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Two-Stream Instabilities in Plasmas

Dedicated to Cathleen S. Morawetz

S. Cordier ! | E. Grenier ? and Y. Guo ®

Abstract: One of the classical fluid models to describe plasma dynamics
is so-called ‘two-fluid” model, where electrons and ions are regarded as two
compressible fluids. It is well-known that in many circumstances, two streams
of charged steady fluids with different constant speeds are linearly unstable.
It is shown in this article that they are indeed nonlinearly unstable in a
dynamical setting.

1 Introduction

The two-stream instability is one of the most classical examples of velocity
space instability that occurs in plasma physics. Some devices like traveling
waves amplifiers are based on this phenomenon. On the other hand, it is also
one of the reasons in the failure of some controlled thermonuclear reactions
schemes (see [7] page 449).

We shall study the following three classical cases arising in the ‘two-fluid’
model in plasma physics. Let the spatial variable = belong to the periodic
interval T =R /Z.

We first consider two beams of cold pressure-less electrons with densities
n;(t, ) and velocities u;(¢, x), moving in a fixed ion background. In one space
dimension, the Euler-Poisson equations are

i + O (niu;) =0,
XTI R— ) (1)

me

0.F = —4x(ny + ng — 1),
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where ¢ = 1,2, F(t, ) is the self-consistent electric field, and m. is the mass
of an electron. We also impose the neutral condition which is invariant for
all time:

/Td[nl(t,x) +na(t,2) — 1)de = 0. 2)

With the same notations, we next consider two streams of electrons with
pressure moving along one direction in a motionless ion background. The
Euler-Poisson system now takes the form:

i + Op(niu;) = 0,

€

E

1
Ou; + w0y + —0ppi(ni) = —
n; Me

0.F = —4r(ny +ng — 1),

) (3)

where ¢ = 1,2. Here the p;(n;) are the corresponding partial pressures which
are given strictly increasing functions, so called pressure laws, of the density.
Typically, one consider adiabatic p;(n) = C;n” for some C; > 0 and v > 1,
or isothermal pressure law p;(n) = C;logn, where C; is a temperature. We
also assume (2).

In the last case we consider two streams of moving ions and electrons.
The Euler-Poisson system now consists of

atn]‘ + 6x(ujnj) =0,
1 q;
Ghuj + u;Opu; + n—jaxpj(nj) = —ﬁ]an (4)

&UE =Ny — Ny,

for j = 1,2, where = € T? (periodic d-dimensional torus), I is the electric
field, n;(t, ) are the densities of ions and electrons respectively, u;(t, z) are
their velocities, m; are their masses, ¢; = +1, g = —1, and the partial
pressure p; are given functions as in system (3). We also assume neutral
condition (4) as:

[ it ) = naft,a))da = 0. (5)

T

For notational simplicity, we use [-,-] to denote the transposition of a

vector. In the study of Cauchy problems of all three systems (1), (3) and (4)

with periodic boundary condition, clearly a constant vector [n{,n$,u?, u9]

with n{,ny > 0 is a steady state solution if n{ + n9 = 1 in the cases of

(1) and (3), or a solution to (4) if n{ = n). In contrast to the case when



ions and electrons move at the same speed uj = uj) (see Appendix A), if
ul and u§ are different, this simple equilibrium is not always linearly stable.
This is a very well-known physical phenomenon, called two-stream instability
in plasma literature, see p116-p169 in [9]. We shall discuss the conditions
for linear instability in section 3. The main goal of this article is to show
that this kind of linear exponential instability indeed implies the dynamical
instability. Let w(t) = [n1(t) — n%, na(t) — n9, ug(t) — ul, ua(t) — ul).

Theorem 1.1 In (1), (3) and (4), if the steady state [n9,n9,ul, u9] is lin-
early unstable then it is nonlinearly unstable: for any s arbitrary large,
there exists ¢ > 0, such that for any 6 > 0 arbitrary small, there exist
solutions w’(t,x) to the corresponding evolution (1), (3) or (4), such that
Hw‘s((),x)HHs(Td) < ¢ but for some T° = O(|Iné|), we have

1w (7%, |2 ray > €o- (6)

and

Hwé(Tév')HLOO(Td) > €. (7)

We remark that such instabilities occur before the possible break-down
of the smooth solution (Theorem 2.1): that is, for all 6 > 0,

sup ||w’(t, M reay < +oo.
0<t<T?

Moreover, the escape time 7 is determined by the exponential growth rate
of the linearized system.

The passage from linear instability to nonlinear instability in PDE set-
ting is subtle in general, especially when high-order perturbations in the full
nonlinear equations consist of severe unbounded terms (usually with higher
derivatives not controlled by linear estimates). In kinetic models for plasma,
using a dominant linear growing mode, Strauss and the third author have
developed methods to study weakly spatially inhomogeneous equilibria, [5],
[6] (see Appendix B). In a different study of instabilities in perfect fluids
[4], the second author has developed another approach in which higher-order
growing modes are constructed. This method seems more general, particular
for investigations of spatially inhomogeneous equilibria.

The abstract frame work is given in section 2. Notice that the key assump-
tion enables us to prove the nonlinear instability is (A2), which is an estimate



of the spectral radius of the linearized operator in terms of its eigenvalues.
In section 4, we verify (A2) in different Euler-Poisson systems to apply the
abstract instability result. For the Euler-Poisson system (3) and (4) in pres-
ence of pressures, (A2) follows easily. On the other hand, the proof of (A2)
for the pressure-less system (1) is more delicate. Because of the difference of
the two speeds v and 9, certain compactness for solutions to the linearized
system is obtained. An alternative proof for instability in the presence of
pressures ((3) and (4)) is given in Appendix B.

2 Abstract Instability

Based on the paper of [4] we first establish the passage from the linear insta-
bility to nonlinear instability in a general L* framework.

Let 0 € Q C R™ be an open subset. For ¢ > 0 small enough,  contains
a ball of center 0 with radius . Consider the system of equations

d
dw + > Ai(w)dw + L(w) = F(w) (8)
=1
where w(t, ) € R" for some n > 1, x = (21, ...,z4) € T% A;(w) are n x n real

matrices, L(w) and F(w) are n dimensional vector valued functions defined
on {2, depending in a C'* manner on w. We assume that L is linear with
respect to w and the nonlinear part F' satisfies F'(0) = 0 and F'(0) = 0 (in
applications, F' is quadratic in w).

The main assumptions are

(A1) A, are symmetrizable matrices : there exists a n x n positive definite
matrix S(w) > ald with a > 0, for all |w| < o, such that for every
1 <e¢<d, SA; 1s a symmetric matrix.

(A2) There exists a C™ eigenvector r of —3; A;(0)0; — L such that
b= 2 4@ () < Cy(A)exp(AL) [0+, (9)

for every v € H?, where 0 < Rel < A < 2Re), and A is the eigenvalue
of r.

The main theorem in this section is the dynamical instability of the zero
solution to (8).



Theorem 2.1 Assume (A1) and (A2). Then the stationary solution to (8)
w(t) = 0 is nonlinearly unstable: for any s arbitrary large, there exist g > 0,
such that for any § > 0 arbitrary small, there exists a solution w®(t) of (8)
such that ||w®(0,.)||gs < 8 but

sup [lw’(t, M ee(ray + sup Jw’ (2, M@y < o/2; (10)
0<t<T? 0<t<T?
[ (T, ) prray > €0 > 0, (11)

where T° = O(|In §]), for any 1 < p < 0.

The proof of this Theorem relies on two ingredients. First, we estimate
the difference between the true solution and an approximate solution by
basic energy estimates. Then, we construct an approximate solution with
high-order accuracy. Notice that this Theorem can be extended to the whole
space case (see [4] for more details).

We first estimate the error v = w— ¢, where ¢ is an approximate solution.

Lemma 2.2 Assume (Al). Let s > [d/2] + 1, and let ¢(t,2), R(t,x) €
L (H?). There exists a continuous function gs(-,-) such that if v satisfies

loc

d d
0o+ 37 Al d+0) 0w+ [Ai(é+0) = A(@))0i6+ L(v) = F(¢+v)—F(¢)+ R,
1=1 1=1 (12)
then we have
Oclllwlllz < gaClll s [Tl + 2N, (13)
where the norm ||| - |||s s defined by (with S in (Al))
Il = % [ oz0s(o+ 0oz, (14)
jal<s

Proof of Lemma 2.2. The proof is straightforward by classical energy
methods as in [8], [3]. Notice that since S > ald,

allollzs < fllvllls < C5ll@llm=; [[ollm)l[o]l (15)

provided s > [d/2] + 1, for some nondecreasing function C!. QFED
We now construct an approximate solution. Let § be a small positive
constant (independent of §). We define T° by

0 = R’ (16)



Lemma 2.3 Assume (A1) and (A2) and fix an integer N > 0. There is an
approximate solution w® = Zé\f:l §r; to (8) such that

d
oyw® —I—ZAi(wa)aiwa + L(w") = Ry + F(w®). (17)

=1

Moreover, for every integer s > 0, there is 8 sufficiently small, such that if
0<t<T°®asin (16), r; and R satisfy

|rjllme < Csnexp(jRe At), for 1 <57 < N, (18)
| R |l zre < Cy T eXp((N + 1)Re)\t). (19)

Proof of Lemma 2.3: We shall construct r; satisfying (18) inductively
on j.

For j = 1, choose the eigenvector r in (A2) with its eigenvalue . We
construct

ri(t,x) = rexp(At) + fexp(j\t), (20)

where - denotes the complex conjugate. Clearly ry satisfies (18).
Assume that we have constructed r; which satisfies (18) and (17) for
J < N. We now construct r;4q. Let

wj = kZi:(Skrk(t,x). (21)
We then define
hjy1(6) = E[Ai(wj) — Ai(0)]0w; — F(w;). (22)

For 0 < ¢ < T? and with # small, we can expand hj+1(6) in term of 6 around
6 = 0. The coefficient of the (j + 1)-th order term (which is a function of

(J+1)
t,x) still) is el (,0). On the other hand, notice that for 0 < ¢ < T,
(+1)!
N AL0) | AN oo (@0 T

Ai(w;) — Ai(0) = Lewh 40 [ ! 23

(w;) — A:(0) ; o ( N1 1) ) (23)
FY(0) |FN+1|Loo(Q)wN+1

Flw;) = '+ 0 L. 24

(i) = 2 =+ ( (N +1)! (2

jop)



Plugging (23) and (24) into (22), we obtain

h(‘jﬁl)(o) lda e o !

J+ — 19625000y N+1 11 12 . N N+1

(] n 1)[ - Z Bj17j27~~~]N+17irj1rj2 al ]N+1 (25)
: h4l+. +Hypr=5+1

where [, > 0,1 < k < j and Bl depends on A; and F. By induction

J1 ]27~~~]N+1 {

hypothesis (18) for rg, 1 < k < j, we obtain

ARI()

m CS7N€(11+12+"+1N+1)R6/\ t_ CS7N€(j+1)ReA i (26)
H

We now define the r;4; as the solution of

hEN )
i1 + g Ai(0)0irjp1 + L(r = -7
thj+1 gt J+1 ( ]+1) (] + 1)’

with initial data r;41(0,2) = 0. By (9), (26) and Duhamel principle,

]-I-l)

t .
—I_ 1) dr S CN‘/O eA(t—T)e(]—I—l)Re/\TdT

st e < C [ Mo

< CN@ (7+1)ReXt

since j + 1 > 2, and A < 2ReA. Hence (18) follows.
Having constructed all r;, for 1 <3 < N, we now define w® = Zé\f:l §r;.
Clearly
N 5j+1h(j+1)(0)
dw® +> A (0)0w® + L(w*) = =) —————~
' ZZ; j:l (] —I_ ]‘)'

Let w; be replaced by w® in (22), we define

h(8) = o[Ai(w?) = A(0))0w" — F(w?).
We define G4)
N gj+13+1
Ry = — Z Lﬂ(o) + h(8). (27)

j=1 (7 + 1)

Replace w; by w® in expansions of (23) and (24). Notice that h(é) is quadratic
in w?, its j + 1-th order term is the same as in hj1(6), forall 1 <j+1 < N.

7



Therefore, Ry consists of only those terms of orders at least of N + 1. From
the argument in (25), we deduce that R% satisfy (19). QED

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1: Based on the approximate solution w® in
Lemma 2.3, for which N will be chosen later, we now construct a family
of solutions w® which are unstable. We define w® to be the solution of (8)
with initial data w®(0). We know that w® exists in small time since the ma-
trices A; are symmetrizable. We want to bound w® — w® and estimate the
existence time interval for w’. Let v = w® — w® which satisfies v(0,-) = 0
and

&gv—l—ZA (0" + ) 8v—|—2[ (0" 4+ v) — i(w“)]aiw“—l—[/(v): (28)
=1 =1
—RYy + F(wé) — F(w®).
Using Lemma 2.2, with s = 2d,

Oclllvlllze < gaa(lllw l[lza; ol l2a)llo]l20 + I BA ]2

<
< gaallllew|llzas 1olllza) o]l 5, + €8NV exp (2(N + 1)ReAt).

Let T' (depending on ¢) be the first time ¢ (possibly infinite) such that either
[w]|2a = /2 or |[|v][|l2a = &/2:

T =sup{ t: [l (Dllles < 0/2 No(t)][las < o/2.)

As v(0) = 0 and as |||w*(0)|||s = O(6), T is well-defined for 6 small enough.
Recall (16). We claim that for some 0 small enough, T° < T.
Proof of the claim: Suppose the opposite T° > T. For ¢t < T, we have,
using (15),

2

Iw?]||2a < CZ(S]HTJHHM < ZC 67 exp(jReAt) < Z 0 < o/4

provided € is small.
On the other hand, for t < T', with s = 2d,

I < gaalo/2,0/2) [0l 5 + CE N+ exp (2(N + 1)ReAt).



Using Gronwall inequality and choosing N such that

gralo/2,0/2) |
2ReA 7

and ¢z4 as defined in (13), this insures 2(N 4+ 1)ReX > g94(0/2,0/2) and we
get

N > (29)

Holll2a < €8 exp((N + 1)ReAt) = C'0VF. (30)

But ||v||g2e < a7||v]||24 and ||v]| g2 controls ||v]| . Therefore ||v]]z2a < o/2
provided # is small enough.

Hence 7% < T by their definitions. The claim is proved.

Notice for 0 <t = T, by further choosing # small enough, we have

N
ol = dllwllze = 3 & llw;li

Mz

> Cdexp(ReAT?) — 3" C;67 exp(jReAT?)

2

MIQQ

— 09—200 >

7=2

0.

Moreover, from (30), we conclude

ol = [lw® = w®llpe > [z = Clllw’ = ][]

C

oz =
N+1 C —

3 Dispersion relations and growing modes

In this sectlon we demonstrate that many equilibrium state [n% n;, ]] 7=1,2
with uf # u§ for (1), (3) and (4). Without loss of generality, we assume
ud < ul. The following computations are classical in plasma physics and can
be found for instance in [7]. Let us first consider the 2 cold electrons beams
without pressure, the Euler-Poisson system (1).

The mass conservation for the perturbation density p; = p; exp(ikx —iwt)

and velocity u; = ujexp(tkx — iwt) gives
—wpj + k(nju; + pjuj) =0, j=1,2,

9



The momentum equation for such cold electron beams leads to

e _
. _ . 07 _
—iwu; + zkujuj =——F,
€

where F is the perturbation of the electric field which is related to the per-
turbation of densities through the Poisson equation

ikl = —4mwe(pr + p2).

Eliminating the densities, we get the dispersion relation:

— w2 w2
kE (1 — o r2 — 1
Z ( o= k)2 <w—ku3>2) 0 (31

where wzj = 471'71?62/7716 is the squared plasma frequency of the ¢-th beam.

We want to compute the roots of (31) in the variable y = w/k, where
the wave number k = 27/, with an integer [. In other words, for a given
equilibrium state [n%,u?],j = 1,2, the dispersion relation

w2 w2
k2: pl _I_ P2 =
PR VR T

determines the possible values of ¥ in terms of the wave number k. There are
always at least two real solutions (out of the the interval bounded by [u, uJ]).
The instability with wave number k relies on the existence of complex roots.
Notice that the minimal value of g(y) on the interval [uf, u9] is reached for
the unique root (in the interval [u},u}]) of the third order polynomial (in

variable y)
0

w;l(y - u%)B + wfyz(y - u1)3.
A simple solution can be found in the special case

N T S}
In this case, the plasma frequencies are equal w,; = w3 = w, and the minimal
value of g(y) is 2w?/|uf|?, obtained at y = (uf +u3)/2 = 0. Since the spatial
variable satisfies 0 < x < 1, the wave number & has to be greater than 2x.
Finally, this proves that the linearized system is unstable (with complex y)
if w, > v/27ul. From the physical point of view, this means that the plasma

10



frequency is greater than the typical frequency ( 1/uj being the time for the
electrons beams to cross the domain).
In the general case, the minimum in [uf,u§] (for y = w/k) is obtained for

0 2/3_|_ 0,,2/3

y = UgWpy 1%p2
- 2/3 2/3 7
“p1 + Wp2

and there exists complex root y provided that

0 0
Uy — Uy
> 27, (32)
(wif® + wif®)3r2

We have proved

Lemma 3.1 The system (1) is linearly unstable around [n9,ud, n9, ud] if and

only if (32) holds.

Let us now consider the case (3) with pressure p.
The momentum and mass linearized equations in this case are modified

s (%_&?) b = _en?E7

as

€

where ¢ = p/(nf)/nY is the squared thermal velocity associated to the j-
th beam of electrons, j = 1,2. The thermal velocities measure the velocity
dispersion of the electrons. The two-stream instability occurs for cold plasma
for which ¢; < ||[u§—u3||. Notice that, for neutral particles, there is no electric
field and the above relation gives the velocities of the fluid acoustic waves

w/k =u) ¢

Then, using again the Poisson equation, we obtain the following dispersion
relation : ) )
|- Wy Wi

(w— kuf)? — k2 + (w— kul)? — k2’

Let us assume k fixed. The r.h.s. is a function of w with 4 real poles

ku? + ¢;jk (7 = 1,2). When the two poles associated with different species
are entrelaced, there are four real solutions in w (for example if u§ — ¢y €
[ud — e, ul + ¢1]). When the relative speed is so large that the roots are
not interlaced, some roots become complex. In the physically relevant case

11



i.e. for cold plasma, the relative speed is greater than the thermal velocities.
Using classical result on the perturbation of the roots of polynomials, we
obtain:

Lemma 3.2 The system (3) is linearly unstable (resp. stable) around [n9,ul, n3, ud]

for sufficiently small value of ¢j, 7 = 1,2 if (32) is true (resp. false).

A more precise criterion may be found in some particular cases. Note that
the above analysis could be extended to the case of electrons and ions drifting
with respect to each other, which includes the linearized Euler-Poisson system
(4) with d = 1. See for instance pl66 of [9]. Another way to get such
dispersion relation for (4) relies on the Vlasov theory. Assume a plasma with
an equilibrium distribution of cold electrons f.(v) = 6(v) and ions with a
drifting speed uf i.e. fi(v)é(v—uf). This equilibrium state is electrostatically
perturbed with an oscillation of frequency w. The dispersion relation reads

2 2
1—wp6_|_L

T2 0y2°
w (w— ku?)

For any fixed value of k£ the two-stream instability condition

' 3/2
k] < e {1 s &)2/3}
w

pe

insures the existence of complex roots. The unstable wave has velocity some-
where in between the velocity of the two streams. Since the sign of the charge
does not appear in the above dispersion relation, the same analysis can be
carried out. We refer to [7] for a physical presentation of this phenonenon
and the related Penrose and Gardner criteria.

These results have also been confirmed by computer simulation experi-
ments (by computing the orbits of all charged particles in a plasma using the
actual forces between particles) [1]. This two-stream growth mechanism was
demonstrated experimentally in 1949 by Pierce and Heibenstreit in [10, 7].

4 Two-stream instability

We now prove Theorem 1.1 by applying the abstract Theorem 2.1. We first
normalize all physical constants to be for notational simplicity.

12



Proof of Theorem 1.1 for (3) and (4): It suffices to just consider (4),
the case of (3) is similar.
The Euler-Poisson system (4) takes the form:

0w + A(w)d,w + L(w) =0, (33)
with
w=[ng — n(l),ng — ng,ul — u?,uz — ug]
Here
ud + ws 0 nd + w 0
0 u? 4 wy 0 nd + w,
A(w) pi(n? +wy)/n; 0 u? + ws 0 (34)
0 pl(n? + wy)/n. 0 u? + wy
and
0
Lwy=| ° (35)
m;'E
—m;'FE

Let us check assumptions (A1), (A2) and (A3) of Theorem 2.1. We take

no no
0 = {wllw | < 5w < —=}.

2
Let
pi(nd +wy)/n; 0 0 0
_ 0 pu(ng +ws)fne 0 0
0 0 0 n? + w,

S is positive definite and SA is a symmetric matrix, therefore (Al) is true.
Since L is compact from L? to L?, (A2) is straightforward by Lemma 4.1 with
K =L and T = A(0)0,. As A(0) and L have constant coefficients, taking
Fourier series, we see that for a given eigenvalues A we can take an associate
eigenvector which is a plane wave, and which is therefore smooth. By the
neutral condition (2), L commute with spatial derivatives. This proves (A2).
Theorem 1.1 is then a consequence of Theorem 2.1.

13



Proof of Theorem 1.1 for (1): In order to use Theorem 1.1, we first
take x derivative in the momentum equation to rewrite (1) as:

Oni + uiden; = —n;0yu;,
6tui —|— E = —uial,ui

where ¢ = 1,2, and the electric field is still given by the Poisson equation.
By letting

w=[ng — n(l),ng — ng,ul — u?,uz — ug,axul,al,uz],
we reformulate (1) as
O + Ao + L(w) = Flw) (31)
where A(w) = diag(uy,ug,0,0,uy, uz) with uy = ws + uf,uy = wy + uf, and

L(w) = [n?@xul, ngal,uQ, E+ u(l)al,ul, E+ ugal,uz, 0. F,0,.F]

0 0 0 0
= [njws, nywe, F + ujws, F + uyws, —w; — we, —wy — ws).

We also have

F(w) = [—(nl —n)pur, —(na — n9)0pug, —(ur — ud)dpur, —(uy — u)dpusy,

—(Dut1r)?, —(Dp2)?]
= [—w1w5, —WaWeg, —W3W5, —W3Wsg, _wgv —wé]

Clearly, (A1) is satisfied.
We now check (A2). In order to verify the estimate for the spectral radius
in 2.1, we now state a lemma which was essentially proven by Vidav [11].

Lemma 4.1 Let Y be a Banach space and T' be a linear operator that gen-
erates a strongly continuous semigroup on Y such that ||exp(—tT)|| < M.
Consider

d—j L To+ Ko =0,
v(0) = vg

14



where K is a bounded operator from'Y to Y and e 'Kl — =T s compact

from'Y toY for every t. Then, (T + K) generates a strongly continuous
semigroup exp(—t(T + K)) and the spectrum of (=T — K') consists of a finite
number of eigenvalues of finite multiplicities in {ReX > &} for all 6 > 0.
These eigenvalues can be labeled by

ReX > ReA; > ... > ReA,, > 6.
Furthermore, for every A > Rel, there is a constant Cy such that
lexp(—t(T + K)oy < Caexp(Ad).

We now apply Lemma 4.1 to the pressure-less case (37). We shall study
its linear operator near w = 0. Notice that the components equations for ws
and wy in (37) are decoupled from other unknowns. We therefore only need
to study the following reduced linear system to verify (A2). We decompose
the reduced (ignoring ws, wy4) linearized operator as:

d
4 To+ Ko =0 (38)

where v = (wy, wy, ws, we), acting on Y = L% where

uf 0 0 0 0 nY 0O
B 10 ) 0 0 0 0 0 nf
To="Tv+Tw= 0 0 u 0 Oyv + 1 0 o ol (39)
0 0 0 uf 0 -1 0 0
and
0
Kv = 0

T

Notice that for the unperturbed semigroup e™**, we have the following con-

servation law:
[or()]72 + loa()]I72 + 03 llva()]I72 + nSllva(t)[|72: = constant.
Hence we deduce that

le™ vollr2 < Mlvol|e.

15



In order to get (A2), by lemma 4.1, it suffices to show that for every ¢,
{e~IT+K] _ etTY is compact in H®. We first show this is true for s = 0. For
the case s > 0 we just repeat the same argument by taking more spatial
derivatives.

T+K]t,

From (38), we can express e o in term of e Tty plus the source

term — K v as:

d
d—j 1Ty = —Ko.

Therefore, from Duhamel’s principle,
. t
v(t) = e [THR, 0 — =Ty, —/ e_T(t_T)(Kv)(T)dT,
0

where v() is the solution to (38). Notice that by (39), e~71! is a system of
transport equations with constant speeds u9 and u):

e_Tlsg(x) = [gl(x - U?S),gz(l' - ugs)vg?)(x - U?S),g4($ - ugs)]

and

e—Ts _ e—T15—T25

g(x) g(x) = e [gi(x—uis), ga(r—u3s), ga(x—uis), ga(x—ujs)]

for a four vector function ¢, since 77 and T3 commute. Hence,

- 1
[ T+R =Tt = / =T Kov)(r)dr (40)
0

0
_ / o~ To(t=7) 0
0 vo(T,x — ul(t — 7))

v (T, —ud(t — 7))

dr

where v(t) € L? is a solution to (38) and Ty is the constant matrix defined
in (39). The key observation is that the right-hand side of (40) indeed is
compact for solution v(t) to (38) due to different propagation speeds. We
define 9; = 9y + u?d, for i = 1,2. We represent

o= — [0, — ). (41)

uy — uf

Using (41), we take x derivative in (40) to get

0

_ 1 / o~ To(t=7) 0
u —uY Jo (01 — Dova(T, 2 — u(lJ(t — 7))
[81 — 82]1)1(7'7 T — ug(t - 7'))

ax [e—[T-|—K]t . e—Tt]vo
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Since v(t) € L? is a solution to the equation (38), we know that both dyv,
and Qyv; are in L*. On the other hand, notice that dva(7, 2 — u§(t — 7))
and Oqvy (7,2 — ud(t — 7)) are exactly derivatives of v over two different
characteristics. We now integrate over 7 to get (v; being the same):

¢
/ e_T2(t_T)61v2(T, r—ul(t —7))dr
0
¢ d
= /0 e_T2(t_T)Ev2(T, x — u(l)(t —7))dr

¢
=wuy(t,x) — e_TQtvg(O, T — u(l)t) — /0 e_T2(t_T)v2(T, i u(l)(t —7))dr

“[T+K]t _ -Tt

which again is in L%, Therefore, we verify that e e is compact

and (A2) is valid from Lemma 4.1. QFED

5 Appendix A: Stability of One-fluid Plasma

We show that if u) = u?, i.e. if the ions and the electrons have the same
speed, then w® is dynamically stable. The proof is classical and relies on
the construction of a Lyapounov functional, following the ‘energy-Casimir’
method. We first notice, using Galilean invariance, that we can reduce to

the case uf = u? = 0. We then define the energy as

) = ¥ [ {Gmanad + Puln)}+3 [1EE - (42)

Here P, is a strictly convex function (typically, P, = %nl if v > 1, and
P.(ny) = Cynylnn, for v =1).
We then observe that

Hwlt) = () = 5 [ {Pr) + P (ne — )}

a=i,e

is constant in time, positive, convex near w" and that H(w°) = 0. We
therefore have stability (in a norm linked with H).

6 Appendix B: Instabilities for (3) and (4)

In the section, we give a brief sketch of another proof of Theorem for p > 2
for the Euler-Poisson system (3) and (4) with pressures by using only the
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linear growing mode ry in (20), Lemma 2.3. As in Lemma 2.3, we choose

w? (0, ) = §w;(0,z) as in (20). We define
T = sup{t : ||w® — dwy(t,2)||s < ||r][26e™M/2}.

We recall T% as defined in (16) with 6 a small constant, and recall that the
linear operator L as in (35) is compact operator from L* to H".

We now estimate the growth of ||w?(#)||g2« in terms of |[w°(#)]| on 0 <
t < min[T, T?]. Notice that from the compactness of L, for any ¢ > 0,

L") 2 < elllw” [l2a + Cellw®]]2.

By the standard energy estimate (with ¢ =0 as in Lemma 2.2), we obtain

%le‘s(t)!\lzd < g’ O)lza)ll[w’ (1)]l]2a + Cllw’ (£)]]2,

where g is continuous and ¢(0) = ¢. By definition of T, ||w®(#)||z < 3/2]r||eRM
for 0 <t <T. By a standard bootstrap argument, we have

[0 (£) | 2a < Code™ (43)
for 0 < ¢ < min[T,T?] and with 0 in (16) sufficiently small. We can further

choose

) <, Arlier
0

In particular, w®(t) is a classical solution for 0 < ¢ < min[T,T?]. By the
Duhamel’s principle, we have

¢
wé(t) = dwy —I—/ e'c(t_T)A(wS(T))ajw(S(T)dT.
0
Here £L = —A — L. By Lemma 4.1 and (43), for 0 < ¢ < min[T, T?], we have
¢
[w® (1) = bwnlla < / AT AW (7)) 050" (7) || ad 7
0

t
< [ NI A (7)) il ()

CO (56Re/\t) 2 _ 000 52€2Re/\t

HTH2 ReAt
MRer — A <o

~ 2Re) — A 2
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since 6 < 0y. Hence 1% < T and we deduce the theorem by:

sup Hwé(t)Hgd < CobelM < o = 0/2;
0<t<T?

o (T[22 = Slwnllze — [’ (t) — Swn]|12

0 0
= O|r|ls - §HTH2 = §HTH2 = €.
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