
HAL Id: hal-00077297
https://hal.science/hal-00077297v1

Submitted on 30 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-level synthesis under I/O Timing and Memory
constraints

Philippe Coussy, Gwenolé Corre, Pierre Bomel, Eric Senn, Eric Martin

To cite this version:
Philippe Coussy, Gwenolé Corre, Pierre Bomel, Eric Senn, Eric Martin. High-level synthesis under
I/O Timing and Memory constraints. 2005, pp.680-683. �hal-00077297�

https://hal.science/hal-00077297v1
https://hal.archives-ouvertes.fr

High-level synthesis under I/O Timing and
Memory constraints

Philippe Coussy, Gwenole Corre, Pierre Bomel, Eric Senn, Eric Martin
LESTER LAB, UBS University, CNRS FRE 2734

Abstract—The design of complex Systems-on-Chips implies to
take into account communication and memory access
constraints for the integration of dedicated hardware
accelerator . In this paper, we present a methodology and a
tool that allow the High-Level Synthesis of DSP algor ithm,
under both I /O timing and memory constraints. Based on
formal models and a gener ic architecture, this tool helps the
designer to find a reasonable trade-off between both the
required I /O timing behavior and the internal memory access
parallelism of the circuit. The interest of our approach is
demonstrated on the case study of a FFT algor ithm.

I. INTRODUCTION

Electronic design complexity has increased hugely since the
birth of integrated circuits. System level technologies, over
recent years, have moved from Application Specific Integrated
Circuits (ASICs) and Application Specific Signal Processors
(ASSPs) to complete System-On-Chip (SoC) designs. This
increment in the chip complexity requires an equivalent shift in
the design methodology and a more direct path from the
functionality down to the silicon. In [1-3], the authors propose
system synthesis approaches where the algorithms of the
functional specification correspond to pre-designed components
in a library. Macro generators produce the RTL architecture for
hardware blocks by using the “generic” / “generate” VHDL
mechanisms: the synthesis process can hence be summarized as a
block instantiation. However, though such components may be
parameterizable, they rely on fixed architectural models with
very restricted customization capabilities. This lack of flexibility
in RTL blocks is especially true for both the communication
unit, which I/O scheduling and/or I/O timing requirements are
defined, and the memory unit, which data distribution is set.

High-Level Synthesis (HLS) can be used to reduce this lack
of flexibility. For example, SystemC Compiler [4] from
Synopsys, and Monet from Mentor Graphics, propose a set of
I/O scheduling modes (cycle-fixed, superstate, free-floating) that
allow to target alternative architectural solutions.
Communication is specified using wait statements and is mixed
with the computation specification what limits the flexibility of
the input behavioral description. In these two tools, memory
accesses are represented as multi-cycle operations in a Control
and Data Flow Graph (CDFG). Memory vertices are scheduled
as operative vertices by considering conflicts among data
accesses. In practice, the number of nodes in their input
specifications must be limited to obtain a realistic and satisfying
architectural solution. This limitation is mainly due to the
complexity of the algorithms that are used for the scheduling.
Only a few works really schedule the memory accesses [5], [6].
They include precise temporal models of those accesses, and try
to improve performances without considering the possibility of

simultaneous accesses that would ease the subsequent task of
register and memory allocation.

In the domain of real-time and data-intensive applications,
processing resources have to deal with ever growing data
streams. The system/architecture design has therefore to focus on
avoiding bottlenecks in the buses and I/O buffers for data-
transfer, while reducing the cost of data storage and satisfying
strict timing constraints and high-data rates. The methodology
that can permit such a design must rely on (1) constraint
modeling for both I/O timing and internal data memory, (2)
constraint analysis for feasibility checking and (3) high-level
synthesis.

In [7] and [8], we proposed a methodology for SoC design
that is based on the re-using of algorithmic description. Our
approach is based on high-level synthesis techniques under I/O
timing constraints and aims to optimally design the
corresponding component by taking into account the system
integration constraints: the data rate, the technology, and I/O
timing properties. In [9], we have introduced a new approach to
take into account the memory architecture and the memory
mapping in the behavioral synthesis of real-time VLSI circuits.
A memory-mapping file was used to include those memory
constraints in our HLS tool GAUT [10]. In this paper, we
propose a design flow based on formal models that allow high-
level synthesis under both I/O timing and memory constraints for
digital signal processing algorithms. DSP systems designers
specify the I/O timing, the computation latency, the memory
distribution and the application’s data rate requirements that are
the constraints for the synthesis of the hardware components.
This paper is organized as follows: In section 2 we formulate the
problem of synthesis under I/O timing and memory constraints.
Section 3 presents the main steps of our approach, and its
underlying formal models. In section 4, we demonstrate the
efficiency of our approach with the didactic example of the Fast
Fourier Transform (FFT).

II. PROBLEM FORMULATION

In this section, we illustrate the inter-dependency between the
access parallelism to memory and the timing performances as
well as the influence of these two parameters on the resulting
component architecture. Let us consider a hardware component
based on a generic architecture composed of two main functional
units: one memory unit MU and one processing unit PU.
Suppose the computation processed to be c = (a*v1 + v3)-
(b*v2+v4) where v1, v2, v3 and v4 are variables values stored in
memory. Fig. 1(a) shows the Signal Flow Graph (SFG) of this
algorithm. This component receives input data a and b from the
environment through an input port and sends its result c on the
output port. All the data used and produced by the processing
unit are respectively read and written in a fixed order

a v1

*

x1

b v2

*

x2

c

v3

+

x3 x4

v4

+

-

aReg1
v1Reg2
*

x1Reg3

b
v2

y1

Reg4

+
Reg5

*

x2

c

v3
+

y2

v4

-

Reg6

Reg7

Reg8

t
Latency

(a) (b)
Fig. 1: (a) Signal Flow Graph SFG, (b) Timing behavior,

sequence S =(a,b,c): i.e. ta<tb< tc. The read sequence of two
variables v1 and v2 is completely deterministic i.e.: tv1 < tv2. with
tv1 = ta and tv2 = tb. However, a scheduling choice is needed to
access data v3 and v4 since a single memory bank is available in
the component.
In our example, we choose to access v3 before v4. In this
context, the minimum latency is therefore equal to 5 cycles (Fig.
1(b)). Fig. 2 presents a possible corresponding architecture of the
processing unit that includes 1 multiplier, 1 adder, 1 substractor
and 8 registers.

Processing unit

reg2
reg3

reg4

Memory Unit

A B
S

reg1
*

v1, v2, v3, v4

reg5

reg6

reg7
- reg8

+

Fig. 2: Sequential architecture

Let us now consider the following data transfer sequence
Sbusses = (a | b, c): i.e. ta=tb< tc. If the latency required to produce
the result is long enough (≥ 5 cycles) to allow a reordering
(serialization) of input data a and b, then the previously designed
architecture including one memory bank can be reused.
However, this solution need to design an input wrapper
composed of 1 register, 1 multiplexer and 1 controller. If the
required latency is not long enough (i.e. = 3 cycles), the designer
must design a new component including 2 multipliers, 2 adders,
11 registers and 2 memory banks (see Fig. 3). In such a case,
because of their restricted customization capabilities, neither a
pre-designed component nor a macro generator would be
flexible enough to respond to the new design constraints.

Processing unit
reg2

+

reg4

reg4

reg5
reg1

*

reg12

reg11
*B

C
A

reg3

reg5
+

reg7

reg8

Memory Unit #1

Memory Unit #2

-

v1 v3

v2 v4

Fig. 3: Parallel architecture

As stated before, a new design flow, based on synthesis under
constraints, is needed to get flexibility and to make the DSP

component design easier. This includes (1) modeling styles to
represent I/O timing and memory constraints, (2) analysis steps
to check the feasibility of the constraints (3) methods and
techniques for optimal synthesis.

III. DESIGN APPROACH OVERVIEW

The input of our HLS tool [10] is an algorithmic description that
specifies the functionality disregarding implementation details.
This initial description is compiled to obtain an intermediate
representation: the Signal Flow Graph SFG (see Fig. 4).

A. Timing Constraint Graph

In a first step, we generate an Algorithmic Constraint Graph
ACG from the operator latencies and the data dependencies
expressed in the SFG. The latencies of the operators are assigned
to operation vertices of the ACG during the operator’s selection
step in the behavioral synthesis flow. Starting from the system
description and its architectural model, the integrator, for each
bus or port that connects the component to others in the SoC,
specifies I/O rates, data sequence orders and transfer timing
information. We defined a formal model named IOCG (IO
Constraint Graph) that supports the expression of integration
constraints for each bus (id. port) of the component. Finally we
generate a Global Constraint Graph (GCG) by merging the ACG
with the IOCG graph. Merging is done by mapping the vertices
and associated constraints of IOCG onto the input and output
vertices set of ACG. A minimum timing constraint on output
vertices (earliest date for data transfer) of the IOCG are
transformed into the GCG in maximum timing constraints (latest
date for data computation/production).

After having described the behavior of the component and
the design constraints in a formal model, we analyze the
feasibility between the application rate and the data
dependencies of the algorithm, in function of the technological
constraints. We analyze the I/O timing specifications according
to the algorithmic ones: we check if the required constraints on
output data are always verified with the behavior specified for
input data. The entry point of the IP core design task is the
global constraint graph GCG.

B. Memory Constraint Graph

As outlined in the previous subsection, A Signal Flow Graph
(SFG) is first generated from the algorithmic specification. A
Memory Constraint Graph is a cyclic directed polar graph
MCG(V',E',W') where V'={v'0,..., v'n} is the set of data vertices
placed in memory. A memory Constraint Graph contains
|V'|=n+1 vertices which represent the memory size, in term of
memory elements. The set of edges E'=(v'i, v'j) represents
possible consecutive memory accesses, and W' is a function that
represents the access delay between two data nodes. W' has only
two possible values: Wseq (sequential) for an adjacent memory
access in memory, or Wrand (randomize) for a non adjacent
memory access. In our approach, this SFG is parsed and a
memory table is created. All data vertices are extracted from the
SFG to construct the memory table. The designer can choose the
data to be placed in memory and defines a memory mapping. For
every memory in the memory table, we construct a weighted
Memory Constraint Graph (MCG). It represents conflicts and
scheduling possibilities between all nodes placed in this
memory. The MCG is constructed from the SFG and the memory
mapping file. It will be used during the scheduling process.

Algorithm

Compilation

SFG

Selectionoperators

ACG

Synthesis under
I/O timing and

Memory constraints

Merging

IOCG

GCG

Analysis

Memory placement
& variable distribution

MCG

RTL

I/O refinement

nok

Fig. 4: Proposed Synthesis Flow

Fig. 6(b) shows a MCG for the presented example with one
simple port memory bank. The variable data v1, v2, v3 and v4
are placed consecutively in one bank. Dotted edges represent
sequential accesses (two adjacent memory addresses) and plain
edges represent random accesses (non-adjacent addresses).
Further information about the formal models and the memory
design can be found in [7], [8], [9].

C. Scheduling under I/O and Memory Constraints

The classical “ list scheduling” algorithm relies on heuristics in
which ready operations (operations to be scheduled) are listed by
priority order. In our tool, an early scheduling is performed on
the GCG. In this scheduling, the priority function depends on the
mobility criterion. For operations that have the same mobility,
the priority is defined using the operation margin. Next,
operations are scheduled and bind to operators (see Fig. 5).

Scheduling_Function
1) Operation_Mobility_computing(GCG)
2) For (time = 0; time < End; time = time + t_cycle)
3) List = Operation_Priority_listing(GCG)
4) Ready_Ops = Find_schedulable_operation(List, time)
5) Binding(Ready_Ops, operators_set, MCG, time)
6) End for

Binding Function
1) While (Ready_Ops!= NULL)
2) Ops_low_mobility = Get_first(Ready_Ops)
3) if(Op_low_mobility->margin > 0)
4) If(Find_mem_conflic(MCG, Ops_low_mobility) = FALSE)
5) If(operators_set != NULL)
6) Ops_Binding(sh_list, operator)
7) else //no opr or mem conflict
8) Posponed(Ops_low_mobility)
9) else // margin = 0
10) If(Find_mem_conflic(MCG, Ops_low_mobility) = FALSE)
11) Operator_cretation()
12) Ops_Binding(sh_list, operator)
13) else
14) Exit(cycle, operator, operation, memory bank, …)
15) end if
16) End while

Fig. 5: Pseudo code of the scheduling algorithm

An operation can be scheduled if the current cycle is greater than
the ASAP time. Whenever two ready operations need to access
the same resource (this is a so-called resource conflict), the
operation with the lower mobility has the highest priority and is
scheduled. The other is postponed. When the mobility is equal to

zero, one new operator is allocated to this operation. To perform
a scheduling under memory constraint, we introduce memory
access operators and add an accessibility criterion based on the
MCG. A memory has as much access operators as access ports.
The list of ready operations is still organised according to the
mobility criterion, but all the operations that do not match the
accessibility condition are removed from this list. Hence, when
the mobility is equal to zero, the synthesis process exits and the
designer have to target an alternative solution for the component
architecture by reviewing the memory mapping and/or modifying
some communication features.

Our scheduling technique is illustrated in Fig. 6 using the
previously presented example where the timing constraints are
now the following: S =(a|b,c) i.e. ta = tb < tc. The memory table
(Fig. 6(a)) is extracted from the SFG and is used by the designer
to define the memory mapping. Internal data v1, v2, v3 and v4
are respectively placed at address @0, @1, @2 and @3 in the
bank0. Our tool constructs one Memory Constraint Graph MCG
(Fig. 6(b)). In addition to the mapping constraint the designer
also specifies two latency Lat1=5 cycles and Lat2=3cycles.

For latency Lat1, the sequential access sequence is v1 → v2 →
v3 → v4 : it includes 3 dotted edges (with weight Wseq). To deal
with the memory bank access conflicts, we define a table of
accesses for each port of a memory bank. In our example, the
table has only one line for the single memory bank0. The table of
memory access has Data_rate / Sequential_access_time elements.
The value of each element of the table indicates if a memory
access operator is idle or not at the current time (control step
c_step). We use the MCG to produce a scheduling that permits to
access the memory in burst mode. If two operations have the
same priority (margin = Lat1-T(+)-T(*) = 1 cycles) and request
the same memory bank, the operation that is scheduled is the
operation that involves an access at an address that follows the
preceding access. For example, multiplication operation (a*v1)
and (b*v2) have the same mobility. At c_step cs_1, they are both
executable and the both operands v1 and v2 are stored in bank0.
MCG_1 indicates that the sequence v1 → v2 is shorter than v2
→ v1. We then schedule (a*v1) at c_step cs_1 and (b*v2) at
c_step cs_2 to favour the sequential access (see Fig. 6 (c)). At
c_step cs_3, addition (x1+v3) and (x2+v4) have the same
mobility, the MCG indicates that sequence v2 → v3 is shorter
than v2 → v4. Addition (x1+v3) is scheduled at c_step cs_3 and
(x2+v4) at c_step cs_3.

Bank @
v1 0 0
v2 0 1
v3 0 2
v4 0 3

Bank @
v1 0 0
v2 0 1
v3 0 2
v4 0 3

v1

v3

v2 v4

v1

v3

v2 v4

 b

v2

a

v1

c

��� � ��� � ��� �

* +

-

*

v3

+

v4

��� � ��� �

x1

x2

(a)Memory

Table
(b) MCG (c) Scheduling

Fig. 6: Scheduling under I/O timing and latency constraint

For latency Lat2, multiplication operation (a*v1) and (b*v2)
have the same mobility that is null. Both operations must then be
scheduled in c_step cs_1. Because of the memory access
conflict, there is no solution to the scheduling problem: the
designer has hence to review its design constraints. He can target
an alternative solution by adding one memory bank or by
increasing the computing latency.

IV. EXPERIMENTAL RESULTS

We described in the two previous sections our synthesis design
flow and the scheduling under I/O timing and memory
constraints. We present now the results of synthesis under
constraints obtained using the HLS tool GAUT [10]. The
algorithm used for this experience is a Fast Fourier Transform
(FFT). This FFT reads 128 real input Xr(k) and produces the
output Y(k) composed of two parts: one real Yr(k) and one
imaginary Yi(k). The SFG includes 16897 edges and 8451
vertices. Several syntheses have been realized using a 200MHz
clock frequency and a technological library in which the
multiplier latency is 2 cycles and the latency of the adder and the
subtractor is 1 cycle.

A. Experiment 1: Synthesis under I/O timing constraints

In this first experiment we synthesized the FFT component under
I/O timing constraints and analyzed the requirements on memory
banks. In order to generate a global constraint graph GCG,
minimum and maximum timing constraints have been introduced
between I/O vertices of the ACG graph using the IOCG model.
The FFT latency is defined by a maximum timing constraint
between the first input and the first output vertices. The specified
latency (that is the shortest one according to the data
dependencies and the operator latencies) corresponds to a 261
cycles delay. The FFT component is constrained to read one Xr
sample and to produce one Y sample every cycle.
The resulting FFT component contains 20 multipliers, 8 adders
and 10 subtractors (see Exp#1 at Table 1). 8 memory banks are
required for those I/O timing constraints. However, the internal
coefficients are mapped in a non-linear scheme in memory. A
large amount of memory bank is needed to get enough parallel
accesses to reach the specified latency. Moreover, coefficients
can possibly be located in multiple banks what requires the
design of a complex memory unit.

B. Experiment 2: Synthesis under memory constraints

In this second experiment we synthesized a FFT component only
under memory constraints. Only the maximal number of
concurrent access to the memory banks limits the minimal
latency. Thus, with a large amount of operators, a latency equal
to the critical path delay of the SFG could be obtained. For this
reason, we synthesized the FFT with the same number of
operators than in the first experiment. Then, we analyzed the
requirement on I/O ports and computation latency. The memory
constraints are the following: 2 memory banks respecting a
simple mapping constraint: the 128 real coefficient Wr in bank0
and the 128 imaginary coefficient Wi in bank1.
The shortest latency imposed by the memory mapping and the
number of operators corresponds to a 215 cycles delay (Exp#2 at
Table 1). This delay is shorter that the delay obtained in the
previous experiment. This architecture requires 36 input busses
and 14 outputs. However, a large amount of busses with non-
trivial data ordering (non-linear data index progression) is
needed. If the environment imposes the exchange of data over a
smaller number of I/O busses, a communication unit should be
designed. This unit would be able to add extra latency to
serialize data.

C. Experiment 3: Synthesis under I/O timing and
memory constraints

In this last experiment, we synthesized the FFT component
under both I/O timing and memory constraints. We kept the

memory mapping used for the second experiment and founded
the shortest latency that allows to respect the I/O rates defined in
the first experiment. The resulting architecture contains 17
multipliers, 8 adders and 10 subtractors (see Exp#3 at Table 1). It
produces its first result after 343 cycles.

TABLE 1: SYNTHESIS RESULTS

 Memory
bank.

Input
busses

Output
busses

Sub. Add. Mult. Latency
(in cycle)

Exp#1 8 1 2 10 8 20 261

Exp#2 2 36 14 10 8 20 215

Exp#3 2 1 1 10 8 17 343

Because of both the memory mapping and the I/O constraints,
the latency is greater than in experiment 1 and 2. However, the
architecture complexity is equivalent to the previous ones in
term of operators. Hence, it appears that synthesis under both I/O
timing and memory constraints allows to manage both the
system’s communication and memory, while keeping a
reasonable architecture complexity.

V. CONCLUSION

In this paper, a design methodology for DSP component under
I/O timing and memory constraints is presented. This approach,
that relies on constraints modeling, constraints analysis, and
synthesis, helps the designer to efficiently implement complex
applications. Experimental results in the DSP domain show the
interest of the methodology and modeling, that allow tradeoffs
between the latency, I/O rate and memory mapping. We are
currently working on heuristic rules that could help the designer
in exploring more easily different architectural solutions, while
considering memory mapping and I/O timing requirements.

ACKNOWLEDGEMENTS

These works have been realized within the French RNRT Project ALIPTA.

REFERENCES

[1] J. Ruiz-Amaya, and Al., “ MATLAB/SIMULINK-Based High-
Level Synthesis of Discrete-Time and Continuous-Time Σ∆
Modulators“ , In Proc. of DATE 2004.
[2] L. Reyneri, F. Cucinotta, A. Serra, and L. Lavagno. “ A
hardware/software co-design flow and IP library based on
Simulink“ , In Proc. of DAC, 2001.
[3] Codesimulink, http://polimage.polito.it/groups/codesimulink.html
[4] H. Ly, D. Knapp, R. Miller, and D. McMillen, “ Scheduling
using behavioral templates,” in Proc. Design Automation
Conference DAC'95, June 1995
[5] N. Passos, and al, “ Multi-dimensional interleaving for time-
and-memory design optimization “ , in Proc. of ICCD, 1995
[6] A. Nicolau and S. Novack, “ Trailblazing a hierarchical
approach to percolation scheduling,” in Proc. ICPP'93, 1993,
[7] P. Coussy, A. Baganne, E. Martin, " Communication and Timing
Constraints Analysis for IP Design and Integration", In Proc. of IFIP
WG 10.5 VLSI-SOC Conference, 2003.
[8] P. Coussy , D. Gnaedig, and al., “A Methodology for IP
Integration into DSP SoC: A Case Study of a MAP Algorithm for
Turbo Decoder” , In Proc. of ICASSP, 2004
[9] G. Corre, E. Senn, and al., “Memory accesses Management
During High Level Synthesis” , In Proc. of CODES-ISSS, 2004.
[10] GAUT - HLS Tool for DSP, http://lester.univ-ubs.fr:8080/

