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Abstract:

The paper explores the basic geometrical properties of the observables characterizing two-qubit systems
by employing a novel projective ring geometric approach. After introducing the basic facts about quan-
tum complementarity and maximal quantum entanglement in such systems, we demonstrate that the
15×15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geo-
metrical structure that can be regarded as three pencils of lines in the projective plane of order two. All
lines in each pencil carry mutually commuting operators; in one of the pencils, which we call the kernel,
the observables on two lines share a base of Bell states. The three operators on any line in each pencil
represent a row or column of some Mermin’s “magic” square, thus revealing an inherent geometrical
nature of the latter. In the complement of the kernel, the eight vertices/observables are joined by twelve
lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the
nature of this geometry has much to do with the structure of the projective lines defined over the rings
that are the direct product of n copies of the Galois field GF(2), with n = 2, 3 and 4.

Keywords: Quantum Entanglement – Two Spin- 1

2
Particles – Finite Rings – Projective Ring Lines

1 Introduction

“Seriousness” of quantum theory for addressing the most fundamental aspects of reality has invariably
been at the forefront of theoretical explorations of most prominent scholars [1]–[6], being firmly established
by experiment in 1982 [7]. Two measurements described by non-commuting observables are inherently
uncertain and this led Einstein, Podolsky and Rosen [1] to question the completeness of quantum the-
ory versus the reality of both observed physical quantities. Using counterfactual arguments applied to
distant experimental set-ups they introduced (and immediately rejected) the notion of underlying whole-
ness, which shortly after gave rise to the concept of quantum entanglement [8]. Bohr believed that
no serious conclusion can be drawn from the comparison of thought experiments dealing with mutu-
ally incompatible (i.e., non-commuting) observables and thus practically ignored the paradox, proposing
another view/paradigm—quantum complementarity [10]. Since the work of Bohm [2] and Bell [3], the
“puzzles” of quantum theory have mainly been discussed within a discrete variable setting of spin- 1

2

particles. In essence, Bell’s theorems [6] imply that either the recursive (counterfactual) reasoning about
possible experiments should be abandoned, or non-contextual assumptions (implicit in the EPR locality
arguments) are to be challenged, or both. One of the simplest illustrations of quantum “mysteries”, which
also provides a very economical proof of the Bell-Kochen-Specker theorem [3],[4], employs a 3×3 array
of nine observables characterizing two spin- 1

2
particles [6]. The three operators in any row or column of

such a square, commonly referred to as the Mermin “magic” square, are mutually commuting, allowing
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the recursive reasoning to be used, but the algebraic structure of observables contradicts that of their
eigenvalues [6]. This contradiction stems from the following two basic features of the structure of the
square: complementarity between the observables located in two distinct rows and two of the columns
and the maximal entanglement of the observables in one of the columns.

The basic facts about quantum complementarity and maximal quantum entanglement for two spin- 1

2

particles (or two-qubits, using the language of quantum information theory) are given in Sec. 2. In Sec. 3
we demonstrate that the 15×15 multiplication table of the associated four-dimensional (generalized Pauli
spin) matrices exhibits a so-far-unnoticed geometrical structure, which can be regarded as three pencils
of lines in the projective plane of order two (the Fano plane) [11]. These three pencil-configurations, each
featuring seven points/observables, share a line (called the reference line), and any line comprises three
observables, each being the product of the other two, up to a factor −1, i or −i (i2 = −1). All the three
lines in each pencil carry mutually commuting operators; in one of the pencils, which we call the kernel,
the observables on two lines share a base of maximally entangled states. The three operators on any line
in each pencil represent a row or column of some of Mermin’s “magic” squares, thus revealing an inherent
geometrical nature of the latter [12],[13]. In the complement of the kernel, the eight vertices/observables
are joined by twelve lines which form the edges of a cube. The lines between the kernel and the cube are
pairwise complementary, which means that each vertex/observable is linked with six other ones.

Some of these intriguing geometrical features can be recovered, as shown in detail in Sec. 4, in terms
of the structure of the projective line defined over the finite ring GF (2)⊗n, with n = 2, 3, 4, GF (2) ∼= Z2

denoting the Galois field with two elements and ⊗n representing the direct product of n such fields. After
recalling some basics on the concept of a projective ring line and the associated concepts of neighbour
and distant, we illustrate its basic properties over the ring GF (2)⊗2 and show that the corresponding line
reproduces nicely all the basic qualitative properties of a Mermin square (Sec. 4.1). In order to account
for a more intricate geometrical structure of the kernel and the cube, one has to employ the lines corre-
sponding to n = 3 (Sec. 4.2) and n = 4 (Sec. 4.3), respectively. Although these two lines provide us with
important insights into the structure of the two operator configurations, it is obvious we will have to look
for a higher order ring line in order to get a more complete geometrical picture of two-qubit systems.

2 Quantum complementarity, maximal entanglement and

mutually unbiased bases

Bohr’s concept of quantum complementarity [10] has recently received great attention in relation with
the problem of finding complete sets of so-called mutually unbiased bases (MUBs). Two observables
are complementary if precise knowledge of one of them implies that all possible outcomes of measuring
the other are equally probable. The eigenstates of such observables are non-orthogonal quantum states
and in an attempt to distinguish between them any gain of information is only possible at the expense
of introducing disturbances — a property of crucial importance in quantum cryptography. Let O be
an observable in a finite dimensional Hilbert space of dimension q, represented by a Hermitian matrix
with multiplicity-free eigenvalues such that its eigenvectors |b〉 belong to an orthonormal basis B. Let
O′ be a prepared complementary observable with eigenvectors |b′〉 in a basis B′. If O is measured, the
probability to find the system in the state |b〉 is |〈b|b′〉|2 = 1/q. If the latter relation holds for any two
pairs |b〉 and |b′〉, then the two bases are said to be mutually unbiased. It can be shown that in order to
fully recover the density matrix of a set of copies of an unknown quantum state, we need at least q + 1
measurements performed on complementary observables. This number also represents the upper bound
for the cardinality of distinct MUBs to exist, and such (complete) sets have so far been constructed only
for q = pm, with p being a prime number and m a positive integer, the most elegant techniques employed
being those using additive characters over Galois fields GF (pm) (for p > 2) and Galois rings R = GR(4m)
(for p = 2) [14]. This property was in [15] postulated to be equivalent to a long standing combinatorial
problem of the non-existence of projective planes of orders differing from powers of primes, a work that
can be regarded as one of the first implementations of finite algebraic geometrical objects/structures into
the context of quantum bits (qubits). A closely related SU(2) “polar” recipe for constructing MUBs has
recently been proposed [16]. It is also worth mentioning that MUBs are a key ingredient in numerous
attempts of accounting for entanglement related “paradoxes” [12],[13].

There exists an equivalence between the unbiasedness of sets of bases and particular sets of mutually
commuting operators sharing a base of eigenvectors. Let us consider the partitioning of the 15 observables
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attached to two spin- 1

2
particles into the following 5(= 4 + 1) mutually unbiased sets arranged in rows

[17]

12 ⊗ σz σz ⊗ 12 σz ⊗ σz

σx ⊗ 12 12 ⊗ σy σx ⊗ σy

σx ⊗ σz σz ⊗ σx σy ⊗ σy

12 ⊗ σx σy ⊗ 12 σy ⊗ σx

σy ⊗ σz σx ⊗ σx σz ⊗ σy

=

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15

, (1)

where 12 is the 2 × 2 unit matrix and σx, σy and σz are the classical Pauli matrices. All the observables
in (1) have doubly-degenerate eigenvalues, ±1, and each row gives rise to an orthogonal base; the bases
represented by the 3rd and 5th rows are entangled. Every operator in a row is the product of the other
two, i.e. 1 ∗ 2 = 3, 4 ∗ 5 = 6, . . . (here ∗ stands for the matrix product), but no similar rule seems to exist
between operators in two different rows. The 3× 3 arrays of observables of Mermin’s type, mentioned in
the introduction, are of the following forms

1 2 3 1 2 3 1 4 7 1 11 13
4 10 14 , 13 15 14 , 2 5 15 , 2 10 8 .
7 8 9 11 5 9 3 6 12 3 12 6

(2)

In each of the above arrays, the observables in every row or column are mutually commuting, each being
the product of the other two except for the last column where a minus sign appears, i.e., 3 ∗ 14 = −9; the
product of the three operators in each row and the first two columns thus yields +12, whereas for the
third column it is −12. In view of our subsequent considerations it is useful to enumerate the orthogonal
bases attached to rows and columns of the first Mermin square on the left-hand side of Eq. (2), omitting,
for the sake of simplicity, a normalization factor and denoting the sign of eigenvalues of the corresponding
operators by subscripts:

[1, 2, 3] : (1, 0, 0, 0)+++ (0, 1, 0, 0)+−+ (0, 0, 1, 0)++− (0, 0, 0, 1)+−−

= |00〉 |01〉 |10〉 |11〉
[4, 10, 14] : (1, 1, 1, 1)+++ (1,−1, 1,−1)+−− (1, 1,−1,−1)−+− (1,−1,−1, 1)−−+

[7, 8, 9] : (1, 1, 1,−1)+++ (1,−1, 1, 1)+−− (1, 1,−1, 1)−+− (1,−1,−1,−1)−−+

[1, 4, 7] : (1, 0, 1, 0)+++ (1, 0,−1, 0)+−− (0, 1, 0, 1)−+− (0, 1, 0,−1)−−+

[2, 10, 8] : (1, 1, 0, 0)+++ (1,−1, 0, 0)+−− (0, 0, 1, 1)−+− (0, 0, 1,−1)−−+

[3, 14, 9] : (1, 0, 0, 1)++− (1, 0, 0,−1)+−+ (0, 1, 1, 0)−++ (0,−1, 1, 0)−−−

= |00〉 + |11〉 |00〉 − |11〉 |01〉 + |10〉 |01〉 − |10〉

(3)

For the first two arrays of (2), an orthogonal base of the Bell states is associated with the third column;
for the other two squares, the Bell states are carried by the operators in the third row as follows

[3, 6, 12] : (1, 0, 0, i)+++ (1, 0, 0,−i)+−− (0, 1, i, 0)−++ (0, 1,−i, 0)−−−

= |00〉 + i|11〉 |00〉 − i|11〉 |01〉 + i|10〉 |01〉 − i|10〉 (4)

3 Algebra and geometry of two spin-1
2 particles

The four different representations of Mermin’s square, Eq. (2), give us important hints about the existence
of an underlying algebraic geometrical principle governing interaction of two spin- 1

2
particles. The base

line (1, 2, 3) is common to all the four arrays, each of the remaining operators from 4 to 15 appears twice,
and the (Bell) entangled triples (3, 14, 9) and (3, 6, 12) form a column and a row, respectively. Our goal
in this section is to reveal this hidden geometry.

To this end in view, we first add to the set given by Eq. (1) the identity operator 0 ≡ 12⊗12, obtaining

S = {0, 1, 2, . . . , 15}, (5)

and partition this set into two subsets A and B, where

A = {0, 1, 2, 3, 6, 9, 12, 14} (6)
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∗ 0 1 2 3 6 14 9 12
0 0 1 2 3 6 14 9 12
1 1 0 3 2 −i14 i6 −i12 i9
2 2 3 0 1 i9 i12 −i6 −i14
3 3 2 1 0 12 −9 −14 6
6 6 i14 −i9 12 0 −i1 i2 3
14 14 −i6 −i12 −9 i1 0 −3 −i2
9 9 i12 i6 −14 −i2 −3 0 −i1
12 12 −i9 i14 6 3 i2 i1 0

Table 1: Multiplication between the elements of A.

∗ 4 7 11 13 5 10 15 8
4 0 1 i2 i3 6 14 −i9 −i12
7 1 0 i3 i2 −i14 i6 −12 9
11 −i2 −i3 0 1 9 12 i6 i14
13 −i3 −i2 1 0 −i12 i9 14 −6
5 6 i14 9 i12 0 −i1 2 −i3
10 14 −i6 12 −i9 i1 0 i3 2
15 i9 −12 −i6 14 2 −i3 0 −i1
8 i12 9 −i14 −6 i3 2 i1 0

Table 2: Multiplication between the elements of B.

∗ 0 1 2 3 6 14 9 12
4 4 7 −i11 −i13 5 10 i15 i8
7 7 4 −i13 −i11 −i10 i5 8 −15
11 11 13 i4 i7 −i15 −i8 5 10
13 13 11 i7 i4 −8 15 −i10 i5
5 5 i10 15 i8 4 −i7 11 −i13
10 10 −i5 8 −i15 i7 4 i13 11
15 15 i8 5 i10 i11 13 −i4 −7
8 8 −i15 10 −i5 −13 −i11 7 −i4

Table 3: Multiplication between the elements of A and B.

comprises the “computational” operators C = {0, 1, 2, 3} and the “entangled” operators E = {6, 9, 12, 14},
and

B = {4, 5, 7, 8, 10, 11, 13, 15}, (7)

which can also be partitioned into two subsets of cardinality four as shown in Table 3. Next we create
the multiplication tables for the elements of A (Table 1), B (Table 2) and those of both sets (Table 3) in
order to see that the following properties hold for two observables O and O′

O, O′ ∈ A or O, O′ ∈ B ⇒ O ∗ O′ ∈ A,

O ∈ A and O′ ∈ B ⇒ O ∗ O′ ∈ B. (8)

One immediately recognizes that the multiplication table of C is, except for a factor −1 or ±i, isomorphic
to the addition table of the Galois field GF (4) = GF (2)[x]/〈x2 + x + 1〉 and that of A to the addition
table of the Galois field GF (8) = GF (2)[x]/〈x3 + x + 1〉. The set GF (8)∗ ≡ GF (8) \ {0} is a cyclic
group generated by a single element and its representation in terms of 3-tuples in GF (2)⊗3 provides
the coordinates of seven points of the projective plane of order two, the Fano plane [18]. Hence, we
can identify the elements of the set A, omitting the trivial one (0), with the points of such a plane and
obtain the configuration shown in Fig. 1. In this figure, three operators are on a line if and only if the
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231

6 12

(b,y)

(r,c)(c,r)
(y,b)

(1,1)(1,0) (0,1)

9

14

Figure 1: The “kernel of entanglement” for two-qubit systems as a pencil of lines (one represented by
the circle) in the Fano plane. The points of the configuration correspond to the nontrivial observables of
Eq. (6). The extra labelling refers to the points of the projective line of GF (2)⊗3 (see Sec. 4.2).

product of two of them equals, again apart from a factor −1 or ±i, the remaining one (see Table 1), with
the understanding that full/broken lines join commuting/non-commuting operators. The three full lines,
distinguished from each other by different colours, form a so-called pencil, i.e., the set of lines passing
through the same point, called the base point — see, e.g., [11], and, in this particular case, each of
them is endowed with the triple of operators carrying Bell states. The essence of quantum entanglement
between two spin- 1

2
particles is thus embodied in a very simple geometry! If, furthermore, the set B

and Table 3 are taken into account, we get two analogous configurations, as depicted in Fig. 2. However,
these configurations differ crucially from the first one as any full line in either of them contains triples
of operators that share an unentangled orthogonal base of eigenvectors. All in all, the fifteen operators
1 to 15 are thus found to form a remarkable configuration comprising the seven elements of the kernel of
Fig. 1 and the ten elements of the “outer shell” forming a cube, as shown in Fig. 3.

31 2
(0,1)(1,0) (1,1)

7

4 13
11

(b,1)

(y,1)
(r,1)

(c,1)

231

15

5

(1,b)

8

(1,r)

(1,c)
(1,y)

10

(1,1) (0,1)(1,0)

Figure 2: Two pencils of lines reproducing the product rules of the observables given Table 3. The points,
apart from 1 to 3, are now the observables from (7). The extra labelling refers again to the points of the
projective line over GF (2)⊗3 (see Sec. 4.2).
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Figure 3: A geometry of a system of two spin- 1

2
particles. The “inner” observables are arranged as shown

in Fig. 1, whereas the “outer” ones form a cubic configuration. A couple of “inner” observables commute
with eight “outer” ones forming two “complementary” four-tuples. They exist three such pairs: (6, 12),
(9, 14) and (1, 2). The “inner/outer” relation is, however, illustrated for the first pair only. The concerned
triples of observables which are entangled are represented with thicker lines.

4 Entanglement and finite ring geometry

4.1 The GF (2)⊗2 geometry of the Mermin square

The remarkable algebraic geometrical properties of a system of two spin- 1

2
particles discussed in the

previous section can be given a more appropriate setting if we employ the concept of projective geometry
over rings, in particular that of projective lines defined over finite rings. The most prominent, and at
first sight counterintuitive, feature of ring geometries (of dimension two and higher) is the fact that
two distinct points/lines need not to have a unique connecting line/meeting point [19],[22]. As a result,
such geometries feature new concepts like neighbour and distant, which turns out to be relevant for
our geometrical interpretation of mutual unbiasedness, complementarity and non-locality in quantum
physics. All these features are intimately connected with the structure of the set of zero divisors of the
ring. As this kind of geometry has until recently been virtually unknown to the physics community, we
shall start from scratch and recollect first some basic definitions, concepts and properties of rings (see,
e. g., [23]–[25]).

A ring is a set R (or, more specifically, (R, +,×)) with two binary operations, usually called addition
(+) and multiplication (×), such that R is an abelian group under addition and a semigroup under
multiplication, with multiplication being both left and right distributive over addition.1 A ring in which
the multiplication is commutative is a commutative ring. A ring R with a multiplicative identity 1 such
that 1r = r1 = r for all r ∈ R is a ring with unity. A ring containing a finite number of elements is a
finite ring. In what follows the word ring will always mean a commutative ring with unity. An element r
of the ring R is a unit (or an invertible element) if there exists an element r−1 such that rr−1 = r−1r = 1.
The element r−1, uniquely determined by r, is called the multiplicative inverse of r. The set of units
forms a group under multiplication. A (non-zero) element r of R is said to be a (non-trivial) zero-divisor

if there exists s 6= 0 such that sr = rs = 0. An element of a finite ring is either a unit or a zero-divisor. A
ring in which every non-zero element is a unit is a field; finite (or Galois) fields, often denoted by GF (q),
have q elements and exist only for q = pn, where p is a prime number and n a positive integer. The
smallest positive integer s such that s1 = 0, where s1 stands for 1 + 1 + 1 + . . . + 1 (s times), is called
the characteristic of R; if s1 is never zero, R is said to be of characteristic zero. An ideal I of R is a
subgroup of (R, +) such that aI = Ia ⊂ I for all a ∈ R. An ideal of the ring R which is not contained
in any other ideal but R itself is called a maximal ideal. If an ideal is of the form Ra for some element a

1It is customary to denote multiplication in a ring simply by juxtaposition, using ab in place of a× b, and we shall follow
this convention here.
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of R it is called a principal ideal, usually denoted by 〈a〉. A ring with a unique maximal ideal is a local

ring. Let R be a ring and I one of its ideals. Then R ≡ R/I = {a + I | a ∈ R} together with addition
(a + I) + (b + I) = a + b + I and multiplication (a + I)(b + I) = ab + I is a ring, called the quotient
(or factor) ring of R with respect to I; if I is maximal, then R is a field. A very important ideal of a
ring is that one represented by the intersection of all maximal ideals; this ideal is called the Jacobson

radical. Finally, we mention a couple of relevant examples of rings: a polynomial ring, R[x], viz. the set
of all polynomials in one variable x and with coefficients in the ring R, and the ring R⊗ that is a (finite)
direct product of rings, R⊗ ≡ R1 ⊗ R2 ⊗ . . . ⊗ Rn, where both addition and multiplication are carried
out componentwise and where the individual rings need not be the same.

Given a ring R with unity, the general linear group of invertible 2×2 matrices with entries in R, a
pair (α, β) ∈ R2 is called admissible over R if there exist γ, δ ∈ R such that [26]

(

α β
γ δ

)

∈ GL(2, R). (9)

The projective line over R, denoted as PR(1), is defined as the set of classes of ordered pairs (̺α, ̺β),
where ̺ is a unit and (α, β) is admissible [22],[26]–[29]. Such a line carries two non-trivial, mutually
complementary relations of neighbour and distant. In particular, its two distinct points X :=(̺α, ̺β) and
Y :=(̺γ, ̺δ) are called neighbour (or, parallel) if

(

α β
γ δ

)

/∈ GL(2, R) (10)

and distant otherwise, i. e., if condition (9) is met. The neighbour relation is reflexive (every point is
obviously neighbour to itself) and symmetric (i. e., if X is neighbour to Y then Y is neighbour to X
too), but, in general, not transitive (i. e., X being neighbour to Y and Y being neighbour to Z does not
necessarily mean that X is neighbour to Z — see, e. g., [22],[26],[29]). Given a point of PR(1), the set
of all neighbour points to it will be called its neighbourhood.2 Obviously, if R is a field then ‘neighbour’
simply reduces to ‘identical’ and ‘distant’ to ‘different’. For a finite commutative ring R, Eq. (9) reads

det

(

α β
γ δ

)

∈ R∗, (11)

and Eq. (10) reduces to

det

(

α β
γ δ

)

∈ R\R∗, (12)

where R∗ denotes the set of units (invertible elements) and R\R∗ stands for the set of zero-divisors of R
(including the trivial zero divisor 0).

To illustrate the concept, and to meet the first relevant example of ring geometry in quantum theory,
we shall consider the projective line defined over the ring of Galois double numbers R⊥ ≡ GF (2)⊗2 [12].
The ring R⊥ is of characteristic two and consists of the four elements 0, 1, x, x+1 subject to the addition
and multiplication rules given in Table 4, as it can readily be verified from its isomorphism to the quotient

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1
x + 1 x + 1 x 1 0

× 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x 0
x + 1 0 x + 1 0 x + 1

.

Table 4: Addition and multiplication in R⊥.

ring GF (2)[x]/〈x2 − x〉 [20]. As ‘1’ is the only unit of this ring, from Eq. (11) we find that the associated
projective line, PR⊥(1), features altogether nine points out of which (i) seven points are represented by
pairs where at least one entry is a unit, namely

(1, 0), (1, x), (1, x + 1), (1, 1),

(0, 1), (x, 1), (x + 1, 1), (13)
2To avoid any confusion, the reader should be cautious that some authors (e. g. [27],[29]) use this term for the set of

distant points instead.
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and (ii) two points have both coordinate entries zero-divisors, not of the same ideal, viz.

(x, x + 1), (x + 1, x). (14)

To reveal the fine structure of the line we pick up three distinguished points U :=(1, 0), V :=(0, 1) and
W :=(1, 1), representing nothing but the ordinary projective line of order two embedded in PR⊥(1), which
are obviously pairwise distant and whose neighbourhoods are readily found to read

U : (1, x), (1, x + 1), (x, x + 1), (x + 1, x),

V : (x, 1), (x + 1, 1), (x, x + 1), (x + 1, x),

W : (1, x), (1, x + 1), (x, 1), (x + 1, 1). (15)

Now, as the coordinate system on this line can always be chosen in such a way that the coordinates
of any three mutually distant points are made identical to those of U , V and W , from the last three
expressions we discern that the neighbourhood of any point of the line features four distinct points, the
neighbourhood of any two distant points have two points in common (which makes the neighbour relation
non-transitive) and the neighbourhoods of any three mutually distant points have no element in common.
The nine points of the line PR⊥(1) can thus be arranged into a 3 × 3 array as shown in Fig. 4 (see also
Fig. 2 of Ref. [21] for a different, “conic” representation of PR⊥).

(1,0) (0,1)

(1,x)(x+1,1) (x,x+1)

(x+1,x)

(1,1)

(x,1)
(1,x+1)

Figure 4: An illustration of the structure of the projective line over R⊥. If two distinct points are joined
by a line, they are distant; if not, they are neighbour.

This array has an important property that all the points in the same row and/or column are pairwise
distant. Moreover, a closer look at Fig. 3 reveals that one triple of mutually distant points, that located
in the third (blue) column, differs from all others in having both coordinates of all the three points of
the same character, namely either zero-divisors (the points (x, x + 1) and (x + 1, x)), or units (the point
(1, 1)). After identifying, in an obvious way, the observables of the first (or the second) Mermin square
in (2) with the points of PR⊥(1), one immediately sees that the concept mutually commuting translates
ring geometrically into mutually distant and that the “Bell-borne” specific character of the observables
of the third column has its geometrical counterpart in the above-mentioned distinguishing properties of
the coordinates of the corresponding points.

4.2 The three pencil configurations and the projective line over GF (2)⊗3

The above-established mutually commuting — mutually distant analogy can be extended to a more
general ring geometrical setting, that of the projective line defined over R△ ≡ GF (2)⊗3 [21]. The
ring R△, of characteristic two and cardinality eight, comprises the unity [1, 1, 1] ≡ 1, the trivial zero-
divisor [0, 0, 0] ≡ 0, and six other zero-divisors forming three pairs, namely [1, 0, 0] ≡ b and [0, 1, 1] ≡ y,
[0, 1, 0] ≡ r and [1, 0, 1] ≡ c, [0, 0, 1] ≡ g and [1, 1, 0] ≡ m; the entries in each pair are complementary
in the sense that they sum to the unity. The elements of the ring are subject to the addition and
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+ 0 1 b y r c g m

0 0 1 b y r c g m
1 1 0 y b c r m g
b b y 0 1 m g c r
y y b 1 0 g m r c
r r c m g 0 1 y b
c c r g m 1 0 b y
g g m c r y b 0 1
m m g r c b y 1 0

× 0 1 b y r c g m

0 0 0 0 0 0 0 0 0
1 0 1 b y r c g m
b 0 b b 0 0 b 0 b
y 0 y 0 y r g g r
r 0 r 0 r r 0 0 r
c 0 c b g 0 c g b
g 0 g 0 g 0 g g 0
m 0 m b r r b 0 m

Table 5: Addition and multiplication in R△.

multiplication properties as shown in Table 5, from where it follows that the ring has three maximal —
and principal as well — ideals

〈y〉 = {0, r, g, y}, 〈c〉 = {0, b, g, c} and 〈m〉 = {0, b, r, m}, (16)

and three other principal ideals

〈b〉 = {0, b} = 〈c〉 ∩ 〈m〉, 〈r〉 = {0, r} = 〈y〉 ∩ 〈m〉 and 〈g〉 = {0, g} = 〈y〉 ∩ 〈c〉. (17)

By making use of these facts, the associated projective line, PR△(1), is found to consist of the following
twenty-seven points [21]: (i) the three distinguished points (the “nucleus”),

(1, 0), (0, 1), and (1, 1), (18)

which represent the ordinary projective line over GF (2) embedded in PR△(1); (ii) six pairs of points of
the “inner shell” whose coordinates feature both the unity and a zero-divisor,

(1, b), (b, 1); (1, y), (y, 1); . . . ; (19)

and (iii) six pairs of points of the “outer shell” whose coordinates have zero-divisors in both the entries,

(b, y), (y, b); . . . ; (c, y), (y, c); . . . ; (20)

which were split into two groups according to as both entries are composite zero-divisors or not.
The fine structure of this line has thoroughly been investigated in [21] and the most relevant results

are here reproduced in Tables 6 to 9, using the notation of Ref. 21. After identifying the points of the
line with the observables as shown in Figs. 1 and 2, from Tables 1 and 2 we find out that the subsets in
question provide a perfect match for the geometry of all the three pencils. The picture, however, is not
complete as one readily realizes when trying, under the given correspondence, to reproduce Tables 2 and
3; in the former case we see that the two pictures differ in four places (Table 8), whilst in the latter case
in as many as fourteen entries (Table 9)!

(1, 0) (0, 1) (1, 1) (c, r) (b, y) (y, b) (r, c)

(1, 0) − + + − − − −
(0, 1) + − + − − − −
(1, 1) + + − + + + +
(c, r) − − + − − − +
(b, y) − − + − − + −
(y, b) − − + − + − −
(r, c) − − + + − − −

Table 6: A subset of PR△(1) whose distant/neighbour (+/−) relations exactly reproduce the commuta-
tion relations embodied in the “entangled” pencil of lines shown in Fig. 1.
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(1, 0) (0, 1) (1, 1) (y, 1) (b, 1) (c, 1) (r, 1)

(1, 0) − + + + + + +
(0, 1) + − + − − − −
(1, 1) + + − − − − −
(y, 1) + − − − + − −
(b, 1) + − − + − − −
(c, 1) + − − − − − +
(r, 1) + − − − − + −

Table 7: A subset of PR△(1) whose distant/neighbour relations match the commutation relations ex-
hibited by the “unentangled” pencil of lines shown in Fig. 2, left; the identical table is obtained if we
exchange the order of coordinates, which fits the geometry of the pencil of Fig. 2, right.

(y, 1) (b, 1) (r, 1) (c, 1) (1, c) (1, b) (1, r) (1, y)

(y, 1) − + − − −! + − −
(b, 1) + − − − − − + +
(r, 1) − − − + + + − −
(c, 1) − − + − − − + −!
(1, c) −! − + − − − + −
(1, b) + − + − − − − +
(1, r) − + − + + − − −
(1, y) − + − −! − + − −

Table 8: A subset of PR△(1) that is the best match for the geometry of the observables given in Table
2; the two configurations differ in four places indicated by an exclamation mark.

4.3 Towards a fuller picture: the projective line over GF (2)⊗4

These last observations clearly indicate that higher order rings have to be employed to obtain a satisfactory
picture of the behaviour of two spin- 1

2
particles. As an important intermediate step to reach this goal

seems to be the structure of the projective line defined over R♦ ≡ GF (2)⊗4.
We will not go into much detail here and simply observe that the 16 elements of R♦ can be represented

in the following form

x0 = [0, 0] ≡ 0, x1 = [0, 1], x2 = [0, a], x3 = [0, b],

x4 = [1, 0], x5 = [1, 1] ≡ 1, x6 = [1, a], x7 = [1, b],

x8 = [a, 0], x9 = [a, 1], x10 = [a, a], x11 = [a, b],

x12 = [b, 0], x13 = [b, 1], x14 = [b, a], x15 = [b, b]. (21)

which stems from the fact that R♦
∼= R⊥ ⊗ R⊥ and from the representation of R⊥ given in Sec. 4.1

(1, 0) (0, 1) (1, 1) (c, r) (b, y) (y, b) (r, c)

(y, 1) + − − + + − −
(b, 1) + − − − − + −!
(r, 1) + − − +! − −! −!
(c, 1) + − − −! −! +! +!
(1, c) − + − + +! −! −
(1, b) − + − − + − −!
(1, r) − + − − −! − +
(1, y) − + − −! − + +!

Table 9: A subset of PR△(1) that is the best match for the geometry of the observables given in Table
3; the two configurations differ in fourteen places indicated by an exclamation mark.
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O
x15x10

x12x8

x11x14

x4x7 x6

x3 x2

x9x13
x1

Figure 5: The structure and mutual relation between the four maximal ideals, represented by points of
four distinct ellipses, of R⋄.

after identifying a = x and b = x + 1. The fifteen zero-divisors of R♦ form four maximal ideals, whose
composition and mutual relation are depicted in Fig. 5. Although yielding the trivial Jacobson radical
({x0}), any triple of them share one more element, and there are altogether four such distinguished el-
ements: x2, x3, x8 and x12. The associated projective line, PR♦(1), is easily found to contain subsets
whose properties reproduce properly not only those of Mermin’s squares (like PR⊥(1)) and of the three
pencil-borne geometries (like PR△(1)), but also a subset which accounts for the behaviour of the observ-
ables forming the “outer” shell (the cube) in Fig. 3. This particular subset consists of eight points whose
coordinates feature the unity and one of the above-mentioned distinguished zero-divisors, as illustrated
in Fig. 6. So, the structure of PR♦(1) is a proper ring geometrical setting for the observables of both
the “inner” and “outer” shells when considered separately. Yet, it fails to provide a correct picture for
the coupling between the two shells, because it implies that no observable from one shell commutes with
any observable from the other one, which is clearly not the case. To glue the two pictures thus clearly
necessitates to look at projective lines over higher order, and possibly non-commutative rings and/or
allied algebras.

(1,x )8

(1,x )3

(1,x )2

(x ,1)12

(x ,1)2

(1,x )12 (x ,1)8

(x ,1)3

(x , )15 0x1

(x , )14 x11

(x , )1 x4 (x , )4 x1(1,1)

(x , )11 x14

(x , )10 x15

Figure 6: Two distinct subsets of PR♦(1) reproducing the structure of both the kernel and the shell of
the full configuration of observables characterizing two-qubit systems. Unfortunately, this framework is
insufficient to harbour the coupling between the two objects (compare with Fig. 3).
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5 Conclusion

The fifteen observables/operators characterizing the interaction of two spin- 1

2
particles were found to

exhibit two distinct, yet intimately connected, algebraic geometrical structures, considered first as points
of the ordinary projective plane of order two and then as points of projective lines defined over GF (2)⊗n,
with n = 2, 3 and 4. In the first picture, the observables are regarded as three pencils of lines. These
pencil-configurations, each featuring seven points, share a line, and a line in any of them comprises three
observables. All the lines in each pencil carry mutually commuting operators; in one of the pencils, which
we call the kernel, the observables on two lines share a base of Bell states. The three operators on any
line in each pencil represent a row or column of some Mermin’s “magic” square. An inherent geometrical
nature of Mermin’s squares is shown to be captured by the structure of the projective line defined over
GF (2)⊗2, that of all the three pencils, when taken together, by the line over GF (2)⊗3, whereas the
behavior of the kernel and its complement (the cube-shell), when considered separately, is reproduced by
the properties of the line over GF (2)⊗4. To complete the picture, it just remains to find a ring line, or a
very similar object, that would also account for the coupling between the kernel and its complement.

To close this paper, a group-theoretical comment is in order. For N qubits, the Lie group U(2N ) and
the chain U(2N ) ⊃ SU(2N) play an important role. According to a theorem credited to Racah [32], for
a semi-simple Lie group G of order r and rank l, a complete set of 1

2
(r + l) commuting operators can be

constructed in the enveloping algebra of G. For N = 2 qubits (d = 22), the relevant group is SU(4) for
which r = d2 − 1 = 15 and l = d − 1 = 3. In this case, we have r

l
= d + 1 = 5 MUBs corresponding

to a set of l = d − 1 = 3 commuting operators taken from a complete, with respect to SU(4), set of
1

2
(r + l) = 1

2
(d − 1)(d + 2) = 9 operators. These matters are presently the object of our investigations

(see also [33]).
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