N

N

High Level Ageing Vectors Management for Data
Intensive Applications

Gwenolé Corre, Eric Senn, Nathalie Julien, Eric Martin

» To cite this version:

Gwenolé Corre, Eric Senn, Nathalie Julien, Eric Martin. High Level Ageing Vectors Management for
Data Intensive Applications. 2005. hal-00077305

HAL Id: hal-00077305
https://hal.science/hal-00077305
Submitted on 30 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00077305
https://hal.archives-ouvertes.fr

High Level Ageing Vectors Management for Data
Intensive Applications

Gwenok Corre, Eric Senn, Nathalie Julien and Eric Martin
LESTER / University of South Brittany
BP92116, 56321 Lorient cedex, France
Email: gwenole.corre@univ-ubs.fr

Abstract— We introduce a new approach to take into account function of the scheduling mode [5]. In practice, the number
the memory architecture and the memory mapping in behavioral - of nodes in their input specifications must be limited, to obtain
synthesis. We present a new strategy for implementing signals 5 ya5istic and satisfying architectural solution. This limitation

(ageing vectors). We formalize the maturing process and explain
how it may generate memory conflicts over several iterations is again mainly due to the complexity of the algorithms which

of the algorithm. The final Compatibility Graph indicates the —are used for the scheduling.

set of valid mappings for every signal. Several experiments are In this paper, we propose a hew and simple technique to take
performed with our HLS tool GAUT. Our strategy exhibits into account the ageing vectors in the architectural synthesis.
a relatively low complexity memory architecture for ageing The gefinition of ageing data and their implementation are

vectors that permits to tackle complex designs for data intensive
applications. discussed in section Il. Experimental results are presented in
section |II.

I. INTRODUCTION

Behavioral synthesis, which is the process of generating
automatically an RTL design from an algorithmic description, Signals are the input and output flows of the applications. A
is an important research area in design automation. Mafno-dimensional signat is a vector of sizen, if n values
behavioral specifications, especially in digital signal and imagé = are needed to compute the result. Every cycle, a new
processing, use arrays to represent, store and manipulate ¥ate forz (z[n + 1) is sampled on the input, and the oldest
growing amounts of data. The ITRS roadmap indicates th¥glue of z (z[0]) is discarded. We called: an ageing, or
in 2011, 90 % of the SoC area will be dedicated to th@aturing, vector or data. Ageing vectors are stored in RAM. A
memory [1]. Applications are indeed becoming more and mogéraightforward way to implement, in hardware, the maturing
complex, and memory will take a more and more importaff & vector, is to write its new value always at the same
place in future signal processing systems. This place is vitaddress in memory, at the end of the vector in the case of a 1D
strategic, for memory now appears as a terrific bottleneck $fgnal for instance (that is how Monet works). Obviously, that
real-time systems. Indeed, performances are highly depend8Melves to shift every other values of the signal in the memory
on the memory architecture (hierarchy, number of bankg) free the place for the new value. This shlftlng necessitates
together with the way data are placed and transferred. To'€ads and: writes in the memory, which is very time and
tackle the complexity of memory design, we consider @wer consuming. In GAUT, the new value is stored at the
essential to take into account memory accesses directly durgfifiress of the oldest one in the vector. Only one write is
the behavioral synthesis, assuming that a reasonable trd@eded. Obviously, the address generation is more difficult in
off between the design time and the quality of the results i8is case, because the addresses of the samples called in the
reached. In the context of HLS, several scheduling techniqudlgorithm change from on cycle to the other. The Figure 1
actually include memory issues. Among them, most try tBustrates this difficulty. In the following code a signal is
reduce the memory cost by estimating the needs in termsastessed; it included’ = 4 elements.
number of registers for a given scheduling, but work onlya corl THM 1
with scalars [2].In [3], memory accesses are represented &$0): =x i nput;
multi-cycle operations in a Control and Data Flow Graphtnp := x(0); _
(CDFG). Memory vertices are scheduled as operative verticé;sg: E: fﬁ '1:N’ |1—1I+) : tng):;?f’;’_(f('(|) "
by considering conflicts among data accesses. This technique ' ' '
is used in some industrial HLS tools that include memory The logical address of an element of(x[0] for instance)
mapping management in their design flow (Monet, Behaviorehanges from an iteration to the other withthei* value of
Compiler) [4]. Memory accesses are regarded as Input/Outpsignal x . The logical address af0] is that ofz3 in iteration
The 1/0O behavior and number of control step are managed3nz4 in iteration 4,25 in iteration 5 etc. With GAUT, we make

II. IMPLEMENTING AGEING VECTORS

the distinction between physical and logical addresses.Titerationo + 1 and the logical address of elemett] at the
logical address points on a memory element that contains therationo. In our examplef = 1.

physical address of the data. The physical address points on

the memory element that contains the value of the data. Once k = Qz[i]°tt — @x[i]° (1)

determined, the physical address of a data never changes. In .

our example, for instance, the physical address of dafeom Eventually, to calculate the logical addressudf], we add
vector z will remains the same as long as is alive in the (Modulo N), to the logical address ofi3] in the preceding

memory. iteration, the weightfs, and theageing factor & so that
Qz[0] = (Qz[3] + f30 + k)%N. More generally, ifz[i] is
elements of vector x the last element of accessed in iteration and x[j] is the
x[0] | x[1] | x[2] | x[3] first element ofr accessed in iteration+ 1, and with N the
iteration 3 x3 x2 x1 x0 size of r:
iteration 4 x4 x3 x2 x1
iteration 5 x5 x4 x3 x2 ot)
iteration 6 x6 x5 x4 x3 Qz[j]°* = (Qz[i]° + fii + k)%N (2)
i i
newest oldest Consider the algorithm below. This algorithm was synthe-
. _ sized with the following mappingz[0] and z[1] are in a
Fig. 1. The maturing process memory bank,z[2], z[3] and z[4] are in another bank. The

lati ith the logical i i for the fi
We have developed a new methodology to resolve t.r%atlon with the logical addresses is determined for the first

; ; itération. S0Qz[0] (= 0) and@z[1] (= 1) are in the first bank,
synthesis of our logical address generators. The advantage @ﬁz} (= 2), @z[3] (= 3) and @z[4] (= 4) are in the second
lower latency, since we avoid reads and writes of the ageing e - - '
vector, and a resulting lower power consumption. Indeed, th&LGORI THM 2

: : ; epf(O)::x i nput ;
power consumption of a memory increases with the numb , '
of accesses tmp=x(0);
: : . . t mp=t mp+ x(1);
This methodology is based on an oriented graph that tracesp1=x(2) ;
the evolution of the logical addresses in a vector during npl=t npl+x(3);
the execution of one iteration of the algorithm: thegical ~ tnpl=tnpl+x(4);

Address Graph (LAG). The LAG is a coupleL AG = (V, E); ~ for (i=N-1: i=1:i--) x(i)=x(i-1);
it is defined for each ageing vector in the algorithif.is The LAG for vectorz is represented Figure 3. The chrono-
the set of vertices” = {vo,v1,---,un—1} Where vertexv; gram of accesses is presented figure 4. We indicate in the

is the'" element of the vector. With: a vector of sizeN; circle,the logical address of the vector to be fetched.
card(V) = N. E is the set of edge® = {e1,e2,---,en}

where edge: = (v;,v;) links 2 elementsy; andw; if the jth x[0], x[1] x[2]; x[3]; x[4]

element of the vector(j]) is accessed immediately after the ‘ ‘

ith element of the vectorz(i]). E C V x V. The weighting m w
function f is associated to the LAG, : V xV — N. For every
edgee = (v;,v;), f gives the weighf;; with f;; = (j—i)%N.

% expresses the modulo. Figure 2 represents the LAG for the
preceding example.

Fig. 3. LAG for algorithm 2

iteration o H iteration o+1

x[0] | x[1] | x[Z]1 x[3]
>® >®
v0 vl v2 v3

X

Fig. 2. LAG for algorithm 1
Fig. 4. Chronogram of accesses

The weightf;; is used to calculate the logical address of the
next access to vectar. Suppose thdl is the logical address of In iteration o, several concurrent accesses to the memory
z[0]. Thenz[1] is the next access te and its logical address appear:@Qx[0] = 0 with @z[2] = 2, and @z[1] = 1 with
is 0+ fo1 = 1. The logical address af[2] is 2 and the logical @x[3] = 3. These parallel accesses do not generate conflict
address oft[3] is 3. The next data to be accessed:{8]. Its for involved data are in distinct memory banks. In the next
address is stil(3 + 1)%4 = 0 in this iteration. However, to iteration however, the logical addresses #¢t] and z[3] are
calculate the address off0] in the next iteration, we ought respectively2 and 4. A memory conflict is generated since
to take into account the ageing of vectorIn our example, these two logical addresses are mapped in the same memory
the values in vector: are shifted so that the logical address dfank. The concurrent accesses are computedfsuccessive
elementz[i] at the iteratioro+ 1, noted@z[i]°*! is the logical iterations of the algorithm to obtain the concurrent accesses
address of element[i] at the iterationo plus 1: @Qz[i]°t! = table (see table I).
@z[i]° + 1. In general, we define thageing factor k as the The set of concurrent accesses (SCA) is the set of all
difference between the logical address of elemdpit at the the concurrent accesses in the concurrent accesses table. In

iterationZo+1

TABLE |
LOGICAL ADDRESSES EVOLUTION AND CONCURRENT ACCESSES TABLE

I o iterationo:

concurrent
accesses
x[0] | x[1] | x[2] | x[3] | x[4] table
iteration o 0 1 2 3 4 0,2) 1 (1,3)
iteration o+1| 1 2 3 4 0 1,3)/(2,4)
iteration o+2 | 2 3 4 0 1 2,4)1 (3,0) L .
feration 03 3 i 5 1 5 E3,0§ 7 E4’1; Fig. 7. Pipelined architecture
iteration o+4 | 4 0 1 2 3 (4,1) 1 (0,2)
iteration o+5| O 1 2 3 4 0,2) 1 (1,3)
logical addresses The situation is similar to the situation with the algorithm 2:

concurrent accesses appear and a concurrent accesses table is
determined. The difference is that the conflicts arise between
our example,SCA = {(0,2),(1,3),(2,4),(3,0),(4,1)}. A logical addresses that are calculated over several successive
Concurrent Accesses Graph (CAG) is constructed from this setiterations (2 in this example}az[2]° is in concurrence with
of concurrent accesses. A CAG is a coupldG = (L, A). L @Qz[0]°T", andz(3]° is in concurrence witt@z[1]°+1. The set
is the set of verticed, = {lo,l1,---,In_1} Where vertex, is Of concurrent accessesCA = {(0,1),(1,2),(2,3),(3,0)}.
the logical address of thé" element of the vector in the first The CAG and CG are computed from this SCA (Figure 8).
iteration. Withz a vector of sizeN; card(L) = N. A is the The data mapping is verified. The minimum number of banks
set of edgesA = {a1,as,---,an} Where edger = (I;,1;) is 2, and the only valid mapping with 2 banks is to plage]
links 2 elementd; and/; if the couple {;,l;) is included in andz[2] in a bank, andz[1] andz[3] in another bank.
the set of concurrent accessesC L x L. Figure 5(a) gives

the conflict graph for our example. a e

)2a{
e > >
016‘0 g’ @) c
a. ‘e (Fig. 8. CAG and CG

(C?r)ap%oncurrent Accesses (b) Compatibility Graph 1. GAUT VS INDUSTRIAL HLS TOOLS

Several syntheses were performed, both with GAUT and
the industrial behavioral synthesis tools Monet from Mentor

In this case, the synthesis is not possible. GAUT issuesGerlaph'C and Behavioral Compiler from Synopsys. We chose

message to indicate that the data mapping is not valid IIhoe elliptic and the Kalman filters which are the biggest
. - : ; ...~ applications in the HLSynth’92 benchmarks [6], and two
help in determining a valid data mapping, Gompatibility assical digital algorithms: a FIR filter and an echo cancel-

X . I
Graph (CG) is constructed. The CG is orthogonal to thg . - . i
former Conflict Graph (Figure 5(b)). The minimum numbej2ion algorithm, the LMS. Taple I, |f1d|cates the synthesis
ime in seconds and the architecture’s latency in number of

f memor nks i il m from th mpatibili . . .
of memory banks is easily computed from the Compatib t(Y, cles (the same real-time constraint was given to the tools,

Graph. In our example, the minimum number of memor e clock cycle is 10ns). Required hardware resources are
banks is 3. A possible mapping is to plac@)] andz[1] in a also indicated: the number of registers (Reg), of multiplexers

first bank,z[2] and[3] in a second bank, and{4] in a third {%ux) demultiplexers (Demux), of glue logic elements (which
bank. It is remarkable that these results actually depend on 1% tri-states in GAUT), and the number of RAM and ROM

scheduling, and therefore on the timing constraint provided i

the tool. With a different timing constraint, the conflict and cmories. The two last qolumns give the number of read
nd write in those memories. Single port SRAM were used

ﬁ?;gg?ﬁg)slllty graphs change, as well as the set of valid dat%l store data. Syntheses were executed on SUN Blade 2000
Similar results are obtained when pipelined architectur&orkStat'ons'

are synthesized. The chronogram of accesses for algorithnbfard\évarihrzs’gﬂfﬁesltﬁre amﬁys lower in abrchltefctu_zﬁs Sgn'
is presented on Figure 6. When the architecture is pipeliné esized wi » athough the same humber ot anthmetc

this chronogram is modified as shown on Figure 7. operators is needed. The latency, which is the delay between
the input of the first data and the first result on the output, is

also lower with GAUT. A ROM is needed with GAUT for the

FIR filter, since GAUT stores every static coefficient in ROM.

- @ Those coefficients are wired with Monet and BC. Dynamic

Fig. 5. CAG and CG

iteration o iteration o+1

] coefficients, whose value is changed during the execution of
Fig. 6. Non-pipelined architecture the algorithm, which is the case for an adaptative filtering

like the LMS, are stored in RAM, together with signals

TABLE I
GAUT VS INDUSTRIAL TOOL

Synth time | Lat (Nbcycle) | Reg | Mux | Demux | Tri | Glue | RAM | ROM [Nb read | Nb write
elliptic | Monet 1s 20 19 16 15 - 27 - - - -
BC 1s 20 18 14 10 - 27 — — - -
Gaut 1s 20 12 6 9 24 — — — — —
Kalman | Monet 1s 60 36 12 20 - 34 - - — -
BC Is 60 24 12 16 = 32 — — - -
Gaut 1s 60 14 11 10 29 — — — — —
FIR Monet 2s 48 4 6 2 - 7 1 - 32 16
16 BC 2s 35 4 4 2 - 6 1 — 32 16
Gaut 1.4s 19 4 2 1 1 — 1 1 32 1
LMS Monet 6s 132 38 28 18 - 25 2 - 128 64
32 BC 4s 132 32 24 14 - 22 2 — 128 64
Gaut 1.4s 100 19 3 3 23 — 2 — 128 33

TABLE Il
SYNTHESIS OF THELMS FILTER
LMS Tool cycles | Reads| Writes Time

(ageing vectors). The advantages of our approach appear
clearly here: the latency is lower with GAUT since we avoid

the n reads and writes of the ageing vector pgrformed with 35 T Monet | 132 128 54 65
Monet and BC. As a result, the power consumption decreases. BC 132 128 64 4s
Indeed, the power consumption of a memory increases with Gaut | 100 | 128 33 1.4s
the number of accesses. The synthesis time, together with 128 Mg(”:Et %g i;g 26546 gmigz
the reduction of hardware resources and memory accesses, Gaut T 388 [512 | 129 565
e?<h|b|t the efficiency of our sch(_adu_lmg tephmque. In fact,. the 512 | Monet | 2052 | 2048 | 1027 | .. days
difference between the synthesis time with GAUT and with a BC 132 128 64 hours
HLS tools like Monet and BC increases with the complexity Gaut | 1540 | 2048 | oI3 96 -
PR i 1024 | Monet | 4010 | 4096 2048 | ... weeks
of the application. We have measured the synthesis times for BC 37 58 =1 days

the FIR and the LMS filters, with an increasing complexity. Gaut | 3076 | 4006 | 10725 64
Table Il presents the results for the LMS for 32, 128, 512,

and 1024 points. It can be observed that, even if the difference

between the synthesis time with GAUT and industrial tools is

relatively small for small designs, it becomes enormous when . o . .
the design’s complexity increases. Indeed, it becomes houﬂg our approach. The comparison with industrial behavioral

then days or weeks for the LMS 512 and 1024. In fact, evewhthesis tools exhibits seve_ral advantages for GAUT. .
memory access is a node to be schedule in Monet and BC!n th_e_ future, the scheduling step wil be_ enhanced with
and the scheduling algorithm has a strong complexity. THRD anticipated read model for the data, which should allow

difference in latency is comparatively stable: the latency wilth speedup the processing unit. The presented strategy for

Monet and BC varies from about 2 to 3 times the latency Wiﬂmplemgntmg ageing yect'ors will be reversed, n order tp
GAUT. automatize the determination of the memory mapping for this

type of data.

Several experiments were made, to explore the efficiency

IV. CONCLUSION

In this paper, we present two recent improvements to omi]r RS (Online]. Available: hitp:/fpublic.i y
H _ H H H omepage. nline]. Available: http://public.itrs.ne
ngh Level SymheSIS tool GAUT. Our goal is to take Im({Z] R. Saied and C. Chakrabarti, “Scheduling for minimizing the number

account the memory architecture and the memory mapping of memory accesses in low power applications,”Froc. VLS Signal

in the synthesis process. We formalize the maturing proces]sgrogng, OCE 1a9|6, plp- 169h—178- . | and
: : : . ervee, “High-level synthesis of control and memory intensive
and explain how it may generate memory conflicts OVJ’}? applications,” Ph.D. dissertation, Royal Institut of Technology, Jan. 2000.

several iterations of the algorithm. We define the Logicgd] H. Ly, D. Knapp, R. Miller, and D. McMillen, “Scheduling using
Accesses Graph, and the Concurrent Accesses Table, whichbehavioral templates,” ifProc. Design Automation Conference DAC'95,

une 1995, pp. 101-106.
are used to construct the Concurrent Accesses Graph, and[gp " Knapp, T. Lyand.et al., “Behavioral synthesis methodology for

Compatibility Graph. The Compatibility Graph indicates theé " HDL-based specification and validation,” ®roc. Design Automation

minimum number of memory banks for the scheduling, an[g] |:TgfererrwlcgezDAC’ss, JrL]Jne i995. f onling] Avadlaby
PP . : - ynth’ enchmar information. nline]. vailable:
helps in finding a valid mapping for signals. http://www.cbl.ncsu.edu/CBIDocs/hls92.html

REFERENCES

