
HAL Id: hal-00077355
https://hal.science/hal-00077355

Submitted on 31 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory Accesses management during High Level
Synthesis

Gwenolé Corre, Eric Senn, Pierre Bomel, Nathalie Julien, Eric Martin

To cite this version:
Gwenolé Corre, Eric Senn, Pierre Bomel, Nathalie Julien, Eric Martin. Memory Accesses management
during High Level Synthesis. IEEE ACM CO-DESign symposium and International Symposium on
System Synthesis, 2004, stockholm, Sweden. pp.42-47. �hal-00077355�

https://hal.science/hal-00077355
https://hal.archives-ouvertes.fr

Memory Accesses Management During High Level
Synthesis

Gwenolé Corre, Eric Senn, Pierre Bomel, Nathalie Julien, Eric Martin
LESTER / University of South Brittany

BP92116, 56321 LORIENT cedex, France

firstname.lastname@univ-ubs.fr

ABSTRACT
We introduce a new approach to take into account the mem-
ory architecture and the memory mapping in behavioral
synthesis. We formalize the memory mapping as a set of
constraints for the synthesis, and defined a Memory Con-
straint Graph and an accessibility criterion to be used in
the scheduling step. We present a new strategy for imple-
menting signals (ageing vectors). We formalize the maturing
process and explain how it may generate memory conflicts
over several iterations of the algorithm. The final Compat-
ibility Graph indicates the set of valid mappings for every
signal. Several experiments are performed with our HLS
tool GAUT. Our scheduling algorithm exhibits a relatively
low complexity that permits to tackle complex designs in a
reasonable time.

Categories and Subject Descriptors
B.5 [RTL Implementation]: Design Aids

General Terms
Design, Algorithms, Theory, Experimentation

Keywords
Memory aware, Behavioral synthesis

1. INTRODUCTION
Behavioral synthesis, which is the process of generating

automatically an RTL design from an algorithmic descrip-
tion, is an important research area in design automation.
Many behavioral specifications, especially in digital signal
and image processing, use arrays to represent, store and ma-
nipulate ever growing amounts of data. The ITRS roadmap
indicates that, in 2011, 90 % of the SoC area will be dedi-
cated to the memory [2]. To tackle the complexity of mem-
ory design, we consider as essential to take into account
memory accesses directly during the behavioral synthesis,

.

assuming that a reasonable trade-off between the design
time and the quality of the results is reached. In the context
of HLS, several scheduling techniques actually include mem-
ory issues. Among them, most try to reduce the memory
cost by estimating the needs in terms of number of registers
for a given scheduling, but work only with scalars [9]. Some
of them really schedule the memory accesses [7]. They in-
clude precise temporal models of those accesses, and try to
improve performances without considering the possibility of
simultaneous accesses which would ease the subsequent task
of register and memory allocation. Works in [4] include the
memory during HLS, but is dedicated to control intensive
applications. In [10], a first scheduling (force directed) is
performed on a Data Flow Graph (DFG); the memory ac-
cesses are then rescheduled after the selection and memory
allocation to reduce the overall memory cost. The complex-
ity of this scheduling algorithm, however, does not allow
to target realistic applications in a reasonable time. In [4],
memory accesses are represented as multi-cycle operations in
a Control and Data Flow Graph (CDFG). Memory vertices
are scheduled as operative vertices by considering conflicts
among data accesses. This technique is used in some indus-
trial HLS tools that include memory mapping in their design
flow (Monet, Behavioral Compiler) [6]. Memory accesses are
regarded as Input/Output. The I/O behavior and number
of control step are managed in function of the scheduling
mode [5]. In practice, the number of nodes in their input
specifications must be limited, to obtain a realistic and satis-
fying architectural solution. This limitation is again mainly
due to the complexity of the algorithms which are used for
the scheduling.

In this paper, we propose a new and simple technique to
take into account the memory mapping in the architectural
synthesis. Indeed, our aim is to produce a simple algorithm
to achieve the synthesis of even complex designs in a reason-
able time. We focus on the definition of a memory mapping
file that is used in the synthesis process. We introduce an
original scheduling in the synthesis flow, to obtain an opti-
mized RTL design. This scheduling technique is described
in section 2 with the formalism to resolve scheduling under
memory constraint. The special case of ageing data is dis-
cussed in section 3. Experimental results are presented in
section 4.

2. MEMORY INTEGRATION

2.1 Memory aware synthesis
We introduce memory synthesis in the standard HLS de-

sign flow. A Signal Flow Graph (SFG) is first generated from
the algorithmic specification. In the new approach, this SFG
is parsed and a memory table is created . This memory ta-
ble is then completed by the designer who can select the
variable implementation (memory or register) and place the
variable in the memory hierarchy (which bank). The result-
ing table is the memory mapping that will be used in the
synthesis. In the standard flow, the processing unit is syn-
thesized without any knowledge on the memory mapping.
The memory architecture is designed afterward and a lot of
optimization opportunities are definitely lost.

The memory mapping file contains information about ev-
ery data structure in the algorithm (mainly arrays in DSP
applications) and its allocation in memory (bank number
and physical address). Scalars can also be defined. This
memory table represents all data vertices extracted from a
SFG. This data distribution can be static or dynamic. In
the case of a static placement, the data stay at the same
place during the whole execution. If the placement is dy-
namic, data can be transferred between different levels in the
memory hierarchy. Thus, several data can share the same lo-
cation in the circuit memory. The memory mapping file ex-
plicitly describes the data transfers to occur during the algo-
rithm execution. Direct Memory Address (DMA) directives
will be added to the code to achieve these transfers. The def-
inition of the memory architecture will be performed in the
first step of the overall design flow. To achieve this task, ad-
vanced compilers such as Rice HPF compiler, Illinois Polaris
or Stanford SUIF could be used [8]. Indeed, these compilers
automatically perform data distribution across banks, deter-
mine which access goes to which bank, and then schedule to
avoid bank conflicts. The Data Transfer and Storage Explo-
ration (DTSE) method from IMEC and the associated tools
(ATOMIUM, ADOPT) are also a good mean to determine
a convenient data mapping [3].

2.2 Signal Flow Graph
The input of our HLS tool is an algorithmic description

that specifies the circuit’s functionality at the behavioral
level, disregarding any potential implementation solutions.
This initial description is compiled in order to obtain an in-
termediate representation: the Signal Flow Graph (SFG),
Fig. 1. A Signal Flow Graph is a directed polar graph
SFG(V, E) where the set of vertices V = {v0, ..., vn} repre-
sents the operations, v0 and vn are respectively the source
vertex and the sink vertex. The set of edges E = {(vi, vj)}
represents the dependencies between the operations vertices.
The Signal Flow Graph contains |V | = n+1 vertices. A ver-
tex represents one of the following operations: arithmetic,
logical, data or delay. The difference between a Signal Flow
Graph and Data Flow Graph resides in the introduction
of delay operators (z−k). These operators are necessary to
express the use of data whose value was computed in a pre-
ceding iteration of the algorithm. An edge Ei, j = (vi, vj)
represents a data dependence between operations vi and vj

such as for any iteration of the SFG, operation vi must start
its execution before that of vj. For the data dependencies,
the execution of vj can start only after the completion of
operation vi.

2.3 Memory Constraint Graph
As outlined in section ; all data vertices are extracted

from the SFG to construct the memory table. The designer

can choose the data to be placed in memory and defines a
memory mapping. For every memory in the memory table,
we construct a weighted Memory Constraint Graph (MCG).
It represents conflicts and scheduling possibilities between
all nodes placed in this memory. The MCG is constructed
from the SFG and the memory mapping file. We parse the
SFG to find the data vertices. The memory table is con-
structed, where the designer adds mapping information. A
Memory Constraint Graph is a cyclic directed polar graph
MCG(V ′, E′, W ′) where V ′ = {v′0, ..., v′n} is the set of data
vertices placed in memory. A memory Constraint Graph
contains |V ′| = n + 1 vertices which represent the mem-
ory size, in term of memory elements. The set of edges
E′ = {(v′i, v′j)} represents possible consecutive memory
accesses, and W’ is a function that represents the access
delay between two data nodes. W’ has only two possible
values: Wseq (sequential) for an adjacent memory access in
memory, or Wrand (randomize) for a non adjacent memory
access. Weight depends on the data placement defined in
the memory file. There are as much sub-graphs as memory
banks in memory. The memory table gives the number of
banks and the address of every data in memory. This per-
mits to construct the MGC. Figure 1 shows a MCG for the
LMS filter with two simple port memory banks. The input
samples x(i) are placed consecutively in one bank. The fil-
ter coefficients h(i) are placed consecutively in one another
bank (dotted edges represent edges where W = Wseq).

lmsh0

+

h0

z-1

x0

x1

x2

x3

h3

h2

h1

h0

SFG MCG of 4 points LMS filter

Figure 1: Signal Flow Graph and Memory con-

straint graph LMS

Memory constraint graphs are used during the scheduling
process to determine the accessibility criterion and the time
of every memory access.

2.4 Scheduling under memory constraint
The classical list scheduling algorithm relies on heuristics

in which ready operations (operations to be scheduled) are
listed by priority order. In our tool, an early scheduling is
performed. In this scheduling, the priority function depends
on the mobility criterion. This mobility is computed, for
each cycle, as the difference, in number of cycles, between
the current cycle and the operation deadline. Whenever two
ready operations need to access the same resource (this is a
so called resource conflict), the operation with the lower mo-
bility has the highest priority and is scheduled. The other
is postponed. To perform a scheduling under memory con-
straint, we introduce fictive memory access operators and
add an accessibility criterion based on the MCG. A memory
has as much access operators as access ports. The mem-
ory is declared accessible if one of its fictive memory access
operators is idle. Several operations can try to access the
same memory in the same cycle; accessibility is used to de-
termine which operations are really executable. The list of

�

� ���

����

��	

���

��

��
�

� �

���

��

���

���

��

���

���

������ ���
��

���

��

���

���

��

���

����� ����

�

��

�

��

�

��

�

��

���������
��������	��������
���� ���
 ��
�

���������

���� ���
 ��
�

� ��
����������������

������ �

�� ���
��! �

���������

���� ��
� ���

� ��

�� ���
��!

������ ���
���

���� ���� ���
���
 ���" ���" ���#���#

����������������

������

Figure 2: scheduling with MCG

ready operations is still organized according to the mobility
criterion, but all the operations that do not match the acces-
sibility condition are removed from this list. To schedule an
operation that involves an access to the memory, we check if
the data is not in a busy memory bank. If a memory bank is
not available, every operation that needs to access this mem-
ory will not be scheduled, no matter its priority level. The
MCG is also used to compute the shortest memory access
sequence when it’s possible.

Our scheduling technique is illustrated in Fig. 2. The
memory table is extracted from the SFG. The designer has
defined two different memory mappings in memory table 1
and in memory table 2. Data a,b and c are placed at ad-
dress in bank0. The constant cst is not stored in RAM. Our
tool constructs two Memory Constraint Graphs MCG 1 and
MCG 2. For mapping 1, the sequential access sequence is
a → b → c : it includes two dotted edges (with weight
Wseq) a → b and b → c. MCG 2 contains two different
dotted edges : a → c and c → b. To deal with the mem-
ory bank access conflicts, We define a table of access for
each port of a memory bank. In our example, the table has
only one line for the single port memory bank0. The table
of memory access has Data rate/Sequential access time ele-
ments. The value of each element of the table indicates if a
fictive memory access operator is idle or not at the current
C step. We use the MCG to produce a scheduling that per-
mits to access the memory in burst mode. If two operations
have the same mobility and request to the same memory
bank, the operation that is scheduled is the operation that
involves an access at an address consecutive with the pre-
ceding access. For example, operations add2 and mult1 have
the same mobility. At c step cs 2, they are both executable,
the operands (stored in bank0) of add2 and mul1 are respec-
tively data b and data c, the latest data accessed in bank0
is data a. MCG1 indicates that the access sequence a → b

is shorter than access a → c. We schedule add2 at c step
cs 2 to favorize the sequential access. On a contrary, for
mapping 2, MCG 2 indicates that mul1 must be scheduled
before add2.

3. IMPLEMENTING AGEING VECTORS
Signals are the input and output flows of the applications.

A mono-dimensional signal x is a vector of size n, if n val-
ues of x are needed to compute the result. Every cycle, a

new value for x (x[n + 1]) is sampled on the input, and the
oldest value of x (x[0]) is discarded. We called x an ageing,
or maturing, vector or data. Ageing vectors are stored in
RAM. A straightforward way to implement, in hardware,
the maturing of a vector, is to write its new value always
at the same address in memory, at the end of the vector
in the case of a 1D signal for instance (that is how Monet
works). Obviously, that involves to shift every other values
of the signal in the memory to free the place for the new
value. This shifting necessitates n reads and n writes in
the memory, which is very time and power consuming. In
GAUT, the new value is stored at the address of the oldest
one in the vector. Only one write is needed. Obviously, the
address generation is more difficult in this case, because the
addresses of the samples called in the algorithm change from
on cycle to the other. The Figure 3 illustrates this difficulty.
In the following code a signal x is accessed; it includes N = 4
elements.

ALGORITHM 1
x(0):=x_input; //new sample of vector x
tmp := x(0);
for i=1 to N-1 loop

tmp=tmp+x(i);
end loop;
for N-1 to 1 loop

x(i)=x(i-1); // ageing loop
end loop;

The logical address of an element of x (x[0] for instance)
changes from an iteration to the other. The logical address
of x[0] is that of x3 in iteration 3, x4 in iteration 4, x5 in it-
eration 5 etc. With GAUT, we make the distinction between
physical and logical addresses.The logical address points on
a memory element that contains the physical address of the
data. The physical address points on the memory element
that contains the value of the data. Once determined, the
physical address of a data never changes. In our example,
for instance, the physical address of data x3 from vector x

will remains the same as long as x3 is alive in the memory.
We have developed a new methodology to resolve the syn-

thesis of our logical address generators. The advantage is a
lower latency, since we avoid n reads and writes of the age-
ing vector, and a resulting lower power consumption. In-
deed, the power consumption of a memory increases with
the number of accesses.

����������	�
������

���
���
���
���

�����������
�
�
�
�

�����������
�
�
�
�

�����������
�
�
�
�

�����������
�
�
�
�

������ ������

Figure 3: The maturing process

This methodology is based on an oriented graph that
traces the evolution of the logical addresses in a vector dur-
ing the execution of one iteration of the algorithm: the Log-
ical Address Graph (LAG). The LAG is a couple LAG =
(V, E); it is defined for each ageing vector in the algorithm.
V is the set of vertices V = {v0, v1, · · · , vN−1} where vertex
vi is the ith element of the vector. With x a vector of size
N ; card(V) = N . E is the set of edges E = {e1, e2, · · · , eM}
where edge e = (vi, vj) links 2 elements vi and vj if the jth

element of the vector (x[j]) is accessed immediately after the
ith element of the vector (x[i]). E ⊆ V × V . The weight-
ing function f is associated to the LAG; f : V × V → N.
For every edge e = (vi, vj), f gives the weight fij with
fij = (j − i)%N . % expresses the modulo. Figure 4 repre-
sents the LAG for the preceding example.

���� ���� ���� ����

�� �� �� ��

� � �

�

Figure 4: LAG for algorithm 1

The weight fij is used to calculate the logical address of
the next access to vector x. Suppose that 0 is the logical
address of x[0]. Then x[1] is the next access to x and its
logical address is 0 + f01 = 1. The logical address of x[2]
is 2 and the logical address of x[3] is 3. The next data to
be accessed is x[0]. Its address is still (3 + 1)%4 = 0 in this
iteration. However, to calculate the address of x[0] in the
next iteration, we ought to take into account the ageing of
vector x. In our example, the values in vector x are shifted
so that the logical address of element x[i] at the iteration
o + 1, noted @x[i]o+1 is the logical address of element x[i]
at the iteration o plus 1: @x[i]o+1 = @x[i]o + 1. In general,
we define the ageing factor k as the difference between the
logical address of element x[i] at the iteration o + 1 and
the logical address of element x[i] at the iteration o. In our
example, k = 1.

k = @x[i]o+1 − @x[i]o (1)

Eventually, to calculate the logical address of x[0], we add
(modulo N), to the logical address of x[3] in the preceding
iteration, the weight f30 and the ageing factor k so that
@x[0] = (@x[3] + f30 + k)%N . More generally, if x[i] is the
last element of x accessed in iteration o and x[j] is the first
element of x accessed in iteration o+1, and with N the size
of x:

@x[j]o+1 = (@x[i]o + fji + k)%N (2)

Consider the algorithm below. This algorithm was syn-
thesized with the following mapping: x[0] and x[1] are in a
memory bank, x[2], x[3] and x[4] are in another bank. The
relation with the logical addresses is determined for the first
iteration. So @x[0] (= 0) and @x[1] (= 1) are in the first
bank, @x[2] (= 2), @x[3] (= 3) and @x[4] (= 4) are in the
second.

ALGORITHM 2
x(0):=x_input; //new sample of vector x
tmp:=x(0);
tmp:=tmp+ x(1);
tmp1:=x(2);
tmp1:=tmp1+x(3);
tmp1:=tmp1+x(4);
for N-1 to 1 loop

x(i)=x(i-1); // ageing loop
end loop;

The LAG for vector x is represented Figure 5. The chrono-
gram of accesses is presented figure 6.

���� ���� ���� ����

�� �� �� ��

�

�

� �
��	�

�	
�

Figure 5: LAG for algorithm 2

0 1

3

1 2

42 34 0

����������� �����������	

�

Figure 6: Chronogram of accesses

In iteration o, several concurrent accesses to the memory
appear: @x[0] = 0 with @x[2] = 2, and @x[1] = 1 with
@x[3] = 3. These parallel accesses do not generate conflict
for involved data are in distinct memory banks. In the next
iteration however, the logical addresses for x[1] and x[3] are
respectively 2 and 4. A memory conflict is generated since
these two logical addresses are mapped in the same memory
bank. The concurrent accesses are computed for N suc-
cessive iterations of the algorithm to obtain the concurrent
accesses table (see table 1).

Table 1: Logical addresses evolution and concurrent

accesses table
concurrent
accesses

iteration x[0] x[1] x[2] x[3] x[4] table
o 0 1 2 3 4 (0,2) / (1,3)

o+1 1 2 3 4 0 (1,3) / (2,4)
o+2 2 3 4 0 1 (2,4) / (3,0)
o+3 3 4 0 1 2 (3,0) / (4,1)
o+4 4 0 1 2 3 (4,1) / (0,2)
o+5 0 1 2 3 4 (0,2) / (1,3)

logical addresses

The set of concurrent accesses (SCA) is the set of all the
concurrent accesses in the concurrent accesses table. In our

example, SCA = {(0, 2), (1, 3), (2, 4), (3, 0), (4, 1)}. A Con-
current Accesses Graph (CAG) is constructed from this set
of concurrent accesses. A CAG is a couple CAG = (L, A).
L is the set of vertices L = {l0, l1, · · · , lN−1} where vertex li
is the logical address of the ith element of the vector in the
first iteration. With x a vector of size N ; card(L) = N . A is
the set of edges A = {a1, a2, · · · , aM} where edge a = (li, lj)
links 2 elements li and lj if the couple (li,lj) is included in
the set of concurrent accesses. A ⊆ L×L. Figure 7(a) gives
the conflict graph for our example.

0

1

32

4

(a) Concurrent
Accesses Graph

0

1

32

4

(b) Compatibility
Graph

Figure 7: CAG and CG

In this case, the synthesis is not possible. GAUT issues a
message to indicate that the data mapping is not valid. To
help in determining a valid data mapping, a Compatibility
Graph (CG) is constructed. The CG is orthogonal to the
former Conflict Graph (Figure 7(b)). The minimum number
of memory banks is easily computed from the Compatibility
Graph. In our example, the minimum number of memory
banks is 3. A possible mapping is to place x[0] and x[1] in a
first bank, x[2] and x[3] in a second bank, and x[4] in a third
bank. It is remarkable that these results actually depend
on the scheduling, and therefore on the timing constraint
provided to the tool. With a different timing constraint, the
conflict and compatibility graphs change, as well as the set
of valid data mappings.

Similar results are obtained when pipelined architectures
are synthesized. The chronogram of accesses for algorithm 1
is presented on Figure 8. When the architecture is pipelined,
this chronogram is modified as shown on Figure 9.

0 1 3 12 0

����������� �����������	

�

2 3 2

Figure 8: Non-pipelined architecture

0 1

0 3

1

3 2

21

0

�����������
�����������	

�

2 3

Figure 9: Pipelined architecture

The situation is similar to the situation with the algo-
rithm 2: concurrent accesses appear and a concurrent ac-
cesses table is determined. The difference is that the con-
flicts arise between logical addresses that are calculated over

several successive iterations (2 in this example). @x[2]o

is in concurrence with @x[0]o+1, and x[3]o is in concur-
rence with @x[1]o+1. The set of concurrent accesses SCA =
{(0, 1), (1, 2), (2, 3), (3, 0)}. The CAG and CG are computed
from this SCA (Figure 10). The data mapping is verified.
The minimum number of banks is 2, and the only valid map-
ping with 2 banks is to place x[0] and x[2] in a bank, and
x[1] and x[3] in another bank.

0 3

21

(a) CAG

0 3

21

(b) CG

Figure 10: CAG and CG

4. GAUT VS MONET
Several syntheses were performed, both with GAUT and

the industrial behavioral synthesis tool Monet. We chose the
elliptic and the Kalman filters which are the biggest appli-
cations in the HLSynth’92 benchmarks [1], and two classical
digital algorithms: a FIR filter and an echo cancellation
algorithm, the LMS. Table 2, indicates the synthesis time
in seconds and the architecture’s latency in number of cy-
cles (the same real-time constraint was given to the tools,
the clock cycle is 10ns). Required hardware resources are
also indicated: the number of registers (Reg), of multiplex-
ers (Mux), demultiplexers (Demux), of glue logic elements
(which are tri-states in GAUT), and the number of RAM
and ROM memories. The two last columns give the number
of read and write in those memories. Single port SRAM
were used to store data. Syntheses were executed on SUN
Blade 2000 workstations.

Hardware resources are always lower in architectures syn-
thesized with GAUT, although the same number of arith-
metic operators is needed. The latency, which is the delay
between the input of the first data and the first result on the
output, is also lower with GAUT. A ROM is needed with
GAUT for the FIR filter, since GAUT stores every static co-
efficient in ROM. Those coefficients are wired with Monet.
Dynamic coefficients, whose value is changed during the ex-
ecution of the algorithm, which is the case for an adaptative
filtering like the LMS, are stored in RAM, together with
signals (ageing vectors). The advantages of our approach
appear clearly here: the latency is lower with GAUT since
we avoid the n reads and writes of the ageing vector per-
formed with Monet. As a result, the power consumption
decreases.

The synthesis time, together with the reduction of hard-
ware resources and memory accesses, exhibit the efficiency
of our scheduling technique. In fact, the difference between
the synthesis time with GAUT and with a behavioral syn-
thesizer like Monet increases with the complexity of the ap-
plication. We have measured the synthesis times for the FIR
and the LMS filters, with an increasing complexity. Table 3
presents the results for the FIR for 32, 128, 512, and 1024
points. Table 4 presents the results for the LMS filter for
the same increasing complexities. It can be observed that,
even if the difference between the synthesis time with GAUT

Table 2: GAUT vs Monet
Synth time Lat Nb cycle Reg Mux Demux Tri Glue RAM ROM Nb read Nb write

elliptic Monet 1s 20 19 16 15 – 27 – – – –
Gaut 1s 20 12 6 9 24 – – – – –

Kalman Monet 1s 60 36 12 20 – 34 – – – –
Gaut 1s 60 14 11 10 29 – – – – –

FIR Monet 2s 48 4 6 2 – 7 1 – 32 16
16 Gaut 1.4s 19 4 2 1 1 – 1 1 32 1

LMS Monet 6s 132 38 28 18 – 25 2 – 128 64
32 Gaut 1.4s 100 19 3 3 23 – 2 – 128 33

and Monet is relatively small for small designs, it becomes
enormous when the design’s complexity increases. Indeed,
it becomes hours, then days or weeks for the FIR 1024 and
the LMS 512 and 1024. In fact, every memory access is a
node to be schedule in Monet, and the scheduling algorithm
has a strong complexity. The difference in latency is com-
paratively stable: the latency with Monet varies from about
2 to 3 times the latency with GAUT.

Table 3: Synthesis of the FIR filter

FIR Tool cycles Reads Writes Time
32 Monet 96 64 32 3s

Gaut 35 64 1 1.5s

128 Monet 384 256 128 45s
Gaut 131 256 1 2s

512 Monet 1536 1024 512 7h17mn
Gaut 512 1024 1 4.9s

1024 Monet 3072 2048 1024 ... days
Gaut 1027 2048 1 9s

Table 4: Synthesis of the LMS filter

LMS Tool cycles Reads Writes Time
32 Monet 132 128 64 6s

Gaut 100 128 33 1.4s

128 Monet 516 512 256 7mn30s
Gaut 388 512 129 2.6s

512 Monet 2052 2048 1027 ... days
Gaut 1540 2048 513 9.6

1024 Monet 4010 4096 2048 ... weeks
Gaut 3076 4096 1025 64

5. CONCLUSION
In this paper, we present two recent improvements to our

High-Level Synthesis tool GAUT. We first define the mem-
ory mapping constraint and include it in the synthesis design
flow. We introduce the Memory Constraint Graph, and an
accessibility criterion to enhance the scheduling algorithm.
We show that a peculiar attention must be paid to signals,
or ageing vectors. We formalize the maturing process and
explain how it may generate memory conflicts over several
iterations of the algorithm. We define the Logical Accesses
Graph, and the Concurrent Accesses Table, which are used

to construct the Concurrent Accesses Graph, and the Com-
patibility Graph. The Compatibility Graph indicates the
minimum number of memory banks for the scheduling, and
helps in finding a valid mapping for signals.

Several experiments were made, to explore the efficiency of
our approach. The comparison with an industrial behavioral
synthesis tool exhibits several advantages for GAUT.

In the future, the scheduling step will be enhanced with
an anticipated read model for the data, which should allow
to speedup the processing unit. The presented strategy for
implementing ageing vectors will be reversed, in order to
automatize the determination of the memory mapping for
this type of data.

6. REFERENCES
[1] HLSynth’92 benchmark information.

http://www.cbl.ncsu.edu/CBL Docs/hls92.html

[2] ITRS homepage. http://public.itrs.net/

[3] F. Catthoor, K. Danckaert, C. Kulkarni, and
T. Omns. Data Transfer and Storage (DTS)
architecture issues and exploration in multimedia
processors. Marcel Dekker Inc., NewYork, 2000.

[4] P. Ellervee. High-Level Synthesis of Control and
Memory Intensive Applications. PhD thesis, Royal
Institut of Technology, Jan. 2000.

[5] D. Knapp, T. Lyand, et al. Behavioral synthesis
methodology for HDL-based specification and
validation. In Proc. Design Automation Conference
DAC’95, June 1995.

[6] H. Ly, D. Knapp, R. Miller, and D. McMillen.
Scheduling using behavioral templates. In Proc.
Design Automation Conference DAC’95, pages
101–106, June 1995.

[7] A. Nicolau and S. Novack. Trailblazing a hierarchical
approach to percolation scheduling. In Proc. ICPP’93,
pages 120–124, 1993.

[8] P. Panda et al. Data and memory optimization
techniques for embedded systems. Transactions on
Design Automation of Electronic Systems,
6(2):149–206, 2001.

[9] R. Saied and C. Chakrabarti. Scheduling for
minimizing the number of memory accesses in low
power applications. In Proc. VLSI Signal Processing,
pages 169–178, Oct. 1996.

[10] J. Seo, T. Kim, and P. Panda. An integrated
algorithm for memory allocation and assignment in
high-level synthesis. In Proc. Design Automation
Conference DAC’01, pages 608–611, June 2001.

