility criterion based on the MCG. A memory has
as much access operators as access ports. The memory is
declared accessible if one of its fictive memory access
operators is idle. Several operations can try to access the
same memory in the same cycle; accessibility is used to
determine which operations are really executable. Fictive
memory access operators are represented by tokens on the
MCG. There are as many tokens in the MCG as ports
(R/W) in the memory. These tokens are used to compute
the accessibility of the memory. The list of ready
operations is still organized according to the mobility
criterion, but all the operations that do not match the
accessibility condition are removed from this list. To
schedule an operation that involves an access to the
memory, we check if the data is not in a busy memory
bank. If a memory bank is not available, every operation
that needs to access this memory will not be scheduled, no
matter its priority level.

3. Conclusion

Several experiences were made, that exhibits the
interest of this approach. Memory aware synthesis and
GAUT appear very efficient for exploring the design
space and for balancing optimizations between the
processing unit and the memory unit. It permits to
determine the best memory architecture, i.e. the best
number of memory banks, as well as the best memory
mapping, to meet the application constraints, and to
finally reach a reasonable tradeoff between time, power
consumption, and area.
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