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Abstract

The joint distribution of maximum increase and decrease for Brown-
ian motion up to an independent exponential time is computed. This
is achieved by decomposing the Brownian path at the hitting times
of the infimum and the supremum before the exponential time. It is
seen that an important element in our formula is the distribution of
the maximum decrease for the three dimensional Bessel process with
drift started from 0 and stopped at the first hitting of a given level.
From the joint distribution of the maximum increase and decrease it
is possible to calculate the correlation coefficient between these at a
fixed time and this is seen to be -0.47936... .

Dans cet article nous déterminons la loi conjointe de la plus grande
montée et de la plus grande descente d’un mouvement brownien arrêté
en un temps exponentiel independant. La preuve repose sur la dé-
composition de la trajectoire brownienne aux instants où le processus
atteint son maximum, resp. son minimum, avant le temps exponentiel.
La loi de la plus grande descente d’un processus de Bessel, de dimension
trois, issu de 0 et arrêté lorsqu’il atteint un niveau fixé, joue également

1



un rôle important. Le coefficient de corrélation linéaire de la grande
montée et de la plus grande descente d’un mouvement brownien arrêté
en temps fixe est déterminé : -0.47936... .

Keywords: h−transform, time reversal, path decompositions, Brown-
ian motion with drift, excursion process, maximum process, Itô mea-
sure, maximum drawdown, covariance, Catalan’s constant.

AMS Classification: 60J60, 60J65, 60G17, 62P05.
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1 Introduction and notation

1. In this paper we are interested in the joint distribution of the maximum
increase and decrease for a standard Brownian motion, for short BM. Let
us start with some notation. Let Ω := C(R+,R) be the space of continuous
functions ω : R+ 7→ R and Xt(ω) = ω(t), t ≥ 0, the coordinate mappings.
With every ω we associate its lifetime ζ(ω) ∈ (0,∞] and consider Xt to be
defined for t < ζ(ω). The standard notation Ft is used for the σ-algebra
generated by the coordinate mappings up to time t, and we set F := F∞.

Further, Pµ
x and Eµ

x denote the probability measure and the expectation
operator on (Ω,F) under which the coordinate process X = {Xt : t ≥ 0}
is a Brownian motion with drift µ started from x, for short BM(µ). For
simplicity, Px and Ex stand for the corresponding objects for BM.

The maximum increase before time t is defined as

D+
t := sup

0≤u≤v≤t
(Xv −Xu) (1.1)

and, analogously, the maximum decrease

D−
t := sup

0≤u≤v≤t
(Xu −Xv) (1.2)

Notice that, e.g.,

D−
t = sup

0≤v≤t

(
sup

0≤u≤v
Xu −Xv

)
. (1.3)

Using the Lévy isomorphism, i.e., under P0

{X+
v := sup

0≤u≤v
Xu −Xv : v ≥ 0} (d)

= {|Xv| : v ≥ 0}, (1.4)

where
(d)
= means “to be identical in law with”, it follows from identity (1.3)

that
P0(D

−
t > a) = P0(Ha ∧H−a < t) (1.5)

with
Hb := inf{t : Xt = b}, b ∈ R,

the first hitting time of b (in the canonical setting) with the usual convention
that Hb = +∞ if the set in the braces is empty. From the equality (1.5)
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applying, e.g., [4] 1.3.0.2 p. 212, and 3.1.1.4 p. 333 we obtain

P0(D
−
t > a) =

+∞∑

k=−∞
(−1)k

∫ t

0

ds
(2k + 1)a√

2πs3/2
e−(2k+1)2a2/2s

= 1 − 1√
2πt

+∞∑

k=−∞
(−1)k

∫ a

−a

dx
(
e−(x+4ka)2/2t − e−(x+4ka+2a)2/2t

)
.

Notice also that due to the symmetry of standard Brownian motion we have

{D−
t : t ≥ 0} (d)

= {D+
t : t ≥ 0},

and this holds under Px for any x ∈ R. We refer to Douady, et al. [6] for
results concerning the distribution of maximum increase and related func-
tionals up to a fixed time in the case of Brownian motion.

For Brownian motion with drift the result corresponding to (1.4) states
that under Pµ

x the process {X+
v : v ≥ 0} is a reflected Brownian motion

on R+ with drift −µ, for short RBM(−µ), (see, e.g., Harrison [7] p. 49,
and McKean [9] p. 71), more precisely, it is a diffusion on R+ with basic
characteristics as given in [4] A1.16 p. 129. The probability measure on
(Ω,F) associated with X+ (under Pµ) is denoted by P−µ,+. Clearly, we have
for a given a > 0

P
µ
0(D

−
t > a) = P

−µ,+
0 (Ha < t). (1.6)

Similarly, defining
X−

v := Xv − inf
0≤u≤v

Xu

it holds under Pµ that the process X− is a RBM(µ). Letting Pµ,+ denote
the measure associated with X− we have

P
µ
0(D

+
t > a) = P

µ,+
0 (Ha < t). (1.7)

For an explicit expression of the Pµ-distribution of D−
t , see Dominé [5] where

the method based on spectral representations is used. In Magdon-Ismail et.al.
[8] formulas for the mean of D−

t are derived.

2. Unfortunately we are not able to determine explicitly the distribution of
(D+

t , D
−
t ), but replacing t by T, that is, an exponentially distributed ran-

dom variable independent of X with mean 1/λ, allows us to find the P-
distribution of (D+

T , D
−
T ), see Proposition 4.5 and 4.6. We remark that the
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marginal Pµ-distributions of D+
T and D−

T are easily computed from (1.7) and
(1.6), respectively. Indeed, using standard diffusion theory and some explicit
formulas (see e.g. [4] p. 18 and 129) yield

P
µ
0(D

−
T > a) = E

−µ,+
0 (exp(−λHa)) = 1/ψλ(a;−µ) (1.8)

and
P

µ
0(D

+
T > a) = 1/ψλ(a;µ) (1.9)

with

ψλ(a; ν) := e−νa

(
ch(a

√
2λ+ ν2) +

ν√
2λ+ ν2

sh(a
√

2λ+ ν2)

)
.

In our approach for finding the joint distribution we consider first the case
where the infimum is attained before the supremum. In this case it is clear
that the maximum increase is nothing but the difference of the supremum and
the infimum, and, in a sense, we have reduced the problem to the problem
for finding the distribution of the maximum decrease. The opposite case
where the supremum is attained before the infimum is clearly treated using
symmetry.

It is natural when the infimum is attained before the supremum to de-
compose the exponentially stopped Brownian path into three parts:

◦ the first part is up to the hitting time of the infimum,

◦ the second part is from the hitting time of the infimum to the hitting
time of the supremum

◦ the third part is from the hitting time of the supremum to the expo-
nential time.

We prove in Theorem 3.5 that these three parts are conditionally indepen-
dent given the infimum and the supremum, and find their distributions in
terms of the three dimensional Bessel processes with drift. Our approah
is mainly based on the h-transform techniques, excursion theory and path
decompositions of Brownian motion with drift.

The above described path decomposition up to T permits us to determine
the joint distribution of (D+

T , D
−
T ) since now D+

T = ST − IT and, under
this decomposition, D−

T is the maximum of the maximum decreases of the
three conditionally independent fragments. To find the distribution of the
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maximum decrease for the first and the third part is fairly straightforward
diffusion theory. To compute the maximum decrease for the second part is
equivalent for finding the distribution of the maximum decrease for a three
dimensional Bessel process with drift (see Proposition 2.5).

Although the distribution and the density function of (D+
T , D

−
T ) are com-

plicated it is possible to determine by the scaling property of BM the covari-
ance between D+

t and D−
t and this is given by

E(D+
t D

−
t ) = (1 − 2 log 2 + 2β(2)) t,

where

β(2) :=

∞∑

k=0

(−1)k (2k + 1)−2 = 0.91596...

is Catalan’s constant. Hence, the correlation coefficient ρ between D+
T and

D−
T is easily obtained to be

ρ :=
E(D+

t D
−
t ) − (E(D+

t ))2

Var(D+
t )

= −0.47936....

3. One motivation to study the maximum decrease and increase comes from
mathematical finance where the maximum decrease, also called maximum
drawdown (MDD), is used to quantify the riskyness of a stock or any other
asset. Related measures used hereby are e.g. the recovery time from MDD
and the duration of MDD. Our interest to the problem discussed in the paper
was arised by Gabor Szekely who asked for an expression for the covariance
between D+

t and D−
t .

4. The paper is organised so that in the next section we find the distribution
of the maximum decrease of a stopped Brownian motion with positive drift.
In fact, we compute this distribution under the restriction that the process
does not hit some negative level, and proceed from here to the distribution of
the maximum decrease for a three dimensional Bessel process with drift. In
the third section path decompositions are discussed. To prove our main path
decomposition Theorem 3.5, we first prove a decomposition of the Brownian
trajectory {Bt : t ≤ T} conditionally on IT (see Theorem 3.2). The fourth
section is devoted to computation and analysis of the law of (D−

T , D
+
T ).
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2 Maximum decrease for stopped Brownian mo-

tion with drift

According to (1.2), the maximum decrease up to the first hitting time of a
given level β is

D−
Hβ

:= sup{Xu −Xv : 0 ≤ u ≤ v ≤ Hβ}.

In this section we consider the Pµ-distribution of D−
Hβ

under some additional
conditions and conditioning. Recall that

Sµ(x) :=
1

2µ
(1 − e−2µx) (2.1)

is the scale function of BM(µ) and for a < x < b

Pµ
x(Ha < Hb) =

Sµ(b) − Sµ(x)

Sµ(b) − Sµ(a)
. (2.2)

Proposition 2.1. For all nonnegative α, β, and u

P
µ
0 (D−

Hβ
< u , Hβ < H−α) =






exp

(
− β

S−µ(u)

)
, u ≤ α,

Sµ(α)

Sµ(u)
exp

(
−β + α− u

S−µ(u)

)
,

α ≤ u ≤ α + β,
Sµ(α)

Sµ(α + β)
, α+ β ≤ u,

In particular,

P
µ
0(D

−
Hβ

< u) = exp

(
− β

Sµ(u)

)
.

For standard Brownian motion, i.e., µ = 0, the above formulas hold with
S0(u) = u.

Proof. We assume that X0 = 0, and define for a > 0

Ha+ := inf{t : Xt > a}.
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For a given a > 0, in the case Ha+ > Ha, let

Ξ+
a (u) := a−Xu+Ha

, 0 ≤ u < Ha+ −Ha,

and, if Ha+ = Ha, take Ξ+
a := ∂, where ∂ is some fictious (cemetary) state.

The process
Ξ+ = {Ξ+

a : a ≥ 0}
is called the excursion process, associated with X, for excursions under the
running maximum. Let, further,

Ma := sup{Ξ+
a (u) : 0 ≤ u < Ha+ −Ha}.

An obvious but important fact is that

D−
Hβ

= sup
a<β

Ma. (2.3)

Introduce also for u > 0

ξu := inf{a ≥ 0 : Ma > u},

and
ξ◦u := inf{a ≥ 0 : a−Ma < −u}.

Then it holds for positive α, β, and u

{D−
Hβ

≤ u} = {∀ a ∈ (0, β) : Ma ≤ u} = {ξu ≥ β},

and
{Hβ < H−α} = {∀ a ∈ (0, β) : a−Ma > −α} = {ξ◦α > β};

hence, for 0 < u < α+ β

P
µ
0(D

−
Hβ

< u , Hβ < H−α) = P
µ
0(ξu > β , ξ◦α > β). (2.4)

Since X+ under Pµ is identical in law with RBM(−µ) it follows that the
excursion process Ξ+ is identical in law with the usual excursion process of
RBM(−µ) for excursions from 0 to 0. Consequently, see Pitman and Yor
[11],

Π = {(a,Ma) : a ≥ 0}
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is a homogeneous Poisson point process with the characteristic measure

ν(da, dm) = da n(dm),

where for m > 0
n((m,+∞)) = 1/S−µ(m).

Introduce the sets

A := [0, β) × [u,+∞) and B := {(a,m) : 0 ≤ a < β , a−m < −α},

and let N denote the counting measure associated with Π. Now we have

P
µ
0(ξu > β , ξ◦α > β) = P

µ
0(N(A ∪B) = 0)

= exp (−ν(A ∪B)) .

It is straightforward to compute ν(A∪B) for different values on α, β, and u,
and we leave this to the reader. Consequently, by (2.4), the claimed formula
is obtained.

Obviously, D+
Hβ

≥ β and for z > 0

{D+
Hβ

− β < z} = {Hβ < H−z}.

Consequently, we have from Proposition 2.1 the following corollary giving an
expression for the joint distribution of D+

Hβ
and D−

Hβ
. Notice that

D−
Hβ

≤ D+
Hβ

≤ D−
Hβ

+ β

explaining the three cases below.

Corollary 2.2. For v ≥ β and µ ≥ 0

P
µ
0(D

−
Hβ

< u , D+
Hβ

< v) =






exp

(
− β

S−µ(u)

)
, u ≤ v − β,

Sµ(v − β)

Sµ(u)
exp

(
− v − u

S−µ(u)

)
,

v − β ≤ u ≤ v,
Sµ(v − β)

Sµ(v)
, v ≤ u,

For standard Brownian motion, i.e., µ = 0, the above formulas hold with
S0(u) = u.
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We proceed by developing the result in Proposition 2.1 for a 3-dimensional
Bessel process with drift µ > 0, for short BES(3, µ). We recall that BES(3, µ)
is a linear diffusion with the generator

GR,µ =
1

2

d2

dx2
+ µ coth(µx)

d

dx
, x > 0. (2.5)

The notation Qµ
x is used for the probability measure on the canonical space

Ω associated with BES(3, µ) when started from x ≥ 0. In the case µ = 0 the
corresponding measure is simply denoted by Qx and the generator is given
by

GR =
1

2

d2

dx2
+

1

x

d

dx
, x > 0. (2.6)

The following lemma is a fairly well known example on h−transforms. To
make the presentation more self contained we give a short proof. It is also
interesting to compare the result with Lemma 3.1 in the next section.

Lemma 2.3. Let 0 < x < y be given. The Brownian motion with drift µ
started from x > 0, killed at the first hitting time of y, and conditioned to
hit y before 0 is identical in law with a 3-dimensional Bessel process with
drift |µ| started from x and killed at the first hitting time of y.

Proof. In our canonical space of continuous functions with X0 = x we have
for a given t > 0

{t < Hy < H0} = {t < Hy ∧H0 , Hy ◦ θt < H0 ◦ θt},

where θ· is the usual shift operator, i.e., Xs ◦ θt = Xs+t. Hence, for any
At ∈ Ft,

Pµ
x(At , t < Hy |Hy < H0)

= Pµ
x(At , t < Hy ∧H0 , Hy ◦ θt < H0 ◦ θt)/P

µ
x(Hy < H0)

= Eµ
x(h1(Xt) ; At , t < Hy ∧H0)/h1(x)

by the Markov property, where

h1(x) := Pµ
x(Hy < H0) =

Sµ(x) − Sµ(0)

Sµ(y) − Sµ(0)
=

1 − e−2µx

1 − e−2µy
.
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Consequently, the desired conditioning can be realized by taking the Doob
h−transform (with h = h1) of the Brownian motion with drift µ killed at
Hy ∧H0. The generator of the h−transform is

Gh1 :=
1

2

d2

dx2
+ µ

d

dx
+
h′(x)

h(x)

d

dx
,

which is easily seen to coincide with (2.5) with |µ| instead of µ.

Remark 2.4. Analogously as above, it can be proved that BM(µ) started
from x > 0 and conditioned not to hit 0 is identical in law with BES(3,|µ|)
started from x.

Proposition 2.5. For β > u > 0

Q
µ
0 (D−

Hβ
< u) =

S−µ(β)

S−µ(u)
exp

(
− β − u

S−µ(u)
− 2µ(β − u)

)
.

For the 3-dimensional Bessel process without drift, i.e., µ = 0, the above
formula holds with S0(u) = u.

Proof. Note that under Q
µ
0 , it holds a.s. on {D−

Hβ
> u} that

D−
Hβ

= D−
Hβ

◦ θHu
.

Therefore, applying the strong Markov property at time Hu yields

Q
µ
0(D

−
Hβ

> u) = Qµ
u(D−

Hβ
> u),

and from Lemma 2.3

Qµ
u(D−

Hβ
> u) = Pµ

u(D
−
Hβ

> u |Hβ < H0)

= Pµ
u(D

−
Hβ

> u , Hβ < H0)/P
µ
u(Hβ < H0)

= P
µ
0(D

−
Hβ−u

> u , Hβ−u < H−u)/P
µ
0(Hβ−u < H−u).

The proof is now easily completed from Proposition 2.1.
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3 Path decompositions

The main path decomposition results presented in this section are stated in
Theorems 3.2 and 3.5. In the first one we consider the decomposition at the
global infimum and the second one gives, roughly speaking, the decomposi-
tion of the post part of the previous decomposition at its global supremum.

We begin with by stating the following lemma which is proved similarly
as Lemma 2.3.

Lemma 3.1. Let 0 < x < y be given. The Brownian motion started from
x > 0, killed at the first hitting time of y, and conditioned by the event
Hy < H0 ∧ T, where T is an exponentially distributed random variable with
parameter λ independent of the Brownian motion, is identical in law with
BES(3,

√
2λ) started from x and killed at the first hitting time of y.

Proof. We adapt the proof of Lemma 2.3 to our new situation. For t > 0 we
have

{t < Hy < H0 ∧ T} = {t < Hy ∧H0 ∧ T , Hy ◦ θt < (H0 ∧ T ) ◦ θt}.

Hence, using the memoryless property of T we get for At ∈ Ft

Px(At , t < Hy |Hy < H0 ∧ T )

= Ex(h2(Xt) ; At , t < Hy ∧H0 ∧ T )/h2(x)

with

h2(x) = Px(Hy < H0 ∧ T ) = Px(Hy < H0 , Hy < T )

= sh(x
√

2λ)/sh(y
√

2λ)

(see [4] 1.3.0.5(b) p.212).
Consequently, the desired conditioning can be realized by taking the Doob

h−transform (with h = h2) of a Brownian motion killed at time Hy ∧H0∧T.
The generator of the h−transform can be computed in the usual way, and is
seen to coincide with the generator of BES(3,

√
2λ) (see (2.5)).

We let, throughout the paper, T denote an exponentially with parameter
λ distributed random variable independent of X under P0, and define

IT := inf{Xt : 0 ≤ t ≤ T} , ST := sup{Xt : 0 ≤ t ≤ T}
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and
HI := inf{t : Xt = IT} , HS := inf{t : Xt = ST}.

Next we discuss the path decomposition at the global infimum for Brown-
ian motion killed at T. If nothing else is stated the coordinate process is
considered under P0.

Theorem 3.2. 1. The processes {Xt : 0 ≤ t < HI} and {XT−t −XT : 0 ≤
t < T −HI} are independent and identically distributed.
2. Given IT = a

1. the pre-HI process {Xt : 0 ≤ t < HI} and the post-HI process {XHI+t :
0 ≤ t < T −HI} are independent.

2. the pre-HI process is identical in law with a BM(−
√

2λ) killed when it
hits a,

3. the post-HI process is identical in law with the diffusion Z started from
a and having the generator

GZu(x) =
1

2
u′′(x) +

h′3(x− a)

h3(x− a)
u′(x) − λ

h3(x− a)
u(x), (3.1)

where x > a and

h3(y) := Py(T < H0) = 1 − e−y
√

2λ, y > 0. (3.2)

Moreover, Z is the Doob h-transform with h = h3(· − a) of BM killed
at time T ∧Ha.

Proof. a) We have two different proofs: the first one is "direct" in a sense that
we compute the conditional finite dimensional distributions, the second one
relies on excursion theory of Brownian motion. From our point of view the
both proofs contain interesting elements which motivates the presentation of
both of these.
b) We begin with the direct proof of claim 2. Define for s < t

Is,t := inf{Xu : s ≤ u ≤ t}, It := I0,t

and
HIs,t

:= inf{u ∈ (s, t) : Xu = Is,t}, HIt
:= HI0,t

.
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Let u, v, and t be given such that 0 < u < v < t. For positive integers n and
m introduce 0 < u1 < · · · < un < u and 0 < v1 < · · · < vm with vm + v < t.
Define also

An := {Xu1
∈ dx1, . . . , Xun

∈ dxn}, (3.3)

and
Bm := {Xv1

∈ dy1, . . . , Xvm
∈ dym}. (3.4)

Consider now for u < s < v

P0(An, It ∈ da,HIt
∈ ds, Bm ◦ θv, Xt ∈ dz)

= P0(An, Iu > a, Iu,v ∈ da,HIu,v
∈ ds, Iv,t > a,Bm ◦ θv, Xt ∈ dz)

= P0

(
An, Iu > a;P0

(
Iu,v ∈ da,HIu,v

∈ ds, Iv,t > a,Bm ◦ θv, Xt ∈ dz | Fu

))
.

Further,

P0

(
Iu,v ∈ da,HIu,v

∈ ds, Iv,t > a,Bm ◦ θv, Xt ∈ dz | Fu

)

= P0

(
Iu,v ∈ da,HIu,v

∈ ds;P0 (Iv,t > a,Bm ◦ θv, Xt ∈ dz | Fv) | Fu

)

= P0

(
Iu,v ∈ da,HIu,v

∈ ds;P0 (Iv,t > a,Bm ◦ θv, Xt ∈ dz |Xv) |Xu

)

by the Markov property. Letting p+ denote the transition density (with
respect to 2 dx) of BM killed when it hits a and writing Xv = z2 we have

P0 (Iv,t > a,Bm ◦ θv, Xt ∈ dz |Xv)

= p+(v1; z2, y1) 2dy1 · · · · · p+(t− v − vm; ym, z) 2dz

=: Fv1,...,vm,t−v(z2, y1, . . . , ym, z) 2dy1 . . . 2dz.

Introduce
ηx(a, α) := Px(Ha ∈ dα)/dα, (3.5)

and recall the formula due to Lévy

Px(Iβ ∈ da,HIβ
∈ dα,Xβ ∈ dz)

= ηx(a, α) ηz(a, β − α) dα 2dz da, α < β. (3.6)

Applying (3.6) and putting Xu = z1 we obtain

P0

(
Iu,v ∈ da,HIu,v

∈ ds;P0 (Iv,t > a,Bm ◦ θv, Xt ∈ dz | Fv) | Fu

)

=

∫ ∞

a

2dz2 ηz1
(a, s− u) ηz2

(a, v − s) da ds

×Fv1,...,vm,t−v(z2, y1, . . . , ym, z) 2dy1 . . . 2dym 2dz,
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and, finally,

P0(An, It ∈ da,HIt
∈ ds, Bm ◦ θv, Xt ∈ dz) (3.7)

=

∫ ∞

a

2 dz1

∫ ∞

a

2 dz2 p
+(u1; 0, x1) 2dx1 · · · · · p+(u− un; xn, z1)

×ηz1
(a, s− u) ηz2

(a, v − s) da ds

×Fv1,...,vm,t−v(z2, y1, . . . , ym, z) 2dy1 . . . 2dym 2dz

=

∫ ∞

a

2 dz1

∫ ∞

a

2 dz2 Fu1,...,un,u(0, x1, . . . , xn, z1) 2dx1 . . . 2dxn

×ηz1
(a, s− u) ηz2

(a, v − s) da ds

×Fv1,...,vm,t−v(z2, y1, . . . , ym, z) 2dy1 . . . 2dym 2dz.

Replacing in (3.6) the deterministic time β with the exponential time T yields
for a < 0 and a < z

P0(IT ∈ da,HI ∈ ds,XT ∈ dz)

= η0(a, s)λ e−λs Ez

(
e−λHa

)
ds 2dz da, (3.8)

and, further,

P0(IT ∈ da,HI ∈ ds) =
√

2λ e−λsη0(a, s) da ds. (3.9)

We operate similarly in (3.7), i.e., introduce the exponential time T in place
of t. After this we integrate over z, and divide with the expression on the
r.h.s. in (3.9) and obtain for u < s < v

P0(An, Bm ◦ θv | IT = a,HI = s)

= F̂u1,...,un
(x1, . . . , xn; a, s) 2dx1 . . . 2dxn (3.10)

× Ĝv1,...,vm
(y1, . . . , ym; a; s, v) 2dy1 . . . 2dym,

with

F̂u1,...,un
(x1, . . . , xn; a; s) (3.11)

= p̂+(u1; 0, x1) · · · · · p̂+(un − un−1; xn−1, xn)
η̂xn

(a, s− un)

η̂0(a, s)

and

Ĝv1,...,vn
(y1, . . . , yn; a; s, v) =

η̂y1
(a, v − s+ v1)√

2λ
(3.12)

×p̂+(v2 − v1; y1, y2) · · · · · p̂+(vm − vm−1; ym−1, ym) h3(ym − a),
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where h3 is as in (3.2) and

p̂+(α; x, y) := e−λ α p+(α; x, y), η̂x(a, α) := e−λ α ηx(a, α).

Because
η̂x(a, α) = Px(Ha ∈ dα, Ha < T )/dα

it is seen from (3.11) that F describes the finite dimensional distributions
of X conditioned to hit a at time s before T. For the claim concerning the
post-process we remark first that (3.12) gives finite dimensional distributions
of the announced h-transform started from a since

η̂y1
(a, v − s+ v1)√

2λ
= lim

x↓a

p̂+(v − s+ v1; x, y1)

h3(x− a)
.

Next notice that proceeding as above we can also compute the conditional
probabilites for An and Bm ◦ θv separately and deduce

P0(An, Bm ◦ θv | IT = a,HI = s) (3.13)

= P0(An | IT = a,HI = s)P0(Bm ◦ θv | IT = a,HI = s).

As is seen from (3.12) the quantity

P0(Bm ◦ θv | IT = a,HI = s)

is a function of the difference v − s only, and we find the desired description
of the post-process by letting v ↓ s (and applying the Lebesgue dominated
convergence theorem). To remove the conditioning with respect to HI in
(3.13) observe from (3.9) that

P0(HI ∈ ds | IT = a) =
η̂0(a, s)

e a
√

2λ
ds

and, hence,

P0(An | IT = a) = p̂+(u1; 0, x1) 2dx1

× · · · · p̂+(un − un−1; xn−1, xn) 2dxn
e−(xn−a)

√
2λ

e−a
√

2λ
,

which means that the pre-process is as stated, and, moreover, the claimed
conditional independence holds.
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It is possible to prove claim 1 also via direct computations with finite
dimensional distributions; however, we do not present this proof since, as
seen below, the result is in the core of the approach with excursions.
c) Excursion theoretical proof. The excursion process associated with the ex-
cursions above the running minimum is defined similarly as the corresponding
process with running maximum in Section 2. Indeed, let for a < 0

Ha− := inf{t : Xt < a},

and, if Ha− > Ha,

Ξ−
a (u) := Xu+Ha

− a, 0 ≤ u < Ha− −Ha.

Then the process
Ξ− = {Ξ−

a : a ≤ 0}
is a homogeneous Poisson point process, and is called the excursion process
for excursions above the running minimum. We remark that Ξ− is identical in
law with the excursion process for excursions from 0 of a reflecting Brownian
motion. The Ito excursion measure associated with Ξ− is denoted by n− (for
different descriptions of n−, see Revuz and Yor [12]).

Let F1 and F2 be measurable mappings from C(R+,R) to R+. Now we
can write

∆ := E (F1(Xu : u ≤ HI)F2(XHI+u − IT : u ≤ T −HI))

= E

(
∑

a<0

F1(Xu : u ≤ Ha) F2(Ξ
−
a (u) : u ≤ T −Ha) 1{Ha≤T<Ha−}

)
,

where the sum is over all points of Ξ− (but simplifies, for every ω a.s., only
to one term). Let E denote the excursion space and ε a generic excursion.
By the compensation formula for Poisson point processes (see Bertoin [2])

∆ =

∫ 0

−∞
da E0

(
F1(Xu : u ≤ Ha) 1{Ha<T}

×
∫

E
F2(εu : u ≤ T −Ha) 1{T−Ha<ζ}(ε) n

−(dε)
)

=

∫ 0

−∞
da E0

(
F1(Xu : u ≤ Ha) e−λHa

)
(3.14)

×
∫

E
n−(dε) E0

(
F2(εu : u ≤ T ) 1{T<ζ}(ε)

)
,
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where the notation ζ(ε) is for the life time of ε and in the second step the
fact that T is an exponentially distributed random variable independent of
X is used. Notice that (3.14) yields, when choosing F1 ≡ 1,

E0 (F2(XHI+u − IT : u ≤ T −HI))

=
1√
2λ

∫

E
n−(dε) E0

(
F2(εu : u ≤ T ) 1{T<ζ}(ε)

)
.

By absolute continuity,

E0

(
F1(Xu : u ≤ Ha) e−λHa

)
= E−

√
2λ

0 (F1(Xu : u ≤ Ha)) ea
√

2λ

and, since −IT is exponentially distributed with parameter
√

2λ, we have

∆ =

∫ 0

−∞
da E−

√
2λ

0 (F1(Xu : u ≤ Ha)) P(IT ∈ da)

× 1√
2λ

∫

E
n−(dε) E0

(
F2(εu : u ≤ T ) 1{T<ζ}(ε)

)
. (3.15)

Consequently, the processes {Xu : u ≤ HI} and {XHI+u−IT : u ≤ T −HI}
are independent and, hence, also {Xu : u ≤ HI} and {XT−t − XT : u ≤
T−HI} are independent. Moreover, {Xu : u ≤ HI} given IT = a is identical
in law with BM(−

√
2λ) killed at the first hitting time of a. To prove that

{XT−t − XT : u ≤ T − HI} given XT − IT = b is identical in law with
BM(−

√
2λ) killed at the first hitting time of −b observe first that

∫

E
n−(dε) E0

(
F2(εu : u ≤ T ) 1{T<ζ}(ε)

)

= λ

∫ ∞

0

dt e−λt n−(F2(εu : u ≤ t) 1{t<ζ}(ε)).

Next we claim that
∫ ∞

0

dt e−λt n−(F2(εu : u ≤ t) 1{t<ζ}(ε)).

= 2

∫ ∞

0

db Eb

(
e−λH0 F2(XH0−u : u ≤ H0)

)
. (3.16)

Indeed, (3.16) for λ = 0 is formula 5 in Biane and Yor [3] Théorème 6.1 p.
79 and the validity for λ > 0 is easily verified by inspecting the proof in [3]
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p. 79. Hence, by spatial symmetry,

E0 (F2(XHI+u − IT : u ≤ T −HI))

=
√

2λ

∫ ∞

0

db Eb

(
e−λH0 F2(XH0−u : u ≤ H0)

)
(3.17)

=
√

2λ

∫ ∞

0

db E0

(
e−λH−b F2(b+XH−b−u : u ≤ H−b)

)
.

Reversing here time and using absolute continuity yield

E0 (F2(XT −XT−u : u ≤ T −HI))

=
√

2λ

∫ ∞

0

db E0

(
e−λHb F2(Xs : s ≤ Hb)

)

=
√

2λ

∫ ∞

0

db E
√

2λ
0 (F2(Xs : s ≤ Hb)) e−b

√
2λ

which proves the first claim of the theorem.
It remains to verify claim 2 (iii). For a fixed t > 0 we obtain from (3.17)

∆̂ := E0

(
F2(XHI+u − IT : u ≤ t) 1{t≤T−HI}

)

=
√

2λ

∫ ∞

0

db Eb

(
e−λH0 F2(XH0−u : u ≤ t) 1{t≤H0}

)
.

According to Williams’ time reversal theorem the process {XH0−u : 0 ≤ u <
H0} under Pb is identical in law with BES(3) started from 0 and killed at
the last exit time at b. Consequently, letting γb denote the last exit time we
have

∆̂ =
√

2λ

∫ ∞

0

db Q0

(
e−λγb F2(Xu : u ≤ t) 1{t≤γb}

)

=
√

2λ e−λ t

∫ ∞

0

db Q0

(
F2(Xu : u ≤ t)QXt

(
e−λγb 1{γb>0}

) )

by the Markov property. The distribution of γb is well known (see Pitman
and Yor [10]) and it holds

Qr

(
e−λγb 1{γb>0}

)
=

1

r
√

2λ
sh((b ∧ r)

√
2λ) e−(b∨r)

√
2λ.
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We have now

∆̂ =
√

2λ e−λ t Q0

(
F2(Xu : u ≤ t)

∫ ∞

0

db QXt

(
e−λγb 1{γb>0}

))

= e−λ t Q0

(
F2(Xu : u ≤ t)

1 − e−Xt

√
2λ

Xt

√
2λ

)

= Q0

(
F2(Xu : u ≤ t)

h3(Xt)

Xt

√
2λ

1{t≤T}

)
,

where h3 is as in (3.2). Define h4(x) := h3(x)/x for x > 0 and h4(0) :=
√

2λ,
and notice that h4 is right continuous at 0. Consequently,

E0

(
F2(XHI+u − IT : u ≤ t) 1{t≤T−HI}

)

= Q0

(
F2(Xu : u ≤ t)

h4(Xt)

h4(0)
1{t≤T}

)
. (3.18)

It is easy to verify that for x > 0

GRh4(x) − λh4(x) = −λ
x
< 0,

where GR is the infinitesimal generator of BES(3), see (2.6). Using Itô’s for-
mula it is seen that h4 is λ-excessive for BES(3). Consequently, the post
HI-process is identical in law with the Doob h-transform with h = h4 of
exponentially killed BES(3). The generator of this transform can be com-
puted in the usual way, and is seen to coincide when a = 0 with GZ given in
(3.1).

Remark 3.3. 1. Informally, given IT = a the post-HI-process is identical in
law with a Brownian motion killed at time ζ := T ∧Ha and conditioned by
the event Xζ− > a. Let PZ denote the probability measure associated with
the diffusion Z introduced in Theorem 3.2. Then for any finite stopping time
U and ΛU ∈ FU it holds

PZ
x (ΛU) =

1

h3(x− a)
Ex (h3(XU − a); ΛU , U < T ∧Ha)

= Px (ΛU , U < T ∧Ha |Xζ− > a) .

The diffusion Z can alternatively, as is seen at the end of the above proof,
be described as the Doob h-transform with h = h4 of exponentially killed
BES(3).
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2. From Theorem 3.2 it is clear that {Xt : 0 ≤ t < HI} and {XHI+t − IT :
0 ≤ t < T − HI} are independent. In particular, XT − IT and IT are
independent. This last property is also easily verified by analyzing the joint
distribution of XT and IT

P0(IT ∈ da,XT ∈ dz) = 2λ e2a
√

2λ e−z
√

2λ da dz, a < 0, a < z,

which is obtained from (3.8) by integrating with respect to s. Moreover,
XT − IT and −IT are seen to be identically distributed the common distrib-
ution being the exponential distribution with parameter

√
2λ (cf. also (3.20)

below).
3. Notice also the fact that HI and T −HI are independent and identically
Gamma(1/2, λ)-distributed, i.e.,

P0(HI ∈ du) = P0(T −HI ∈ du) =

√
λ√
πu

e−λ u du, u > 0.

Next we recall the formulas (see [4] p. 173)

P0(IT ∈ da, ST ∈ db) = λ
ch(1

2
(b+ a)

√
2λ)

ch3(1
2
(b− a)

√
2λ)

da db, a < 0 < b, (3.19)

and
P0(IT ∈ da) =

√
2λ ea

√
2λ da a < 0. (3.20)

We need also the following result derived as a corollary to Theorem 3.2 but
which can also be deduced from the formula 1.1.28.2 p. 191 in [4].

Corollary 3.4. For a < 0 < b

P0(HI < HS, IT ∈ da, ST ∈ db)

= 2λ

(
ch((b− a)

√
2λ) − 1

)
sh(b

√
2λ)

sh3((b− a)
√

2λ)
da db. (3.21)

Proof. The conditional independence stated in Theorem 3.2 yields

P0(HI < HS, ST ∈ db | IT = a)

= P0(HI < HS, SHI ,T ∈ db | IT = a)

= P0(SHI ,T ∈ db | IT = a) P0(SHI
< b | IT = a), (3.22)
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where
SHI ,T := sup{Xt : HI ≤ t ≤ T}.

From the description of the pre-HI process we have using the well known
formula, see e.g. [4] p. 309,

P0(SHI
< b | IT = a) = P−

√
2λ

0 (Ha < Hb)

= e−a
√

2λ sh(b
√

2λ)

sh((b− a)
√

2λ)
.

Using the h-transform description of Z (cf. Remark 3.3)

P0(SHI ,T > b | IT = a) = PZ
a (Hb <∞)

= lim
x↓a

h3(b− a)

h3(x− a)
Px(Hb < Ha, Hb < T )

= lim
x↓a

h3(b− a)

h3(x− a)

sh((x− a)
√

2λ)

sh((b− a)
√

2λ)

=
1 − e−(b−a)

√
2λ

sh((b− a)
√

2λ)
. (3.23)

The formula (3.21) is now obtained from (3.22) when multiplying with the
density of IT given in (3.20).

We proceed by refining the path decomposition presented in Theorem
3.2. Recall that Qµ

x with µ, x ≥ 0 denotes the measure under which the
coordinate process X = {Xt : t ≥ 0} is a BES(3,µ) started from x (see (2.5)
for the generator).

Theorem 3.5. Conditionally on HI < HS, IT = a, ST = b it holds that

1. the pre-HI-process {Xt : 0 ≤ t ≤ HI} is identical in law with {b−Xt :

0 ≤ t ≤ Hb−a} under Q
√

2λ
b .

2. the intermediate process {XHI+t : 0 ≤ t ≤ HS −HI} is identical in law

with {a+Xt : 0 ≤ t ≤ Hb−a} under Q
√

2λ
0 .

3. the post-HS-process {XHS+t : 0 ≤ t ≤ T −HS} is identical in law with
a diffusion Z◦ started from b and having the generator

GZ◦

u(x) =
1

2
u′′(x) +

g′(x)

g(x)
u′(x) − λg(x) − 1

2
g′′(x)

g(x)
u(x),
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where a < x < b and

g(x) = sh((b− a)
√

2λ) − sh((b− x)
√

2λ) − sh((x− a)
√

2λ), (3.24)

4. the pre-HI-process, the intermediate process and the post-HS-process
are independent.

Proof. From Theorem 3.2, using symmetry of BM, it is seen that condition-
ally on ST = b

P1. the processes {Xt : 0 ≤ t ≤ HS} and {XHS+t : 0 ≤ t ≤ T − HS} are
independent,

P2. the pre-HS-process {Xt : 0 ≤ t ≤ HS} is distributed as BM(
√

2λ)
started from 0 and killed when it reaches b,

P3. the post-HS-process {XHS+t : 0 ≤ t ≤ T−HS} is a diffusion Z↓ started
from b and having the generator

GZ↓

u(x) =
1

2
u′′(x) +

h′(b− x)

h(b− x)
u′(x) − λ

h(b− x)
u(x). (3.25)

For the pre-HS-process we apply the path decomposition theorem of
Brownian motion with drift as given in Tanré and Vallois [13] Proposition
3.2. To recall this, let

IHb
:= inf{Xt : 0 ≤ t ≤ Hb} and Ĥb := inf{t : Xt = IHb

}.

Then, under P
µ
0 , conditionally on IHb

= a

P4. the processes {Xt : 0 ≤ t ≤ Ĥb} and {X bHb+t : 0 ≤ t ≤ Hb − Ĥb} are
independent,

P5. the pre-Ĥb-process {Xt : 0 ≤ t ≤ Ĥb} is identical in law with BM(−µ)
started from 0, conditioned to hit a before b, and killed when it hits a.

P6. the post-Ĥb-process {X bHb+t : 0 ≤ t ≤ Hb − Ĥb} is identical in law with

{a+Xt : 0 ≤ t ≤ Ĥb−a} under Q
µ
0 .
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Let F1, F2, and F3 be measurable mappings from C(R+,R) to R+, and
introduce

F1 := F1({Xt : 0 ≤ t ≤ HI}), F2 := F2({XHI+t : 0 ≤ t ≤ HS −HI}),

and
F3 := F3({XHS+t : 0 ≤ t ≤ T −HS}),

where it is assumed that HI < HS. Notice that

HI ≤ HS ⇔ IHS ,T := inf{Xu : HS ≤ u ≤ T} > IHS
. (3.26)

and
IHS ,T > IHS

⇔ IHS
= IT

Consider now

E0 (F1F2F3 ; IT ∈ da,HI < HS |ST = b)

= E0 (F1F2F3 ; IHS
∈ da, IHS ,T > a |ST = b)

= E0 (F1F2 ; IHS
∈ da |ST = b)E0 (F3 ; IHS ,T > a |ST = b) ,

where in the second step the conditional independence (see P1) is applied.
The first term on the right hand side can be analyzed via properties P4, P5
and P6. In particular, claims 1 and 2 of Theorem 3.5 follow with the help of
Lemma 2.3. Moreover, P1 and P4 yield claim 4.

Next we prove claim 3. For this let P↓
x denote the measure in the canonical

setting associated with Z↓ when started from x < b. Hence,

E0

(
F3({XHS+u : 0 ≤ u ≤ t}) 1{t≤T−HS} | IHS ,T > a, ST = b

)

= E
↓
b

(
F3({Xu : 0 ≤ u ≤ t}) 1{t≤ζ} | Iζ > a

)
,

where ζ denotes the life time and Iζ the global infimum. By the Markov
property,

E
↓
b (F3({Xu : 0 ≤ u ≤ t}) ; t ≤ ζ , Iζ > a)

= E
↓
b

(
F3({Xu : 0 ≤ u ≤ t}) 1{t<Ha} P

↓
Xt

(Iζ > a)
)
.

Clearly, for x ≤ b

P↓
x (Iζ > a) = P↓

x (Ha = ∞) = 1 −P↓
x (Ha <∞) ,
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and computing as in (3.23) we obtain

P↓
x (Ha <∞) =

h3(b− a)

h3(b− x)

sh((b− x)
√

2λ)

sh((b− a)
√

2λ)

with h3 as in (3.2). Consequently, after some elementary manipulations, for
x ∈ (a, b)

P↓
x (Iζ > a) = h5(x) :=

g(x)

h3(b− x) sh((b− a)
√

2λ)

with g as in (3.24). Since Z↓ is the Doob h-transform with h = h3(b − ·) of
BM killed at time T ∧Hb it follows that

E
↓
b (F3({Xu : 0 ≤ u ≤ t}) ; t ≤ ζ | Iζ > a)

= E
↓
b

(
h5(Xt)

h5(b)
F3({Xu : 0 ≤ u ≤ t}) ; t ≤ ζ

)

= lim
x↑b

Ex

(
h3(b−Xt) h5(Xt)

h3(b− x) h5(x)
F3({Xu : 0 ≤ u ≤ t}) ; t ≤ T ∧Hb ∧Ha

)

= lim
x↑b

Ex

(
g(Xt)

g(x)
F3({Xu : 0 ≤ u ≤ t}) ; t ≤ T ∧Hb ∧Ha

)
,

and this yields the description 3 of the post process.

Remark 3.6. 1. Informally, the post-HS process is identical in law with a
Brownian motion killed at time ζ := T ∧ Ha ∧ Hb and conditioned by the
event Xζ− ∈ (a, b). Indeed, from [4] 3.0.1 p. 212

Px (Xζ ∈ (a, b)) = Px (T < Ha ∧Hb)

= Ex (1 − exp(−λHa ∧Hb))

= 1 − sh((b− x)
√

2λ) − sh((x− a)
√

2λ)

sh((b− a)
√

2λ)

=
g(x)

sh((b− a)
√

2λ)
.

2. It can be proved that the process {XT−t : 0 ≤ t ≤ T −HS} , i.e., the time
reversal of the post-HS-process is identical in law with {a + Xt : 0 ≤ t ≤
Hb−a} under Q

√
2λ

b−a−ξ with ξ a random variable independent of X having the
density

fξ(x) =
√

2λ e−x
√

2λ/(1 − e−(b−a)
√

2λ), 0 < x < b− a.
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Consequnetly, for 0 < x < b− a

P(ST −XT ∈ dx | ST = b, IT = a,HI < HS) = fξ(x) dx.

4 Maximum increase and decrease

In this section we apply the results from the previous sections to find an
expression for the joint distribution of the maximum increase and the maxi-
mum decrease of Brownian motion up to an independent exponential time T .
As stated in the Introduction the law of (D+

t , D
−
t ) under Px does not depend

on x and, hence, we write in the sequel P instead of Px.
For s < t define the maximum increase on the interval (s, t) via

D+
s,t := sup

s≤u≤v≤t
(Xv −Xu)

and, analogously, the maximum decrease

D−
s,t := sup

s≤u≤v≤t
(Xu −Xv) .

With these new notations we have D−
T = D−

0,T and D+
T = D+

0,T .
The path decomposition given in Theorem 3.5 leads us to the following

Proposition 4.1. 1. For −a < d < b− a

P(D−
HI
< d | HI < HS, IT = a, ST = b)

=
Sν(a+ d)(Sν(b) − Sν(a))

Sν(b)(Sν(a + d) − Sν(a))

=
sh((a+ d)

√
2λ) sh((b− a)

√
2λ)

sh(d
√

2λ) sh(b
√

2λ)

=: f1(d; a, b),

where Sν is as (2.1) with ν = −
√

2λ, i.e.,

Sν(x) :=
1

2
√

2λ
(e2

√
2λx − 1) =

1√
2λ

e
√

2λ x sh(x
√

2λ).
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2. For 0 < d < b− a

P(D−
HI ,HS

< d | HI < HS, IT = a, ST = b)

=
Sν(b− a)

Sν(d)
exp

(
−b− a− d

Sν(d)
− 2

√
2λ(b− a− d)

)

=
sh((b− a)

√
2λ)

sh(d
√

2λ)
exp

(
−(b− a− d)

√
2λ coth (d

√
2λ)
)

=: f2(d; a, b)

3. For 0 < d < b− a

P(D−
HS ,T < d | HI < HS, IT = a, ST = b)

=
sh((b− a)

√
2λ)(ch(d

√
2λ) − 1)

sh(d
√

2λ)(ch((b− a)
√

2λ) − 1)
.

=: f3(d; a, b)

Moreover, conditionally on IT , ST and HI < HS the variables D−
HI
, D−

HI ,HS
,

and D−
HS ,T are independent.

Proof. Claim 1. Because

D−
T = sup

0≤v≤t

(
sup

0≤u≤v
Xu −Xv

)

and since, conditionally on IT = a, HI is the first hitting time of a we have

D−
HI

= sup
0≤v≤HI

Xu − a

and, hence, for −a < d < b− a

{D−
HI
< d} = {Ha < Ha+d}.

From Theorem 3.5 and Lemma 2.3 it follows that

P(D−
HI
< d | HI < HS, IT = a, ST = b)

= Q
√

2λ
b (Hb−a < Hb−a−d)

= P
√

2λ
b (Hb−a < Hb−a−d | Hb−a < H0).

27



Since {b − Xt : t ≥ 0} under P
√

2λ
b is distributed as {Xt : t ≥ 0} under

P−
√

2λ
0 , we have

P(D−
HI
< d | HI < HS, IT = a, ST = b)

= P−
√

2λ
0 (Ha < Ha+d | Ha < Hb)

= P−
√

2λ
0 (Ha < Ha+d)/P

−
√

2λ
0 (Ha < Hb)

=
Sν(a+ d) − Sν(0)

Sν(a+ d) − Sν(a)

Sν(b) − Sν(a)

Sν(b) − Sν(0)
,

where the fact that Sν is the scale function of BM(−
√

2λ) is used. Observing
that for y > x

Sν(y) − Sν(x) =
1√
2λ

e
√

2λ (y+x) sh((y − x)
√

2λ)

leads immediately to the claimed formula.
Claim 2. This follows directly from Proposition 2.5 and Theorem 3.5.
Claim 1. Using again Theorem 3.5

P(D−
HS ,T < d | HI < HS, IT = a, ST = b) = PZ◦

b (Hb−d = +∞).

By the h-transform description of Z◦ (cf. Remark 3.6),

PZ◦

b (Hb−d < +∞) = lim
x↑b

PZ◦

x (Hb−d < +∞)

= lim
x↑b

1

g(x)
Ex(g(XHb−d

) ; Hb−d < T ∧Hb ∧Ha)

= lim
x↑b

g(b− d)

g(x)
Ex(e

−λ Hb−d ; Hb−d < Hb)

= lim
x↑b

g(b− d)

g(x)

sh((b− x)
√

2λ)

sh(d
√

2λ)
,

where g is as in (3.24), i.e., for a < x < b

g(x) = sh((b− a)
√

2λ) − sh((b− x)
√

2λ) − sh((x− a)
√

2λ). (4.1)

Straightforward computations yield now the claimed formula.
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Applying symmetry properties of Brownian motion gives us the following
formulas

P(D+
T < α , D−

T < β) = P(D+
T < β , D−

T < α), (4.2)

P(D+
T < α , D−

T < β , HS < HI) (4.3)

= P(D+
T < β , D−

T < α , HI < HS),

and

P(D+
T < α , D−

T < β) = P(D+
T < α , D−

T < β , HI < HS) (4.4)

+P(D+
T < β , D−

T < α , HI < HS).

The distribution and the density function of (D+
T , D

−
T ) will result as a corol-

lary of the next theorem when applying the formulas (4.2), (4.3), and (4.4).

Theorem 4.2. For β > 0 and ϕ : R+ 7→ R+ bounded and measurable it
holds

E
(
ϕ(D+

T ) ; D−
T < β , HI < HS

)
(4.5)

=
√

2λ
(ch(β

√
2λ) − 1)2

sh3(β
√

2λ)

∫ ∞

β

dxϕ(x) exp
(
−(x− β)

√
2λ coth (β

√
2λ)
)

+
√

2λ

∫ β

0

dxϕ(x)
(ch(x

√
2λ) − 1)2

sh3(x
√

2λ)
.

Proof. Notice first that if HI < HS then

D+
T = ST − IT and D−

T = D−
HI

∨D−
HI ,HS

∨D−
HS ,T ,

and, therefore,

∆ := E
(
ϕ(D+

T ) ; D−
T < β , HI < HS

)

= E
(
ϕ(ST − IT ) ; D−

HI
< β , D−

HI ,HS
< β , D−

HS ,T < β , HI < HS

)
.

Taking the conditional expectation with respect to the σ-algebra generated
by (IT , ST , 1{HI<HS}) and using Proposition 4.1 we obtain

∆ =

∫ 0

−∞
da

∫ +∞

0

db ϕ(b− a) f(a, b) (4.6)

×1{β>−a}
(
f1(β; a, b) f2(β; a, b) f3(β; a, b) 1{β<b−a} + 1{β>b−a}

)
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with fi, i = 1, 2, 3, as in Proposition 4.1 and

f(a, b) = 2λ

(
ch((b− a)

√
2λ) − 1

)
sh(b

√
2λ)

sh3((b− a)
√

2λ)

= P(IT ∈ da, ST ∈ db,HI < HS)/dadb

(cf. Corollary 3.4). Introducing in (4.6) new variables via x = b − a and
y = b allows us to write

∆ =

∫ ∞

0

dxϕ(x) (∆1(x)∆2(x) + ∆3(x)) (4.7)

where

∆1(x) :=
2λ (ch(β

√
2λ) − 1)

sh3(β
√

2λ)
exp

(
−(x− β)

√
2λ coth (β

√
2λ)
)
,

∆2(x) := 1{β<x}

∫ x

x−β

sh
(
(y − x+ β)

√
2λ
)
dy =

ch(β
√

2λ) − 1√
2λ

1{β<x},

and

∆3(x) :=
2λ
(
ch(x

√
2λ) − 1

)

sh3(x
√

2λ)
1{β>x}

∫ x

0

sh(y
√

2λ) dy

=

√
2λ
(
ch(x

√
2λ) − 1

)2

sh3(x
√

2λ)
1{β>x}.

The claimed formula (4.5) results now easily from (4.7).

Before giving results for the joint distribution of D+
T and D−

T we consider
the marginal distributions under the condition HI < HS.

Corollary 4.3. For α, β > 0

P(D+
T ∈ dα,HI < HS) =

√
2λ
(
ch(α

√
2λ) − 1

)2

sh3(α
√

2λ)
dα, (4.8)
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P(D+
T < α,HI < HS) =

ch(α
√

2λ) − 1

2(ch(α
√

2λ) + 1)
, (4.9)

P(D−
T < β,HI < HS) =

(ch(β
√

2λ) − 1)(ch(β
√

2λ) + 2)

2 (ch(β
√

2λ) + 1) ch(β
√

2λ)
, (4.10)

and

P(D+
T < α) = 1 − 1

ch(α
√

2λ)
. (4.11)

Proof. Letting β → +∞ in (4.5) yields (4.8). To compute the distribution
function in (4.9) notice that

(
ch(α

√
2λ) − 1

)2

sh3(α
√

2λ)
=

sh(α
√

2λ/2)

2 ch3(α
√

2λ/2)

and hence

P(D+
T < α,HI < HS) =

1

2

(
1 − 1

ch2(α
√

2λ/2)

)

=
1

2

(
1 − 2

1 + ch(α
√

2λ)

)
,

and (4.9) follows easily. Choosing ϕ ≡ 1 in (4.5), integrating therein and
using the above computation it is straightforward to derive (4.10). For (4.11)
use (4.4), (4.8), and (4.10).

The proof of Theorem 4.2 shows that the way to express the law of
(D+

T , D
−
T ) in (4.5) is very natural. However, we need also "more standard"

representations obtained when choosing in (4.5) ϕ(x) = 1{x<α}.

Proposition 4.4. The distribution function of (D+
T , D

−
T , 1{HI<HS}) is given

for α, β ≥ 0 by

P(D+
T < α,D−

T < β,HI < HS) =
1

2

ch((α ∧ β)
√

2λ) − 1

ch((α ∧ β)
√

2λ) + 1
(4.12)

+
ch(β

√
2λ) − 1

ch(β
√

2λ)(ch(β
√

2λ) + 1)

×
(
1 − exp

(
−(α− β)

√
2λ coth (β

√
2λ)
))

1{β<α}.
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Notice that
HI < HS ⇔ D+

T ≥ D−
T , (4.13)

explaining the appearance of the indicator function 1{β<α} in (4.12). More-
over, combining (4.12) with (4.2), (4.3), (4.4), and (4.11) yields

Proposition 4.5. The distribution function of (D+
T , D

−
T ) is given for α, β >

0 by

P(D+
T < α,D−

T < β) =

{
u(α, β), α ≤ β,

u(β, α), α ≥ β,
(4.14)

where

u(α, β) := 1 − 1

ch(α
√

2λ)
− v(α, β)

and

v(α, β) :=
(ch(α

√
2λ) − 1) exp

(
−(β − α)

√
2λcoth (α

√
2λ)
)

ch(α
√

2λ)(ch(α
√

2λ) + 1)
. (4.15)

In particular,
P(D+

T > α,D−
T < β) = v(α ∧ β, α ∨ β).

We are now able to determine the density function of (D+
T , D

−
T ). Differenti-

ating in (4.14) leads after some calculations to

Proposition 4.6. For α, β > 0

P(D+
T ∈ dα , D−

T ∈ dβ) = f+,−(α ∨ β, α ∧ β) dαdβ, (4.16)

where with x > y > 0

f+,−(x, y) :=
2λ

(ch(y
√

2λ) + 1)2

(

2 +
(x− y)

√
2λ

sh(y
√

2λ)

)

× exp
(
−(x− y)

√
2λ coth (y

√
2λ)
)
.

Remark 4.7. To increase understanding of the distribution of (D+
T , D

−
T )

notice that

P(D+
T ∈ dα , D−

T ∈ dβ |HI < HS) = 2 f+,−(α, β) 1{α>β} dα dβ.
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Consequently, for α > 0, β > 0

P(D+
T −D−

T ∈ dα , D−
T ∈ dβ |HI < HS)

=
4λ

(ch(β
√

2λ) + 1)2

(
2 +

α
√

2λ

sh(β
√

2λ)

)

× exp
(
−α

√
2λ coth (β

√
2λ)
)
dα dβ.

Define two new random variables

X :=
√

2λ
(
D+

T −D−
T

)
/sh(

√
2λD−

T )

and
Y := ch(

√
2λD−

T ).

Then for x > 0, y > 1

P(X ∈ dx, Y ∈ dy |HI < HS) =
2(2 + x)

(1 + y)2
e−x y dx dy.

In particular, for y > 1

P(Y ∈ dy |HI < HS) =
2(2y + 1)

(y(1 + y))2
dy

and for u > 1

P(Y > u |HI < HS) =
2

u(1 + u)
.

Finally, as an application of Proposition 4.6, we compute the covariance of
D+

t and D−
t (up to a fixed time t) and determine therefrom their correlation

coefficient.

Corollary 4.8. For all t ≥ 0

E(D+
t ) =

√
2

π
β(1)

√
t =

√
π

2

√
t ' 1.25331

√
t,

E
(
(D+

t )2
)

= 2 β(2) t ' 1.83193 t,

and
E(D+

t D
−
t ) = (2 β(2) − 2 log 2 + 1) t ' 1.44564 t,

where

β(n) :=

∞∑

k=0

(−1)k (2k + 1)−n, n = 1, 2, . . . .
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Remark 4.9. 1. Recall from Abramowitz and Stegun [1] p. 807, that β(n) is
called Dirichlet’s β-function. In particular, β(1) = π/2 and β(2) = 0.91596...
is Catalan’s constant.
2. The variance of D+ is

Var(D+
t ) := E

(
(D+

t )2
)
−
(
E(D+

t )
)2 ' 0.26113 t.

The correlation coefficient ρ between D+
t and D−

t does not depend on t and
is given by

ρ :=
E(D+

t D
−
t ) − (E(D+

t ))2

Var(D+
t )

' −0.47936. (4.17)

Proof. From the scaling property of BM it follows that

(D+
T , D

−
T )

(d)
=

√
T (D+

1 , D
−
1 ). (4.18)

Since E(
√
T ) =

√
π/λ and T is independent of the underlying BM we have

using (4.11)

E(D+
1 ) =

E(D+
T )

E(
√
T )

=

√
λ

π

∫ ∞

0

P(D+
T > α) dα

= (
√

2π)−1

∫ ∞

0

1

chu
du =

√
2

π
β(1),

where the series expansion

(chu)−1 = 2 e−u
∞∑

k=0

(−1)k e−2uk

is used. This yields the first formula in the statement of the corollary. For
the second formula we compute similarly:

E((D+
1 )2) =

E((D+
T )2)

E(T )
= 2 λ

∫ ∞

0

P(D+
T > α)αdα

=

∫ ∞

0

u

chu
du = 2 β(2).

Next we determine E(D+
t D

−
t ). Firstly,

E(D+
1 D

−
1 ) =

E(D+
T D

−
T )

E(T )
= λ

∫ ∞

0

∫ ∞

0

P(D+
T > α,D−

T > β) dαdβ.

34



Supposing α < β we have from (4.14)

P(D+
T < α,D−

T < β) = 1 − 1

ch(α
√

2λ)
− v(α, β)

= P(D+
T < α) − v(α, β)

with v as given in (4.15). Consequently,

P(D+
T < α,D−

T > β) = v(α, β),

and
P(D−

T > β) −P(D+
T > α,D−

T > β) = v(α, β),

which gives

P(D+
T > α,D−

T > β) =
1

ch(β
√

2λ)
− v(α, β), α < β.

Hence it holds
∫ ∞

α

P(D+
T > α,D−

T > β) dβ =

∫ ∞

α

1

ch(β
√

2λ)
dβ −

∫ ∞

α

v(α, β) dβ,

where, by elementary integration,

∫ ∞

α

v(α, β) dβ =
(ch(α

√
2λ) − 1) sh(α

√
2λ)√

2λ (ch(α
√

2λ))2(ch(α
√

2λ) + 1)
.

By symmetry, we have

E(D+
1 D

−
1 ) = 2λ

(∫ ∞

0

dα

∫ ∞

α

dβ
1

ch(β
√

2λ)
−
∫ ∞

0

dα

∫ ∞

α

dβ v(α, β)

)

=

∫ ∞

0

u

chu
du−

∫ ∞

0

(chu− 1)shu

ch2u(chu+ 1)
du

= 2
∞∑

k=0

(−1)k(2k + 1)−2 −
∫ ∞

1

x− 1

x2(x+ 1)
dx

= 2β(2) − 2 log 2 − 1.
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Remark 4.10. Recall that

E(T p/2) = λ

∫ ∞

0

tp/2 e−λt dt = Γ((2 + p)/2)/λp/2.

With this formula it is now fairly straightforward to connect the pth moment
of D+

1 with Dirichlet’s β-function. Indeed, for p ≥ 1 we have

E((D+
1 )p) =

E((D+
T )p)

E(T p/2)
=

λp/2 p

Γ(2+p
2

)

∫ ∞

0

P(D+
T > α)αp−1 dα

=
p

2p/2 Γ(2+p
2

)

∫ ∞

0

tp−1 dt

cht

=
2 pΓ(p)

2p/2 Γ(2+p
2

)
β(p).
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