
HAL Id: hal-00077305
https://hal.science/hal-00077305

Submitted on 30 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Level Ageing Vectors Management for Data
Intensive Applications

Gwenolé Corre, Eric Senn, Nathalie Julien, Eric Martin

To cite this version:
Gwenolé Corre, Eric Senn, Nathalie Julien, Eric Martin. High Level Ageing Vectors Management for
Data Intensive Applications. 2005. �hal-00077305�

https://hal.science/hal-00077305
https://hal.archives-ouvertes.fr


High Level Ageing Vectors Management for Data
Intensive Applications

Gwenoĺe Corre, Eric Senn, Nathalie Julien and Eric Martin
LESTER / University of South Brittany
BP92116, 56321 Lorient cedex, France

Email: gwenole.corre@univ-ubs.fr

Abstract— We introduce a new approach to take into account
the memory architecture and the memory mapping in behavioral
synthesis. We present a new strategy for implementing signals
(ageing vectors). We formalize the maturing process and explain
how it may generate memory conflicts over several iterations
of the algorithm. The final Compatibility Graph indicates the
set of valid mappings for every signal. Several experiments are
performed with our HLS tool GAUT. Our strategy exhibits
a relatively low complexity memory architecture for ageing
vectors that permits to tackle complex designs for data intensive
applications.

I. I NTRODUCTION

Behavioral synthesis, which is the process of generating
automatically an RTL design from an algorithmic description,
is an important research area in design automation. Many
behavioral specifications, especially in digital signal and image
processing, use arrays to represent, store and manipulate ever
growing amounts of data. The ITRS roadmap indicates that,
in 2011, 90 % of the SoC area will be dedicated to the
memory [1]. Applications are indeed becoming more and more
complex, and memory will take a more and more important
place in future signal processing systems. This place is vital,
strategic, for memory now appears as a terrific bottleneck in
real-time systems. Indeed, performances are highly dependent
on the memory architecture (hierarchy, number of banks)
together with the way data are placed and transferred. To
tackle the complexity of memory design, we consider as
essential to take into account memory accesses directly during
the behavioral synthesis, assuming that a reasonable trade-
off between the design time and the quality of the results is
reached. In the context of HLS, several scheduling techniques
actually include memory issues. Among them, most try to
reduce the memory cost by estimating the needs in terms of
number of registers for a given scheduling, but work only
with scalars [2].In [3], memory accesses are represented as
multi-cycle operations in a Control and Data Flow Graph
(CDFG). Memory vertices are scheduled as operative vertices
by considering conflicts among data accesses. This technique
is used in some industrial HLS tools that include memory
mapping management in their design flow (Monet, Behavioral
Compiler) [4]. Memory accesses are regarded as Input/Output.
The I/O behavior and number of control step are managed in

function of the scheduling mode [5]. In practice, the number
of nodes in their input specifications must be limited, to obtain
a realistic and satisfying architectural solution. This limitation
is again mainly due to the complexity of the algorithms which
are used for the scheduling.

In this paper, we propose a new and simple technique to take
into account the ageing vectors in the architectural synthesis.
The definition of ageing data and their implementation are
discussed in section II. Experimental results are presented in
section III.

II. I MPLEMENTING AGEING VECTORS

Signals are the input and output flows of the applications. A
mono-dimensional signalx is a vector of sizen, if n values
of x are needed to compute the result. Every cycle, a new
value forx (x[n + 1]) is sampled on the input, and the oldest
value of x (x[0]) is discarded. We calledx an ageing, or
maturing, vector or data. Ageing vectors are stored in RAM. A
straightforward way to implement, in hardware, the maturing
of a vector, is to write its new value always at the same
address in memory, at the end of the vector in the case of a 1D
signal for instance (that is how Monet works). Obviously, that
involves to shift every other values of the signal in the memory
to free the place for the new value. This shifting necessitates
n reads andn writes in the memory, which is very time and
power consuming. In GAUT, the new value is stored at the
address of the oldest one in the vector. Only one write is
needed. Obviously, the address generation is more difficult in
this case, because the addresses of the samples called in the
algorithm change from on cycle to the other. The Figure 1
illustrates this difficulty. In the following code a signalx is
accessed; it includesN = 4 elements.

ALGORITHM 1
x(0):=x input;
tmp := x(0);
for (i=1;i=N-1;1++) tmp=tmp+x(i);
for (i=N-1 ; i= 1 ;i--) x(i)=x(i-1);

The logical address of an element ofx (x[0] for instance)
changes from an iteration to the other withxi the ith value of
signal x . The logical address ofx[0] is that ofx3 in iteration
3, x4 in iteration 4,x5 in iteration 5 etc. With GAUT, we make



the distinction between physical and logical addresses.The
logical address points on a memory element that contains the
physical address of the data. The physical address points on
the memory element that contains the value of the data. Once
determined, the physical address of a data never changes. In
our example, for instance, the physical address of datax3 from
vector x will remains the same as long asx3 is alive in the
memory.

����������	�
������

��� ��� ��� ���

����������� � � � �

����������� � � � �

����������� � � � �

����������� � � � �

������ ������

Fig. 1. The maturing process

We have developed a new methodology to resolve the
synthesis of our logical address generators. The advantage is a
lower latency, since we avoidn reads and writes of the ageing
vector, and a resulting lower power consumption. Indeed, the
power consumption of a memory increases with the number
of accesses.

This methodology is based on an oriented graph that traces
the evolution of the logical addresses in a vector during
the execution of one iteration of the algorithm: theLogical
Address Graph (LAG). The LAG is a coupleLAG = (V, E);
it is defined for each ageing vector in the algorithm.V is
the set of verticesV = {v0, v1, · · · , vN−1} where vertexvi

is the ith element of the vector. Withx a vector of sizeN ;
card(V ) = N . E is the set of edgesE = {e1, e2, · · · , eM}
where edgee = (vi, vj) links 2 elementsvi andvj if the jth

element of the vector (x[j]) is accessed immediately after the
ith element of the vector (x[i]). E ⊆ V × V . The weighting
functionf is associated to the LAG;f : V ×V → N. For every
edgee = (vi, vj), f gives the weightfij with fij = (j−i)%N .
% expresses the modulo. Figure 2 represents the LAG for the
preceding example.

���� ���� ���� ����

�� �� �� ��

� � �

�

Fig. 2. LAG for algorithm 1

The weightfij is used to calculate the logical address of the
next access to vectorx. Suppose that0 is the logical address of
x[0]. Thenx[1] is the next access tox and its logical address
is 0+f01 = 1. The logical address ofx[2] is 2 and the logical
address ofx[3] is 3. The next data to be accessed isx[0]. Its
address is still(3 + 1)%4 = 0 in this iteration. However, to
calculate the address ofx[0] in the next iteration, we ought
to take into account the ageing of vectorx. In our example,
the values in vectorx are shifted so that the logical address of
elementx[i] at the iterationo+1, noted@x[i]o+1 is the logical
address of elementx[i] at the iterationo plus 1:@x[i]o+1 =
@x[i]o + 1. In general, we define theageing factor k as the
difference between the logical address of elementx[i] at the

iteration o + 1 and the logical address of elementx[i] at the
iterationo. In our example,k = 1.

k = @x[i]o+1 − @x[i]o (1)

Eventually, to calculate the logical address ofx[0], we add
(modulo N), to the logical address ofx[3] in the preceding
iteration, the weightf30 and the ageing factor k so that
@x[0] = (@x[3] + f30 + k)%N . More generally, ifx[i] is
the last element ofx accessed in iterationo and x[j] is the
first element ofx accessed in iterationo + 1, and withN the
size ofx:

@x[j]o+1 = (@x[i]o + fji + k)%N (2)

Consider the algorithm below. This algorithm was synthe-
sized with the following mapping:x[0] and x[1] are in a
memory bank,x[2], x[3] and x[4] are in another bank. The
relation with the logical addresses is determined for the first
iteration. So@x[0] (= 0) and@x[1] (= 1) are in the first bank,
@x[2] (= 2), @x[3] (= 3) and@x[4] (= 4) are in the second.

ALGORITHM 2
x(0):=x input;
tmp=x(0);
tmp=tmp+ x(1);
tmp1=x(2);
tmp1=tmp1+x(3);
tmp1=tmp1+x(4);
for (i=N-1 ; i= 1 ;i--) x(i)=x(i-1);

The LAG for vectorx is represented Figure 3. The chrono-
gram of accesses is presented figure 4. We indicate in the
circle,the logical address of the vector to be fetched.

���� ���� ���� ����

�� �� �� ��

�

�

� �
��	�

�	
�

Fig. 3. LAG for algorithm 2

0 1

3

1 2

42 34 0

����������� �����������	


�

Fig. 4. Chronogram of accesses

In iteration o, several concurrent accesses to the memory
appear:@x[0] = 0 with @x[2] = 2, and @x[1] = 1 with
@x[3] = 3. These parallel accesses do not generate conflict
for involved data are in distinct memory banks. In the next
iteration however, the logical addresses forx[1] and x[3] are
respectively2 and 4. A memory conflict is generated since
these two logical addresses are mapped in the same memory
bank. The concurrent accesses are computed forN successive
iterations of the algorithm to obtain the concurrent accesses
table (see table I).

The set of concurrent accesses (SCA) is the set of all
the concurrent accesses in the concurrent accesses table. In



TABLE I

LOGICAL ADDRESSES EVOLUTION AND CONCURRENT ACCESSES TABLE

concurrent
accesses

x[0] x[1] x[2] x[3] x[4] table
iteration o 0 1 2 3 4 (0,2) / (1,3)

iteration o+1 1 2 3 4 0 (1,3) / (2,4)
iteration o+2 2 3 4 0 1 (2,4) / (3,0)
iteration o+3 3 4 0 1 2 (3,0) / (4,1)
iteration o+4 4 0 1 2 3 (4,1) / (0,2)
iteration o+5 0 1 2 3 4 (0,2) / (1,3)

logical addresses

our example,SCA = {(0, 2), (1, 3), (2, 4), (3, 0), (4, 1)}. A
Concurrent Accesses Graph (CAG) is constructed from this set
of concurrent accesses. A CAG is a coupleCAG = (L,A). L

is the set of verticesL = {l0, l1, · · · , lN−1} where vertexli is
the logical address of theith element of the vector in the first
iteration. Withx a vector of sizeN ; card(L) = N . A is the
set of edgesA = {a1, a2, · · · , aM} where edgea = (li, lj)
links 2 elementsli and lj if the couple (li,lj) is included in
the set of concurrent accesses.A ⊆ L × L. Figure 5(a) gives
the conflict graph for our example.

0

1

32

4

(a) Concurrent Accesses
Graph

0

1

32

4

(b) Compatibility Graph

Fig. 5. CAG and CG

In this case, the synthesis is not possible. GAUT issues a
message to indicate that the data mapping is not valid. To
help in determining a valid data mapping, aCompatibility
Graph (CG) is constructed. The CG is orthogonal to the
former Conflict Graph (Figure 5(b)). The minimum number
of memory banks is easily computed from the Compatibility
Graph. In our example, the minimum number of memory
banks is 3. A possible mapping is to placex[0] andx[1] in a
first bank,x[2] andx[3] in a second bank, andx[4] in a third
bank. It is remarkable that these results actually depend on the
scheduling, and therefore on the timing constraint provided to
the tool. With a different timing constraint, the conflict and
compatibility graphs change, as well as the set of valid data
mappings.

Similar results are obtained when pipelined architectures
are synthesized. The chronogram of accesses for algorithm 1
is presented on Figure 6. When the architecture is pipelined,
this chronogram is modified as shown on Figure 7.

0 1 3 12 0

����������� �����������	


�

2 3 2

Fig. 6. Non-pipelined architecture

0 1

0 3

1

3 2

21

0

�����������
�����������	


�

2 3

Fig. 7. Pipelined architecture

The situation is similar to the situation with the algorithm 2:
concurrent accesses appear and a concurrent accesses table is
determined. The difference is that the conflicts arise between
logical addresses that are calculated over several successive
iterations (2 in this example).@x[2]o is in concurrence with
@x[0]o+1, andx[3]o is in concurrence with@x[1]o+1. The set
of concurrent accessesSCA = {(0, 1), (1, 2), (2, 3), (3, 0)}.
The CAG and CG are computed from this SCA (Figure 8).
The data mapping is verified. The minimum number of banks
is 2, and the only valid mapping with 2 banks is to placex[0]
andx[2] in a bank, andx[1] andx[3] in another bank.

0 3

21

(a) CAG

0 3

21

(b) CG

Fig. 8. CAG and CG

III. GAUT VS INDUSTRIAL HLS TOOLS

Several syntheses were performed, both with GAUT and
the industrial behavioral synthesis tools Monet from Mentor
Graphic and Behavioral Compiler from Synopsys. We chose
the elliptic and the Kalman filters which are the biggest
applications in the HLSynth’92 benchmarks [6], and two
classical digital algorithms: a FIR filter and an echo cancel-
lation algorithm, the LMS. Table II, indicates the synthesis
time in seconds and the architecture’s latency in number of
cycles (the same real-time constraint was given to the tools,
the clock cycle is 10ns). Required hardware resources are
also indicated: the number of registers (Reg), of multiplexers
(Mux), demultiplexers (Demux), of glue logic elements (which
are tri-states in GAUT), and the number of RAM and ROM
memories. The two last columns give the number of read
and write in those memories. Single port SRAM were used
to store data. Syntheses were executed on SUN Blade 2000
workstations.

Hardware resources are always lower in architectures syn-
thesized with GAUT, although the same number of arithmetic
operators is needed. The latency, which is the delay between
the input of the first data and the first result on the output, is
also lower with GAUT. A ROM is needed with GAUT for the
FIR filter, since GAUT stores every static coefficient in ROM.
Those coefficients are wired with Monet and BC. Dynamic
coefficients, whose value is changed during the execution of
the algorithm, which is the case for an adaptative filtering
like the LMS, are stored in RAM, together with signals



TABLE II

GAUT VS INDUSTRIAL TOOL

Synth time Lat (Nb cycle) Reg Mux Demux Tri Glue RAM ROM Nb read Nb write
elliptic Monet 1s 20 19 16 15 – 27 – – – –

BC 1s 20 18 14 10 – 27 – – – –
Gaut 1s 20 12 6 9 24 – – – – –

Kalman Monet 1s 60 36 12 20 – 34 – – – –
BC 1s 60 24 12 16 – 32 – – – –

Gaut 1s 60 14 11 10 29 – – – – –

FIR Monet 2s 48 4 6 2 – 7 1 – 32 16
16 BC 2s 35 4 4 2 – 6 1 – 32 16

Gaut 1.4s 19 4 2 1 1 – 1 1 32 1

LMS Monet 6s 132 38 28 18 – 25 2 – 128 64
32 BC 4s 132 32 24 14 – 22 2 – 128 64

Gaut 1.4s 100 19 3 3 23 – 2 – 128 33

(ageing vectors). The advantages of our approach appear
clearly here: the latency is lower with GAUT since we avoid
the n reads and writes of the ageing vector performed with
Monet and BC. As a result, the power consumption decreases.
Indeed, the power consumption of a memory increases with
the number of accesses. The synthesis time, together with
the reduction of hardware resources and memory accesses,
exhibit the efficiency of our scheduling technique. In fact, the
difference between the synthesis time with GAUT and with a
HLS tools like Monet and BC increases with the complexity
of the application. We have measured the synthesis times for
the FIR and the LMS filters, with an increasing complexity.
Table III presents the results for the LMS for 32, 128, 512,
and 1024 points. It can be observed that, even if the difference
between the synthesis time with GAUT and industrial tools is
relatively small for small designs, it becomes enormous when
the design’s complexity increases. Indeed, it becomes hours,
then days or weeks for the LMS 512 and 1024. In fact, every
memory access is a node to be schedule in Monet and BC,
and the scheduling algorithm has a strong complexity. The
difference in latency is comparatively stable: the latency with
Monet and BC varies from about 2 to 3 times the latency with
GAUT.

IV. CONCLUSION

In this paper, we present two recent improvements to our
High-Level Synthesis tool GAUT. Our goal is to take into
account the memory architecture and the memory mapping
in the synthesis process. We formalize the maturing process
and explain how it may generate memory conflicts over
several iterations of the algorithm. We define the Logical
Accesses Graph, and the Concurrent Accesses Table, which
are used to construct the Concurrent Accesses Graph, and the
Compatibility Graph. The Compatibility Graph indicates the
minimum number of memory banks for the scheduling, and
helps in finding a valid mapping for signals.

TABLE III

SYNTHESIS OF THELMS FILTER

LMS Tool cycles Reads Writes Time
32 Monet 132 128 64 6s

BC 132 128 64 4s
Gaut 100 128 33 1.4s

128 Monet 516 512 256 7mn30s
BC 132 128 64 5mn14s

Gaut 388 512 129 2.6s

512 Monet 2052 2048 1027 ... days
BC 132 128 64 hours

Gaut 1540 2048 513 9.6

1024 Monet 4010 4096 2048 ... weeks
BC 132 128 64 days

Gaut 3076 4096 1025 64

Several experiments were made, to explore the efficiency
of our approach. The comparison with industrial behavioral
synthesis tools exhibits several advantages for GAUT.

In the future, the scheduling step will be enhanced with
an anticipated read model for the data, which should allow
to speedup the processing unit. The presented strategy for
implementing ageing vectors will be reversed, in order to
automatize the determination of the memory mapping for this
type of data.

REFERENCES

[1] ITRS homepage. [Online]. Available: http://public.itrs.net/
[2] R. Saied and C. Chakrabarti, “Scheduling for minimizing the number

of memory accesses in low power applications,” inProc. VLSI Signal
Processing, Oct. 1996, pp. 169–178.

[3] P. Ellervee, “High-level synthesis of control and memory intensive
applications,” Ph.D. dissertation, Royal Institut of Technology, Jan. 2000.

[4] H. Ly, D. Knapp, R. Miller, and D. McMillen, “Scheduling using
behavioral templates,” inProc. Design Automation Conference DAC’95,
June 1995, pp. 101–106.

[5] D. Knapp, T. Lyand, et al., “Behavioral synthesis methodology for
HDL-based specification and validation,” inProc. Design Automation
Conference DAC’95, June 1995.

[6] HLSynth’92 benchmark information. [Online]. Available:
http://www.cbl.ncsu.edu/CBLDocs/hls92.html


