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HARDY-SOBOLEV SPACES OF COMPLEX TANGENTIAL
DERIVATIVES OF HOLOMORPHIC FUNCTIONS IN DOMAINS

OF FINITE TYPE

SANDRINE GRELLIER

Abstract. In this paper, we prove Fefferman-Stein like characterizations of

Hardy-Sobolev spaces of complex tangential derivatives of holomorphic func-

tions in domains of finite type in Cn. We also study the relationship between
these complex tangential Hardy-Sobolev spaces and the usual ones. We also

obtain partial results on domains not necessarily of finite type.

§0. Introduction

In this paper, we consider Hardy-Sobolev spaces of complex tangential deriva-
tives of holomorphic functions in some domain Ω in Cn. Let us precise the definition
when n = 2. For L a complex tangential derivative in Ω, k ∈ N and u a holomor-
phic function in Ω, we denote by ∇k

T u the (k + 1)-tuple of functions given by
(u, Lu, ..., Lku). Then, we consider, for 0 < p < ∞, the space Hp

k,T (Ω) of holo-
morphic functions u in Ω for which the normal maximal function of |∇k

T u| belongs
to Lp(∂Ω). We mathcall the complex tangential Hardy-Sobolev space of order k
Hp

k,T (Ω). One has to put in parallel the usual Hardy-Sobolev space Hp
k(Ω) which

is defined in terms of the total gradient. For this last one, Fefferman-Stein like
characterizations hold in terms of the Littlewood-Paley function, the area integral
or the maximal admissible function. These characterizations are proved when Ω is
strictly pseudoconvex or of finite type in C2 where one can define geometrimath-
cally adapted admissible approach regions. Since derivation preserves holomorphy,
this follows from the corresponding characterizations of the Hardy space of holo-
morphic functions. We prove here analogous characterizations of Hp

k,T (Ω) when Ω
is of finite type in Cn with the main difficulty that complex tangential derivation
does not preserve holomorphy. Here, we say that Ω is of finite type m when
the Lie brackets up to order m of the complex tangential vector fields
generate all the tangential space. Let us point out that part of the charac-
terizations of Hp

k,T (Ω) (as well as all the characterizations of Hp
k(Ω)) hold without

any assumptions of finite type on Ω. In this case, we use a family of admissible ap-
proach regions A(m)

α (ζ), ζ ∈ ∂Ω, which are arbitrarily large, as m increases, around
Levi flat points ζ but which cöıncide with the hyperbolic approach regions around
stricly pseudoconvex points and which fit the domain around points of finite type
m in C2.

Moreover, we study the relationship between Hp
k,T (Ω) and Hp

k(Ω). Note that
in [11] and in [6], results were given in strictly pseudoconvex domains (or more
generally in domains of finite type 2, the case of the unit ball in Cn have been
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2 SANDRINE GRELLIER

done previously in [1]). In this case, Hp
k(Ω) identifies with Hp

2k,T (Ω). The situation
cannot be as simple in the general case, since the inclusion Hp

k(Ω) ⊂ Hp
2k,T (Ω)

cannot be improved because of the strictly pseudoconvex points. To obtain con-
verse inclusions, some finite type hypothesis is necessary. One needs to recover all
complex derivatives from complex tangential ones. When Ω is of finite type m, we
prove that a holomorphic function in Hp

k,T (Ω) is in the usual Hardy-Sobolev space
of order k/m.

Let us now describe precisely the setting.
Let Ω ⊂ Cn be a bounded, smooth domain, given by

Ω = {z ∈ Cn; r(z) < 0}
with r a C∞ function such that |∇r| = 1 on ∂Ω = {r = 0}. For δ > 0 and z ∈ Ω,
denote by τ(z, δ) the function (eventually infinite) constructed by Catlin which
gives, when Ω is of finite type m, the size in the complex tangential directions of the
polydiscs that fits the domain around z (we will remathcall the precise definition of
τ(z, δ) in §1.1). For m ≥ 2 an integer, denote by τm(z, δ) := min{τ(z, δ), δ1/m} and
by Qm(z, δ) the corresponding polydiscs. It gives a non-isotropic pseudo-distance
dm on ∂Ω. This is equivalent to Catlin’s pseudo-distance when Ω is of finite type
µ, for any m ≥ µ and gives arbitrarily large balls in complex tangential directions
around flat points as m grows.

We identify a small neighborhood of ∂Ω in Ω, denoted by Ω∩U , with ∂Ω× [0, s0[
via a diffeomorphism Φ:

Φ : ∂Ω× [0, s0[→ Ω ∩ U Φ(ζ, 0) = ζ, ζ ∈ ∂Ω.

For z ∈ Ω ∩ U , let π(z) ∈ ∂Ω and δ(z) ≥ 0 be such that Φ(π(z), δ(z)) = z; δ(z) is
equivalent to the distance to ∂Ω. In the following, we will write τm(z) for τm(z, δ(z))
and we will forget the subscript m when there is no ambiguity.

We define the following quantities for any smooth function u and any aperture
α > 0:
• The normal maximal function:

for any ζ ∈ ∂Ω, Nu(ζ) = sup {|u(Φ(ζ, t))|; 0 < t < s0} .

• The maximal admissible function:

for any ζ ∈ ∂Ω, M(m)
α u(ζ) = sup

{
|u(z)|; z ∈ A(m)

α (ζ)
}

where A(m)
α (ζ) denotes the admissible approach region:

A(m)
α (ζ) = {Φ(z, t); z ∈ ∂Ω, 0 < t < s0, dm(z, ζ) < αt} .

• The Littlewood-Paley function:

for any ζ ∈ ∂Ω, g(u)(ζ) =
(∫ s0

0

|u ◦ Φ(ζ, t)|2 dt

t

)1/2

.

• The admissible area function:

for any ζ ∈ ∂Ω, S(m)
α u(ζ) =

(∫
A(m)

α (ζ)

|u(z)|2 dV (z)
δ(z)2τ(z, δ(z))2n−2

)1/2

.

Define the complex Hardy space Hp as the space of holomorphic functions u
whose normal maximal functions are in Lp(∂Ω). It follows from standard method
(see [7] and [4] for harmonic functions and [3] and [11] in this context) that Hp,
0 < p < ∞, is characterized in terms of any of the preceding functionals. Namely, it
is equivalent for a holomorphic function u to be inHp(Ω), to haveM(m)

α u ∈ Lp(∂Ω),
or g(δ∇u) ∈ Lp(∂Ω) or S

(m)
α (δ∇u) ∈ Lp(∂Ω), independently on the aperture α and

on the choice of m.
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One can then consider Hardy-Sobolev spaces Hp
k(Ω) of holomorphic functions,

that is the spaces of holomorphic functions which have derivatives up to order k
in Hp(Ω). Since derivatives of holomorphic functions are still holomorphic, it is a
corollary of the previous characterizations of Hp(Ω) that similar characterizations
hold for Hp

k(Ω).
For k ∈ N, r ∈ N∗, m ∈ N \ {0, 1}, 0 < p < ∞, for a holomorphic function u in

Ω, the following are equivalent

u ∈ Hp
k(Ω)

N (|∇ku|) ∈ Lp(∂Ω)

M(m)
α (|∇ku|) ∈ Lp(∂Ω) for some α ∈]0, 1[

g(δr|∇r+ku|) ∈ Lp(∂Ω)

S(m)
α (δr|∇r+ku|) ∈ Lp(∂Ω) for some α ∈]0, 1[.

(the symbol ∇k denotes the collection of all the derivatives of order less than k).
We want here to prove the analogs for spaces involving only complex tangential

derivatives. We want also to link these spaces to the usual Hardy-Sobolev spaces.
Namely, denote by ∇k

T u the collection of all possible composition of order less than
k of the Lij ’s, i < j, given by

Lij =
∂r

∂zj

∂

∂zi
− ∂r

∂zi

∂

∂zj
.

As before, denote by Hp
k,T (Ω) the set of holomorphic functions u in Ω such that

N (|∇k
T u|) ∈ Lp(∂Ω).

Our first result holds without any assumption on the type of Ω.

Theorem 1. A For k ∈ N, m ≥ 2 an integer and 0 < p < ∞, the following are
equivalent for a holomorphic function u in Ω.

i) u ∈ Hp
k,T (Ω),

ii) M(m)
α (|∇k

T u|) ∈ Lp(∂Ω) for some α ∈]0, 1[.

Furthermore, if S
(m)
α (τ−k

m δr|∇ru|) ∈ Lp(∂Ω) for some r ∈ N so that 2r − k ≥ 1
then u ∈ Hp

k,T (Ω).

Remark 1 (1). The last statement implies in particular that Hp
k/2(Ω) ⊂ Hp

k,T (Ω)
(since cδ(z)1/2 ≤ τm(z)).

Remark 2 (2). When Ω is Levi flat around some point, part ii) states that the
supremum can be taken over arbitrarily large admissible regions around this point.

Theorem 2. B Let Ω be a bounded smooth domain of finite type m in Cn. For
k ∈ N, and 1 − 1

mn+1 < p < ∞, the following are equivalent for a holomorphic
function u in Ω.

i) u ∈ Hp
k,T (Ω),

ii) M(m)
α (|∇k

T u|) ∈ Lp(∂Ω) for some α ∈]0, 1[,

iii) g(δ|∇∇k
T u|) ∈ Lp(∂Ω),

iv) S(m)
α (δ|∇∇k

T u|) ∈ Lp(∂Ω) for some α ∈]0, 1[,

v) S(m)
α (τ−k

m δr|∇ru|) ∈ Lp(∂Ω) for some r ∈ N so that 2r − k ≥ 1.

Remark 3 (1). The last statement implies that, when Ω is of finite type m, a
function in Hp

k,T (Ω) is also in the ordinary Hardy-Sobolev space Hp
k/m(Ω) (since
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τm(z) ≤ Cδ(z)1/m). We recover in this context the well known phenomenon of finite
type domains: complex tangential derivatives of holomorphic functions behave at
least as well as global derivatives of order 1/m in domains of finite type m. It
actually says something more subtle. A complex tangential gradient of order k
behaves like τ−k

m δr|∇ru| and conversely in domains of finite type m. In particular,
this means that ∇k

T u behaves as an ordinary gradient whose order changes from
point to point.

Remark 4 (2). In this paper, we only give the proof of Theorem B when 0 <
p < 2. When p ≥ 2, the result follows from singular integrals machinery and some
commutation properties (see [12]).

The key point in the proofs of theorem A and B is the use of mean-value prop-
erties for complex tangential derivatives. For z ∈ Ω, denote by Qm(z) the set

Qm(z) := {w ∈ Ω; δ(z)/2 ≤ δ(w) ≤ 2δ(z); dm(π(z), π(w)) ≤ δ(z)/2}.

Denote by MeanQm(z)(|F |) the mean-value of |F | over Qm(z). We prove the fol-
lowing.

Theorem 3. C : Mean-value inequality For k, l ∈ N, 0 < p < ∞ and m ≥ 2 an
integer, there exists a constant C > 0 such that, for u holomorphic function in Ω
and z in Ω ∩ U ,

δ(z)lp|∇l∇k
T u(z)|p ≤ CMeanQm(z)(|∇k

T u|p).

To get these mean-value properties, we improve the usual freezing coefficient
method which consists in taking the coefficients of L to be constant up to a remain-
ing term so that it preserves holomorphy. As this is not sufficient here, we ”freeze”
the coefficients to a higher order by using a Taylor expansion of the coefficients of
L up to a sufficiently large order.

To prove the link between complex tangential derivatives and ordinary deriva-
tives, we use the pointwise estimates between complex tangential gradients and
ordinary gradients proved in [10]. Namely, one has the following:
Pointwise estimates [10] For k ∈ N, u a holomorphic function in Ω, and z ∈ Ω,

(1) τ(z)2k|∇k
T u(z)|2 ≤ CMeanQ(z)(|u|2).

Moreover if Ω is of finite type m in Cn then for ε > 0 there exists C(ε) so that

(2) δ(z)2k|∇ku(z)|2 ≤ MeanQ(z)(C(ε)τ2k|∇k
T u|2 + ε2|u|2).

The paper is organized as follows. In section 1, we remathcall some basic defi-
nitions and properties of the geometry and prove Theorem C. Theorem A follows
at once. In section 2, we establish the relations between usual area integrals and
area integrals of complex tangential derivatives. In section 3, we conclude by show-
ing the links between area integrals and maximal functions of complex tangential
derivatives.

As said before, we proved these results in the context of domains of finite type 2
in [11]. The main innovation in this paper is to develop a new technic which allows
to overcome the technimathcal difficulties which appear for m > 2.

In the following, we will use the symbol A . B if there exists a universal constant
C so that A ≤ CB. Similarly, we will write A ' B if A . B and B . A.

§1. Geometry and mean-value properties

In this paragraph, we will assume for simplicity that n = 2.
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1.1. Geometry. Assume Ω is a domain in C2. Let us remathcall the following
facts from [5] (see also [8]). Let z0 ∈ ∂Ω, as |∇r|(z0) = 1, we may assume that
∂r
∂z1

6= 0 in a neighborhood V (z0) of z0. Then

Lemma 4. 1.1 Let M ∈ N, M ≥ 2. For any z ∈ V (z0) ∩ Ω, there exists a
biholomorphic mapping Φz : C2 → C2 such that % := r ◦ Φz satisfies:

%(ζ) = r(z) + Re(ζ1) +
∑
j,k∈N

j,k≥1;j+k≤M

aj,k(z)ζ2
jζ2

k
+O

(
|ζ2|M+1 + |ζ1| |ζ|

)
.

Moreover

Φz(ζ) =

(
z1 + d0(z)ζ1 +

M∑
k=1

dk(z)ζ2
k, z2 + ζ2

)
where d0(.), dk(.); k = 1, ..,M depend smoothly on z and d0(.) 6= 0 in V (z0).

It is easy to extend this result to arbitrary dimension (this is done for instance
in [10]). It is important to note that this change of variables is independent on
any assumption on the type of Ω. Now fix m ≥ 2 an integer and take M ≥ m in
the preceding lemma. Define Al(z) := max {|aj,k(z)|; j + k = l}. For δ > 0, denote

by τ(z, δ) = min
{(

δ
Al(z)

)1/l

, l = 2, ..,m

}
. This defines a function on V (z0)∩Ω

with values in R+. When Ω is of finite type m, there exists l ∈ {2, ..,m} such that
Al(z) 6= 0 for z ∈ ∂Ω and by continuity for z ∈ V (z0) sufficiently small so that
τ(z, δ) takes finite values. Now define τm(z, δ) := min{τ(z, δ), δ1/m}. Remark that
if Ω is of finite type m, then, for any µ ≥ m, τm ' τµ ' τ . Define the polydisc
around z by

Qm(z, δ) = Φz (Rm(z, δ)) = Φz

({
ζ ∈ C2; |ζ1| < δ, |ζ2| < τm(z, δ)

})
.

The following properties hold:
(1) there exists a constant C > 0 such that, for any z ∈ V (z0) and 0 < δ < 1,

1
C

δ1/2 ≤ τm(z, δ) ≤ Cδ1/m.

(2) if δ′ < δ then
(

δ′

δ

)1/2

τm(z, δ) ≤ τm(z, δ′) ≤
(

δ′

δ

)1/m

τm(z, δ).
(3) for any 0 < δ < 1 and z ∈ Qm(z′, δ), τm(z, δ) ' τm(z′, δ).
(4) there exists a constant C > 0 such that, if z ∈ Qm(z′, δ), then Qm(z, δ) ⊂

Qm(z′, δ) and Qm(z′, δ) ⊂ Qm(z, Cδ).
By definition, there exists a constant c such that , for any z ∈ V (z0),

Qm(z, cδ(z)) ⊂ Ω.

We will note Qm(z) = Qm(z, cδ(z)) = Φz(Rm(z)) and τm(z) = τm(z, cδ(z)).
(5) In addition, for any ζ ∈ Qm(z), τm(ζ) ' τm(z).

It follows from these properties that

dm(z, ζ) = inf{δ > 0, z ∈ Qm(ζ, δ) ∩ ∂Ω}
defines a pseudo-distance on ∂Ω.

1.2. Mean-value property for complex tangential derivatives and appli-
cations. Let E be a measurable subset of Ω. Denote by MeanE(F ) the mean-value
of |F | over E with respect to the Lebesgue measure.

We prove the following proposition.

Proposition 5. 1.1 For k, l, r, m ∈ N, m ≥ 2, 0 < p < ∞, there exists a constant
C > 0 such that, for any holomorphic function u in Ω and any z in Ω ∩ U ,

δ(z)lp|∇l+r∇k
T u(z)|p ≤ CMeanQm(z)(|∇r∇k

T u|p).
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Once this proposition is proved it follows by standard methods (see [7] or [14]
for instance) that

Corollary 6. 1.1 For k,m ∈ N, m ≥ 2, α > 0, 0 < p < ∞ and a holomorphic
function u,

||M(m)
α (|∇k

T u|)||Lp(∂Ω) . ||N (|∇k
T u|)||Lp(∂Ω), and

for any ζ ∈ ∂Ω, g(δ|∇∇k
T u|)(ζ) . S(m)

α (δ|∇∇k
T u|)(ζ).

This gives the equivalence between i) and ii) of Theorem A and that iv) implies
iii) in Theorem B. Note that, in fact, the implication iv) ⇒ iii) does not need any
finite type hypothesis.

Let us now prove proposition 1.1. First, remark that |∇r∇k
T u| ' |∇k

T∇ru|: for
k = r = 1, the commutator of any first order derivative and ∇T is a differential
operator of order 1 with smooth coefficients. As ∇T contains the identity by defi-
nition, we can write |∇∇T u| ' |∇T∇u|. For larger r and k, the result follows from
induction.

So, as ordinary derivatives preserve holomorphy, it is enough to consider the case
r = 0. We are going to write Lku as a sum of a function satisfying mean-value
properties and of a remaining term. For this we introduce the following class of
functions.

Definition 7. Let K = (k1, k2) be a multi-index of positive integers. A function
F ∈ C∞(Ω) is mathcalled (AB)K if ∂kj F

∂ζj
kj

= 0 for j = 1, 2 in Ω.

To simplify notation, we will assume that K is fixed in the following and we will
write (AB) instead of (AB)K .

For any ζ ∈ C and r > 0, we denote by D(ζ, r) the disc {z ∈ C; |z − ζ| ≤ r}. The
terminology (AB) comes from Ahern and Bruna who proved the following lemma
(cf [1]):

Lemma 8. 1.2 For (l1, l2) and (m1,m2) ∈ N2, 0 < p < ∞, there exists a constant
C such that, for any (AB)-function F in Ω, any ζ = (ζ1, ζ2) ∈ Ω and any r =
(r1, r2) ∈ (]0,+∞[)2 such that D(ζ1, r1)× D(ζ2, r2) ⊂ Ω,

r
p(l1+m1)
1 r

p(l2+m2)
2

∣∣∣∣∣ ∂l1+l2+m1+m2F

∂ζ1
l1

∂ζ2
l2

∂ζm1
1 ∂ζ2

m2
(ζ)

∣∣∣∣∣
p

≤ CMeanD(ζ1,r1)×D(ζ2,r2)(|F |p).

Given z ∈ Ω ∩ U , let w = Φz(ζ) and % = r ◦ Φz(ζ). Denote by L′ = ∂%
∂ζ2

∂
∂ζ1

−
∂%
∂ζ1

∂
∂ζ2

a holomorphic complex tangential vector field. Remathcall that Qm(z) =
Φz(Rm(z)) where Rm(z) = Rm(z, cδ(z)) and Rm(z, δ) = {ζ ∈ C2; |ζ1| < δ, |ζ2| <
τm(z, δ)}. We have the following lemma:

Lemma 9. 1.3 For ζ ∈ Rm(z), k, l ∈ N and a holomorphic function f in Φz(Ω),

L′
k
f(ζ) = Fklf(ζ) + Rklf(ζ)

where Fklf is an (AB)-function and for 0 < p < ∞, ζ ∈ Rm(z), 0 ≤ j ≤ l,

δ(z)jp|∇jRklf(ζ)|p ≤ CMeanRm(z) (|f |p) .

Proof. Proof It follows easily by induction on k ∈ N that there exist some constants
cr,s, 1 ≤ r + s ≤ k, such that

L′
k =

∑
1≤r+s≤k

∑
Ek,r,s

cr,s

 k∏
j=1

∂mj+nj %

∂ζ
mj

1 ∂ζ
nj

2

 ∂r+s

∂ζr
1∂ζs

2

,
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where Ek,r,s denotes the set of couples (mj , nj), j = 1, .., k, in lexicographimathcal
order, which satisfy

∑k
j=1 mj = k − r and

∑k
j=1 nj = k − s with mj + nj ≥ 1.

For any N ∈ N, we can write % = TN
0 % + RN

0 % where TN
0 % stands for the Taylor

expansion of % up to order N .
Assume for simplicity that l = 0. Choose N = 2k − 1. Since % is C∞, one has

∂mj+nj %

∂ζ
mj

1 ∂ζ
nj

2

=
∂mj+nj TN

0 %

∂ζ
mj

1 ∂ζ
nj

2

+ rN,mj ,mj
where rN,mj ,mj

= O(|ζ|N+1−mj−nj ).

Now, for ζ ∈ Rm(z), |ζ| ≤ τm(z) so one obtains, since mj + nj ≤ 2k − (r + s),

L′
k
f(ζ) =

∑
1≤r+s≤k

 k∏
j=1

(
∂mj+nj TN

0 %

∂ζ
mj

1 ∂ζ
nj

2

)
+O(τm(z)N+1−2k+(r+s))

 ∂l+sf

∂ζr
1∂ζs

2

(ζ)

= Fk0f(ζ) + Rk0f(ζ).

By definition, Fk0 is an (AB)K-function for K = K(N) large enough.
But, by the mean-value properties satisfied by f , for any ζ ∈ Rm(z)∑

1≤r+s≤k

O(τm(z)N+1−2k+(r+s))p

∣∣∣∣ ∂r+sf

∂ζr
1∂ζs

2

∣∣∣∣p (ζ) ≤ CMeanRm(z)(τp(N+1−2k)
m |f |p)

≤ C ′MeanRm(z)(|f |p).
This gives the lemma. �

Proof. Proof of the proposition Denote by f the holomorphic function in Φz(Ω)
given by f = u ◦Φz. Write δlp(z)|∇lL′

k
f |p . δlp(z)|∇lFklf |p + δ(z)lp|∇l∇lRklf |p.

The second term is bounded by the mean- value of |f |p on Rm(z). For the first
term, we use Lemma 1.2. to get a bound as MeanRm(z)(|Fklf |p). This in turn is
bounded by

MeanRm(z)(|L′kf |p + |Rklf |p) ≤ CMeanRm(z)(|L′kf |p + |f |p).
Going back to Ω, it gives the result for L since L′ corresponds to a smooth non-
vanishing function times L. �

Remark 5. It is by an analogous method that the pointwise estimates quoted in
the introduction are proved in [10].

In the following, we will forget the subscript m to simplify the notations.

§2. Area Integrals

2.1. Area integrals and area integrals of complex tangential derivatives.
First, remathcall that usual methods, involving Hardy inequality and mean-value
properties, allow to prove that, for 0 < p ≤ 2 and u holomorphic in Ω,

(*) ||Sα(δr+ητ−k|∇ru|)||Lp(∂Ω) . ||Sα(δl+ητ−k|∇lu|)||Lp(∂Ω) + sup
K
|u|

as long as r+η−k/2 and l+η−k/2 are positive, where K denotes a compact subset
of Ω (see [4] and [3]). The same kind of method using part (1) of the pointwise
estimates of the introduction gives that

||Sα(δη+1|∇∇k
T u|)||Lp(∂Ω . ||Sα(δr+ητ−k|∇ru|)||Lp(∂Ω) + sup

K
|u|

for r + η − k/2 > 0 and η > −1 (see [11] in the context of domains of type 2 and
[9]).

We prove now a converse inequality. For 0 < p ≤ 2, ||Sα(δr+ητ−k|∇ru|)||p can be
estimated by the Lp-norm of Sα(δj+η|∇j∇k

T u|) when r+η−k/2 > 0 and j +η > 0.
This estimate is proved in [9]. We give here a simplified proof.
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By (∗), it is sufficient to prove the required estimate for some r big enough.
Apply the converse pointwise estimates (2) to the component of ∇lu, l will be
chosen large enough, and integrate over Aα(ζ) to get

Sα(δk+l+ητ−k|∇k+lu|)(ζ) . C(ε)Sβ(δl+η|∇k
T∇lu|)(ζ) + εSβ(δl+ητ−k|∇lu|)(ζ)

for some β > α. Now, by the mean-value properties, the first term is majorized
by Sγ(δj+η|∇j∇k

T u|)(ζ) for any j ∈ N so that j + η > 0. And for l large enough,
the Lp-norms of Sβ(δl+ητ−k|∇lu|) and of Sα(δk+l+ητ−k|∇k+lu|) are equivalent to
||Sα(δr+ητ−k|∇ru|)||p for any r + η − k/2 > 0. So, as the Lp-norms of the area
integrals Sα are independent on the aperture α, it gives an a priori estimate for
ε small enough. We get rid of the a priori assumption as in [11] by applying this
inequality in Ωε = {z ∈ Ω; δ(z) > ε} and letting ε goes to 0. Eventually we get the
following result.

Proposition 10. 2.1 Assume Ω is of finite type in Cn. For k, r, j ∈ N, 0 < p ≤ 2,
α, η ∈ R so that r + η − k/2 > 0, j + η > 0, for u holomorphic in Ω

||Sα(δr+ητ−k|∇ru|)||p . ||Sα(δη+j |∇j∇k
T u|)||p + sup

K
|u|.

2.2. An embedding result. In this section, we prove a key estimate to deal with
the remaining terms.

Proposition 11. 2.2 Assume Ω is of finite type m in Cn.
Let µ ∈]0, 1/m[. For 1− (1/m−µ)

n+(1/m−µ) < p ≤ 2, there exists q ≥ p, q > 1 so that

||Sα(δ1−µ|∇∇k−1
T u|)||q ≤ ||Mα(|∇k

T u|)||p.

Proof. Proof By the preceding paragraph, ||Sα(δ1−µ|∇∇k−1
T u|)||q is successively

bounded by
||Sα(δk−µτ−k+1|∇ku|)||q,
||Sα(δ−µτ |∇k

T u|)||q,
||Sα(δ1/m−µ|∇k

T u|)||q
up to supK |u|. This in turn is bounded by

C||Mα(δ1/m−µ−ε|∇k
T u|)||Lq(∂Ω)

for any ε > 0 since

Sα(δ1/m−µ|∇k
T u|)(ζ) ≤Mα(δ1/m−µ−ε|∇k

T u|)(ζ)×

(∫
Aα(ζ)

δ(z)εdV (z)
δ(z)2τ2(z, δ(z))

)1/2

.

Now, using the atomic decomposition of spaces of homogeneous type (see [2]), one
can show (see [11]) that

||Mα(δ1/m−µ−ε|∇k
T u|)||Lq(∂Ω) ≤ ||Mα(|∇k

T u|)||Lp(∂Ω) if 1/m− µ− ε ≥ n/p− n/q.

It is possible to find such a q by assumption on the range of p. �

§3. Characterizations of complex tangential Hardy-Sobolev spaces

3.1. Estimate on the normal maximal function by the Littlewood-Paley
function. In this paragraph, we prove that iii) implies i) of Theorem B. More
precisely, we prove, without finite type hypothesis the following result.

Proposition 12. 3.1 For k ∈ N, 0 < p < ∞ and u holomorphic in Ω,

||N (|∇k
T u|)||Lp(∂Ω) .

.||g(δ|∇∇k
T u|)||Lp(∂Ω) + sθ

0||Sα(δ1−θ|∇∇k−1
T u|)||Lq(∂Ω)

for any q > 1, q ≥ p, any θ ∈]0, 1[.
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Remark 6. When Ω is of finite type, it gives an a-priori estimate when 1− 1
mn+1 <

p ≤ 2, since by proposition 2.2, for θ sufficiently close to 0, one can choose q > 1,
q ≥ p, so that

||Sα(δ1−θ|∇∇k−1
T u|)||Lq(∂Ω) . ||Mα(∇k

T u)||Lp(∂Ω)

. ||N (|∇k
T u|)||Lp(∂Ω).

So, if u ∈ C∞(Ω) ∩H(Ω), for s0 small enough, we have

||N (|∇k
T u|)||Lp(∂Ω) ≤ C||g(δ∇∇k

T u)||Lp(∂Ω).

To obtain the general result, one has to apply this estimate in Ωε = {Φ(z, t), t > ε}
(since a holomorphic function in Ω is in particular C∞(Ωε)) and to let ε goes to
zero. On one hand ∫ ε0

ε

t2|f |2(Φ(ζ, t))
dt

t
≤ g(δ|f |)(ζ),

on the other hand, the monotone convergence theorem proves that

lim
ε→0

|| sup
ε<t<ε0

|∇k
T u|||Lp(∂Ω) = ||N (|∇k

T u|)||Lp(∂Ω).

Proof. Proof The method is analogous to the one used in [11]. The trick is to write
∇k

T u as the sum of a harmonic function and of a remaining term.
Write ∇k

T u = (∇k
T u)0 + (∇k

T u)h where (∇k
T u)0 is the (vector)-solution to the

Dirichlet problem {
∆v = ∆(∇k

T u) in Ω
v = 0 on ∂Ω.

Then,

|(∇k
T u)0 ◦ Φ(ζ, t)| ≤

∫ s0

0

|∇(∇k
T u)0 ◦ Φ(ζ, s)|ds + sup

K
|u|

≤ sθ
0

(∫ s0

0

|∇(∇k
T u)0 ◦ Φ(ζ, s)|2s2−2θ ds

s

)1/2

+ sup
K
|u|

where K is a compact subset of Ω, 0 < θ < 1.
So, it gives

||N (|∇k
T u|)||Lp(∂Ω) ≤ ||N (|(∇k

T u)h|)||Lp(∂Ω) + ||N (|(∇k
T u)0|)||Lp(∂Ω)

. ||g(δ∇(∇k
T u)h)||Lp(∂Ω)+

+ sθ
0

∣∣∣∣∣
∣∣∣∣∣
(∫ s0

0

|∇(∇k
T u)0 ◦ Φ(., s)|2s2−2θ ds

s

)1/2
∣∣∣∣∣
∣∣∣∣∣
Lp(∂Ω)

+ sup
K
|u|

. ||g(δ∇∇k
T u)||Lp(∂Ω) + ||g(δ∇∇k

T u)0||Lp(∂Ω)

+ sθ
0

∣∣∣∣∣
∣∣∣∣∣
(∫ s0

0

|∇(∇k
T u)0 ◦ Φ(., s)|2s2−2θ ds

s

)1/2
∣∣∣∣∣
∣∣∣∣∣
Lp(∂Ω)

+ sup
K
|u|

. ||g(δ∇∇k
T u)||Lp(∂Ω)

+ 2sθ
0

∣∣∣∣∣
∣∣∣∣∣
(∫ s0

0

|∇(∇k
T u)0 ◦ Φ(., s)|2s2−2θ ds

s

)1/2
∣∣∣∣∣
∣∣∣∣∣
Lp(∂Ω)

+ sup
K
|u|.
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Now, by estimates on the Dirichlet problem (see [11] appendix for study in this
context or [13]) we obtain that, for some q > 1, q ≥ p

(∗) =

∣∣∣∣∣
∣∣∣∣∣
(∫ s0

0

|∇(∇k
T u)0 ◦ Φ(., s)|2s2−2θ ds

s

)1/2
∣∣∣∣∣
∣∣∣∣∣
Lp(∂Ω)

≤

∣∣∣∣∣
∣∣∣∣∣
(∫ s0

0

|∇(∇k
T u)0 ◦ Φ(., s)|2s2−2θ ds

s

)1/2
∣∣∣∣∣
∣∣∣∣∣
Lq(∂Ω)

≤ ||∆(∇k
T u)||

W
−1,(q,2)
θ (Ω)

where W
−1,(q,2)
θ denotes the usual Sobolev space. Now, since u is holomorphic,

|∆∇k
T u| = |[∆,∇k

T ]u|. Note that |[∆,∇k
T ]u| ' |∇2∇k−1

T u|: First, remathcall that
|∇k

T∇ru| ' |∇r∇k
T u|. The commutator [∆,∇k

T ] is obtained by derivating at least
one and at most two complex tangential vector fields of the ∇k

T . If only one is
derivated, one gets a term ' |∇2∇k−1

T u|, if two are derivated, one obtains a term
' |∇2∇k−2

T u|. So,

||∆(∇k
T u)||

W
−1,(q,2)
θ (Ω)

'

∣∣∣∣∣
∣∣∣∣∣
(∫ s0

0

|∇∇k−1
T u|2s2−2θ ds

s

)1/2
∣∣∣∣∣
∣∣∣∣∣
Lq(∂Ω)

.

Now, by the mean-value properties, this is bounded by

||Sα(δ1−θ|∇∇k−1
T u|)||Lq(∂Ω).

This ends the proof of the proposition. �

3.2. Estimate of the area integral by the admissible maximal function.
In this paragraph, we adapt the method of [7] to our setting. We are going to prove
the following result.

Proposition 13. 3.2 Let ε > 0. For 0 < µ < 1, 0 < p < 2, α > 0 and u
holomorphic in Ω,

||Sα(δ|∇∇k
T u|)||p .

(
1
ε2

+ 1
)
||Mα(∇k

T u)||p + (ε + sµ
0 )||Sα(δ|∇∇k

T u|)||p+

+||Sα(δ1−µ|∇∇k−1
T u|)||p + sup

K
|u|.

Remark 7. Implication ii) ⇒ iv) of Theorem C follows: By §2.1, this gives an a-
priori estimate when Ω is of finite type m and 0 < p < 2. Indeed, ||Sα(δ1−µ|∇∇k−1

T u|)||p
is estimated by ||Sα(δ1−µτ |∇∇k

T u|)||p . s
1/m−µ
0 ||Sα(δ|∇∇k

T u|)||p if 1/m− µ > 0.
We conclude that, when Ω is of finite type m, for u ∈ C∞(Ω) ∩H(Ω), we have∥∥Sα(δ∇∇k

T u)
∥∥

Lp(∂Ω)
≤ C

(∥∥Mα(∇k
T u)

∥∥
Lp(∂Ω)

+ sup
K
|u|
)

.

It remains to show that this inequality is still valid for general u. We apply this
inequality in Ωε = {z ∈ Cn; δ(z) > ε}. One can verify that the constant involved is
independent of ε > 0. We want to let ε → 0 in the inequality. Let us observe that,
for ζε = Φ(ζ, cε) ∈ ∂Ωε, Rα(ζε) ⊂ Rβ(ζ), for some β > α. This allows to show that∥∥Mα(∇k

T u)
∥∥

Lp(∂Ωε)
≤
∥∥Mβ(∇k

T u)
∥∥

Lp(∂Ω)
.

Then, we conclude by Fatou’s Lemma that∥∥Sα(δ∇∇k
T u)

∥∥
Lp(∂Ω)

≤ C

(∥∥Mβ(∇k
T u)

∥∥
Lp(∂Ω)

+ sup
K
|u|
)

.
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In the following, it will be convenient to have a defining function for Ω which is
harmonic near ∂Ω. We choose a point x0 ∈ K and denote by δ the Green’s function
for Ω with singularity x0. Thus, δ is harmonic in Ω \ {x0} and δ(z) is comparable
with the distance to the boundary, for z ∈ Ω ∩ U . Let λ and ε be any real positive
numbers and E be the set

Eε,λ = E := {z ∈ ∂Ω;Mα(∇k
T u)(z) ≤ λ,

Sγ(δ1−µ|∇∇k−1
T u|)(z) ≤ λ, Sγ(δ|∇∇k

T u|)(z) ≤ λ

ε + sµ
0

};

for some γ > α.
Let E0 be those points of E of relative density 1

2 , D0, D their complements.
By the maximal Theorem, σ(D0) ≤ Cσ(D). Proposition 3.2. follows from the
following lemma.

Lemma 14. 3.1 There exists a constant C and γ > α such that, for every ε > 0∫
E0

Sα(δ|∇∇k
T u|)2(z)dσ(z) ≤ C

((
1
ε2

+ 1
)

λ2σ(D0) + sup
K
|u|2

+
∫ λ

0

tσ
({
Mα(∇k

T u) ≥ t
})

dt + (ε + sµ
0 )2
∫

E

Sγ(δ|∇∇k
T u|)2(z)dσ(z)

+
∫

E

Sγ(δ1−µ|∇∇k−1
T u|)2(z)dσ(z)

)
.

Assume this lemma proved and let us prove proposition 3.2. Write

(∗) =
∥∥Sα(δ|∇∇k

T u|)
∥∥p

Lp(∂Ω)
= p

∫ ∞

0

λp−1σ
({

Sα(δ|∇∇k
T u|) ≥ λ

})
dλ

≤p

∫ ∞

0

λp−1σ(D0)dλ + p

∫ ∞

M

λp−3

∫
E0

Sα(δ|∇∇k
T u|)2(z)dσ(z)dλ + Mpσ(∂Ω).

Use Lemma 3.1 to get

(∗) .

(
1
ε2

+ 1
)∫ ∞

0

λp−1σ(D)dλ+

+
∫ ∞

M

λp−3

∫ λ

0

tσ
({
Mα(∇k

T u) ≥ t
})

dtdλ

+
∫ ∞

M

λp−3

∫
E

Sγ(δ1−µ|∇∇k−1
T u|)2(z)dσ(z)dλ

+(ε + sµ
0 )2
∫ ∞

M

λp−3

∫
E

Sγ(δ|∇∇k
T u|)2(z)dσ(z)dλ

+Mpσ(∂Ω) + sup
K
|u|2Mp−2

.

(
1
ε2

+ 1
)∥∥Mα(∇k

T u)
∥∥p

Lp(∂Ω)
+
∥∥Sγ(δ1−µ|∇∇k−1

T u|)
∥∥p

Lp(∂Ω)

+(ε + sµ
0 )p
∥∥Sγ(δ|∇∇k

T u|)
∥∥p

Lp(∂Ω)
+ Mpσ(∂Ω) + sup

K
|u|2Mp−2.

It gives proposition 3.2.

Proof. Proof of Lemma 3.1 We note Rα = ∪z∈E0Aα(z) and

IE0 =
∫

E0

Sα(δ∇∇k
T u)2(z)dσ(z).
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Then

IE0 =
∫ ∫

Rα

δ2|∇∇k
T u|2σ ({ζ ∈ E0; z ∈ Rα(ζ)}) dV (z)

δ2τ2n−2

≤C

∫ ∫
Rα

δ|∇∇k
T u|2dV.

We write that
2|∇∇k

T u|2 ≤ 2|∆(∇k
T u).∇k

T u|+ ∆|∇k
T u|2

and, following the method of Fefferman and Stein, we will estimate∫ ∫
Rα

δ∆|∇k
T u|2dV

by applying Green’s Theorem. Let us denote by dσ̂ the surface measure on ∂Rα.
So, we obtain

IE0 ≤C

(∫ ∫
Rα

δ|∇k
T u.∆(∇k

T u)|dV

+
(∫

∂Rα

δ
∂|∇k

T u|2

∂ν
dσ̂ −

∫
∂Rα

∂δ

∂ν
|∇k

T u|2dσ̂

))
=(1) + (2) + (3),

where ∂
∂ν denotes the outer normal derivative on ∂Rα.

Estimate of the first term (1): As u is holomorphic in Ω, we have ∆∇k
T u =

[∆,∇k
T ]u and so, as in the preceding paragraph |∆∇k

T u| ' |∇2∇k−1
T u|. So

(1) ≤
∫ ∫

Rα

δ|∇k
T u|.|∇2∇k−1

T u|dV

≤
(∫ ∫

Rα

δ−1+µ|∇k
T u|2dV

)1/2

×
(∫ ∫

Rα

δ3−µ|∇2∇k−1
T u|2dV

)1/2

.
∫ ∫

Rα

δ−1+µ|∇k
T u|2dV +

∫ ∫
Rα

δ3−µ|∇2∇k−1
T u|2dV

.sµ
0

∫ ∫
Rα

δ|∇∇k
T u|2dV +

∫ ∫
Rα

δ1−µ|∇∇k−1
T u|2dV + sup

K
|u|

for every 0 < µ < 1, some β > α, by Hardy inequality and mean-value property.
Estimate of the second term (2): (2) ≤

∫
∂Rα

δ|∇∇k
T u|.|∇k

T u|dσ̂.
We split ∂Rα into three pieces ∂Rα = F ∪ FE0 ∪ FD0 where

Φ−1(F ) ⊂ ∂Ω× {s0}, Φ−1
(
FE0

)
⊂ E0 and Φ−1

(
FD0

)
⊂ D0 × (0, s0).

So, we write

(2) ≤
(∫

F

+
∫

F E0

+
∫

F D0

)
.

First, we have ∫
F

δ|∇∇k
T u|.|∇k

T u|dσ̂ ≤ C sup
K
|u|2

and ∫
F E0

δ|∇∇k
T u|.|∇k

T u|dσ̂ = 0 since FE0 ⊂ ∂Ω.

For every ε > 0, the last part is majorized by

≤ C

(
1
ε2

∫
F D0

|∇k
T u|2dσ̂ + ε2

∫
F D0

δ2|∇∇k
T u|2dσ̂

)
.
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As Mα(∇k
T u) ≤ λ on E, we deduce that

1
ε2

∫
F D0

|∇k
T u|2dσ̂ ≤ 1

ε2
λ2

∫
F D0

dσ̂ ≤ C

ε2
λ2σ(D0).

Now, by the mean-value property,

ε2
∫

F D0

δ2|∇∇k
T u|2dσ̂ ≤ C

(
ε2
∫ ∫

Rβ

δ|∇∇k
T u|2dV + sup

K
|u|2
)

(this follows from the fact that∫
∂Rα

δl+1τ rMeanQ(|f |2)dσ̂ ≤ C

∫ ∫
Rβ

δlτ r|f |2dV, for β sufficiently large).

So (2) ≤ C

ε2
λ2σ(D0) + C

(
ε2
∫ ∫

Rβ

δ|∇∇k
T u|2dV + sup

K
|u|2
)

.

Estimate of the third term: The third term is majorized by

(3) ≤ C

∫
∂Rα

|∇k
T u|2dσ̂ ≤ C

(∫
F

+
∫

F E0

+
∫

F D0

)
≤C

(
sup
K
|u|2 +

∫ λ

0

tσ
({
Mα(∇k

T u) ≥ t
})

dt + λ2σ(D0)

)
,

since Mα(∇k
T u) ≤ λ on E.

To conclude for Lemma 3.1, it suffices to remark that∫ ∫
Rβ

|f |2 dV

δ
≤
∫

E

Sγ(f)2dσ,

for some γ > β. �

References

[1] Ahern P. and Bruna, J. Maximal and area integral characterizations on Hardy-Sobolev
spaces in the unit ball of Cn. Revista Matemàtica Iberoamericana, 4:123–153, 1988.
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