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DECOMPOSITION THEOREMS FOR HARDY SPACES ON
CONVEX DOMAINS OF FINITE TYPE

SANDRINE GRELLIER AND MARCO M. PELOSO

Abstract. In this paper we study the holomorphic Hardy spaces Hp(Ω), where
Ω is a convex domain of finite type in Cn. We show that for 0 < p ≤ 1, the
space Hp(Ω) admits an atomic decomposition. More precisely, we prove that each
f ∈ Hp(Ω) can be written as f = PS(

∑∞
j=0 νjaj) =

∑∞
j=0 νjPS(aj), where PS is

the Szegö projection and the aj ’s are real variable p-atoms on the boundary ∂Ω
and

∑∞
j=0 |νj |p <∼ ‖f‖p

Hp(Ω).
Moreover, we prove the following factorization theorem. Each f ∈ Hp(Ω) can be

written as f =
∑∞

j=0 fjgj , where fj ∈ H2p, gj ∈ H2p, and
∑∞

j=0 ‖fj‖H2p‖gj‖H2p

<∼ ‖f‖Hp(Ω).
Finally, we extend these theorems to a class of domains of finite type that

includes the strongly pseudoconvex domains and the convex domains of finite
type.

Introduction

Let Ω be a smoothly bounded domain in Cn. For 0 < p ≤ ∞, let Lp(Ω) denote
the Lebesgue space with respect to the volume form, Lp(∂Ω) be the Lebesgue spaces
on ∂Ω with respect to the induced surface measure dσ and, for 0 < p ≤ 1, Hp(∂Ω)
be the real-variable Hardy spaces on ∂Ω.

We let Hp(Ω) denote the Hardy space of holomorphic functions on Ω, with norm
given by

‖f‖pHp(Ω) := sup
0<ε<ε0

∫
δ(w)=ε

|f(w)|p dσε(w),

where δ(w) is the distance from w to ∂Ω and dσε denotes the surface measure on the
manifold {δ(w) = ε}. To any f ∈ Hp(Ω) corresponds a unique boundary function
in Lp(∂Ω), that we still denote by f , obtained as normal almost everywhere limit,
[St1]. Thus, we may identify Hp(Ω) with a closed subspace of Lp(∂Ω).
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The Hilbert space orthogonal projection PS of L2(∂Ω) onto H2(Ω) is given by the
Szegö projection

PSf(z) =

∫
∂Ω

f(ζ)SΩ(z, ζ)dσ(ζ),

where SΩ(z, ζ) is the Szegö kernel.
When Ω is a smoothly bounded convex domain of finite type, there exists a natural

pseudo-distance db on ∂Ω (see [Mc]) which makes ∂Ω into a space of homogenous
type. The real-variable Hardy space Hp(∂Ω), 0 < p ≤ 1, is defined as a space of
distributions on ∂Ω, in terms of atoms, in the following sense. Each distribution
f ∈ Hp(∂Ω) can be written as f =

∑∞
j=0 νjaj, where {νj} ∈ `p, the aj’s are p-atoms

and the series is assumed to converge in the sense of distributions (see Section 1 for
the precise definition).

In this paper we prove that, for 0 < p ≤ 1, the Hardy space Hp(Ω) continuously
embeds into Hp(∂Ω). In other words, every f ∈ Hp(Ω) has boundary values that
belong to Hp(∂Ω), so that it admits an atomic decomposition.

To be more precise, for g a distribution on ∂Ω, PS(g) is the holomorphic function
in Ω defined for z ∈ Ω by

PS(g)(z) = 〈g, SΩ(z, ·)〉
where SΩ(z, ζ) denotes the Szegö kernel, which is C∞(∂Ω) in the second variable
whenever z ∈ Ω.

We prove that any f ∈ Hp(Ω) can be written as PS(
∑
νjaj) where

∑
νjaj is

a distribution that belongs to Hp(∂Ω). Moreover, it holds that PS(
∑
νjaj) =∑

νjPS(aj), with equality in the Hp(Ω)-sense, that is, the series converges to f
in the Hp(Ω)-norm.

On the other hand, we prove that the Szegö projection PS maps continuously
Hp(∂Ω) into Hp(Ω), for 0 < p ≤ 1.

Moreover, we prove that on Hp(Ω) a (weak) factorization theorem holds true.
More precisely, we prove that, given any f ∈ Hp(Ω) there exist fj, gj ∈ H2p(Ω) such
that f =

∑∞
j=0 fjgj and

∑∞
j=0 ‖fj‖H2p‖gj‖H2p ≤ c‖f‖Hp(Ω), with c independent of f .

Finally, in Section 8 we extend the above results to the H-domains, a class of
smooth, bounded domains of finite type that includes the strongly pseudoconvex
domains and the convex domains. Such domains are a natural extension of the
mentioned domains, and were studied in [BPS3].

These results extend classical results to the case of convex domains of finite type,
and more generally to the case of H-domains. The atomic decomposition of the
(holomorphic) Hardy spaces was first proved in the case of the unit ball by Garnett
and Latter [GL], and later extended to strongly pseudoconvex domains and domains
of finite type in C2 by Krantz and Li [KL2], and independently by Dafni [D]. Related
results about duality between H1 and BMO appear in [KL1] for strongly pseudo-
convex domains and domains of finite type in C2 and in [KL3] for convex domains
of finite type. The factorization theorem is classical in dimension 1, while in several
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variables it was first proved by Coifman, Rochberg and Weiss [CRW], in the case
of the unit ball, for the space H1(Ω). This theorem was extended to the case of
strongly pseudoconvex domains in [KL2] for all Hp(Ω), 0 < p ≤ 1 and to convex
domains of finite type in [BPS2] for H1(Ω).

Applications of these results to the regularity properties of small Hankel operators
appear, to name a few, in [CRW], [KL2] and [BPS2]. Another classical characteriza-
tion of Hardy spaces, the area integral one, is proved to hold true in [KL4] in convex
domains of finite type in Cn. Finally, we mentioned that the optimal approach re-
gions for a Fatou-type theorem for Hp functions are described in [DFi], in the case
of a convex domain of finite type.

The geometry of convex domains of finite type was first described by McNeal
[Mc]. Those results were later applied to the analysis of the mapping properties of
the Bergman projection [McS1] and Szegö projection [McS2] by McNeal and Stein.
In the case of strongly pseudoconvex domains and finite type domains in C2 the
geometry was determined by canonical vector fields. The natural quasi-distance
on ∂Ω was the control distance determined by these vector fields, i.e. the Carnot
metric. The situation of convex domains of finite type is essentially more general.
The “weight” of each vector field may vary from point to point, and one needs to
take into consideration the different order of contact of complex lines with ∂Ω. For
these reasons it is natural to consider a diameter function τ(ζ, λ, r), which gives the
diameter of the largest one-dimensional disc in the direction of λ, that fits inside
the region {z′ : %(z′) < r}. Here % denotes a fixed smooth defining function for Ω.

As a consequence, in order to define the cancellation property for p-atoms for
small values of p, we need to consider the pairing between f ∈ Hp(Ω) and smooth
bump functions whose derivatives in all tangential directions can be controled in
terms of the diameter function.

We remark that, althought the main lines of the proof of the atomic decomposition
are standard, some of arguments have been greatly simplified with respect to the
classical ones. On the other hand in order to prove the factorization theorem we
adapt an idea from [BPS2], where the result was proved in the case p = 1. The
proof does neither rely on the explicit expression of the Szegö kernel, as in [CRW],
nor its asyptotic expansion, [KL4]. Instead, it based on a recent result by Diederich
and Fornæss on the existence of support functions on convex domains of finite type.

We use the notation A <∼ B to indicate that A ≤ c ·B where the constant c does
not depend on the important parameters on which the functions A and B depend.
(Tipically, the constant c will only depend on the geometry of the domain Ω.) We
use the symbols >∼ and ≈ analogously.
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1. Basic facts and notation

Let Ω be a smoothly bounded convex domain in Cn. A point ζ ∈ ∂Ω is said to be
of finite type if the order of contact of complex lines with ∂Ω at this point is finite,
see [BS] and references therein. The type of the point is the least upper bound of
the various orders of contact. We say that Ω is of finite type MΩ if every point on
∂Ω is of finite type ≤MΩ.

Let Ω = {z ∈ Cn : ρ(z) < 0}. There exists ε0 > 0 such that for |ε| ≤ ε0 the sets
Ωε = {z ∈ Cn : ρ(z) < ε} are all convex, and the normal projection π : U → ∂Ω is
well defined and smooth, where U = {z ∈ Cn : δ(z) < ε0}.

The basic geometric facts about convex domains of finite type were first proved
by McNeal [Mc], see also [McS1], [McS2] and [DFo]. By recalling the results that are
involved in the present work we take the opportunity to review the main elements
of the construction and set some notation.

For z ∈ U and λ ∈ Cn a unit vector, we denote by τ(z, λ, r) the distance from z
to the surface {z′ : %(z′) = %(z) + r} along the complex line determined by λ.

For each z ∈ U and r < ε0 there exists a special set of coordinates {wz,r1 , . . . , wz,rn },
that we call r-extremal . The first vector v(1) is given by the direction transversal to
the boundary, in the sense that the shortest distance from z to the set {z′ : %(z′) =
%(z) + r} is realized in the complex line determined by v(1).

The vector v(2) is chosen among the vectors orthogonal to v(1) in such a way
that τ(z, v(2), r) is maximal. We repeat the same process until we determine an
orthonormal basis {v(1), . . . , v(n)}. We denote by (w1, . . . , wn) the coordinates with
respect to this basis. Notice that these coordinates (w1, . . . , wn) = (wz,r1 , . . . , wz,rn )
depend on z and r. However, the transversal direction w1 does not depend on r.

For k = 1, . . . , n we set

(1) τk(z, r) = τ(z, v(k), r),

and define the polydisc Q(z, r)

(2) Q(z, r) = {w : |wk| < τk(z, r), k = 1, . . . , n}.

Basic relations among these quantities are the following, see [McS2] Prop. 1.1 and
also [BPS2] Lemma 2.1.

Proposition 1.1. There exists a constant C > 0 depending only on Ω such that for
any unit vector λ ∈ Cn, 0 < r ≤ ε0, z ∈ U , and 0 < η < 1 we have:

(i) η1/2τ(z, λ, r) <∼ τ(z, λ, ηr) <∼ η1/MΩτ(z, λ, r);

(ii) η1/2Q(z, C−1r) ⊂ Q(z, ηr) ⊂ η1/MΩQ(z, Cr);

(iii) if w ∈ Q(z, δ) then τ(z, λ, r) ≈ τ(w, λ, r).

We define the quasi-distance db : U × U by setting

(3) db(z, w) = inf {δ : w ∈ Q(z, δ)},
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and the function d

(4) d(z, w) = db(z, w) + δ(z) + δ(w).

Notice that d is initially defined on U × U and we extend it to Cn × Cn by setting

d(z, w) = ψ(%(z))ψ(%(w))d(z, w) + (1− ψ(%(z)))(1− ψ(%(w)))|z − w|,
where ψ is a smooth cut-off function on R such that ψ(t) = 1 for |t| ≤ ε0/2 and
ψ(t) = 0 for |t| ≥ ε0.

On the boundary we will use a family of “balls” centered at ζ ∈ ∂Ω of radius δ
defined as

B(ζ, δ) = Q(ζ, δ) ∩ ∂Ω.

For any unit vector λ we introduce the differential operator

(5) Lλ = (∂λ%)∂x1 − (∂x1%)∂λ,

where w1 = x1+iy1 is the transversal direction fixed earlier. Here, ∂λ is the standard
vector field defined by λ as ∂λf = 〈λ, df〉, for a smooth function f , its real differential
df , and where 〈 , 〉 denotes the usual pairing between a one-form and a vector.

Notice that Lλ is always a tangential vector field. If λ ∈ S2n−1 is itself tangent to
∂Ω, then Lλ is the directional derivative in the direction λ.

For Λ = (λ1, . . . , λq) a q-list of vectors in S2n−1 and µ = (µ1, . . . , µq) a q-index we
set |µ| = µ1 + · · ·+ µn,

(6) LµΛ = Lµ1

λ1
· · ·Lµq

λq
,

and

(7) τµ(z,Λ, δ) = τ(z, λ1, δ)
µ1 · · · τ(z, λq, δ)µq .

Finally we recall the fundamental estimates for the Szegö kernel and its derivatives
[McS2] (called interior estimates of S-type, see [McS2] Def. 4 and Thm. 3.6)

(8)
∣∣LµΛ,zLµ′Λ′,z′SΩ(z, z′)

∣∣ <∼ τ−µ(z,Λ, δ)τ−µ
′
(z′,Λ′, δ)

σ
(
B(π(z), δ)

) ,

where δ = d(z, z′), z, z′ ∈ Ω× Ω \∆∂Ω, ∆∂Ω denotes the diagonal on ∂Ω.

We conclude this section with the definition of the real-variable Hardy spaces.
We need first to introduce the notion of p-atoms. Let ζ0 ∈ ∂Ω, r0 < ε0 and N be a
positive integer. On C∞(B(ζ0, r0)) we introduce the norm

(9) ‖φ‖SN (B(ζ0,r0)) = sup
Λ

∑
|µ|=N

‖LµΛφ‖L∞(B(ζ0,r0))τ
µ(ζ0,Λ, r0).

Definition 1.2. We set

`0 =
[
(1− 1/p)(MΩ + 2n− 2)

]
, and Np = `0 + 1,

where [x] denotes the integral part of x. A measurable function a on ∂Ω is called a
p-atom if either it is the constant function on ∂Ω equal to σ(∂Ω)−1/p, or if:
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(i) supp a ⊆ B(ζ0, r0);

(ii) |a(ζ)| ≤ σ
(
B(ζ0, r0)

)−1/p
;

(iii)
∫
∂Ω
a(ζ)dσ(ζ) = 0;

(iv) for all φ ∈ C∞
(
B(ζ0, r0)

)
we have

|
∫
∂Ω

a(ζ)φ(ζ)dσ(ζ)| ≤ ‖φ‖SNp (B(ζ0,r0))σ
(
B(ζ0, r0)

)1−1/p
.

Notice that the above condition (iv) replaces the classical higher moment condi-
tion. It is in the same spirit as the analog condition in [KL2]. The difference here
is given by the choice of the norm ‖ · ‖SNp

.

Real-variable Hardy spaces. Let 0 < p ≤ 1. The real Hardy space Hp(∂Ω) is
the space of distributions f on ∂Ω which can be written as

(10) f =
∞∑
j=0

νjaj,

where
∑
|νj|p < ∞, the aj’s are p-atoms and the series is assumed to converge in

the sense of distributions.
With a standard abuse of notation, the “norm” on Hp(∂Ω) is defined as ‖f‖pHp =

inf{
∑

j |νj|p : f =
∑

j νjaj}. Setting d(f, g) = ‖f − g‖pHp we see that Hp(∂Ω) is a

complete metric space. This implies that the series in (10) converges in norm. This
is in fact obvious since ‖

∑m2

j=m1
νjaj‖pHp ≤

∑m2

j=m1
|νj|p which tends to 0 as m1 →∞.

This implies that
∑∞

j=1 νjaj converges in norm, hence in the sense of distributions,

necessarly to f 1.
We point out that this definition of Hp(∂Ω) is consistent with the definition given

in [CW] in the case of a space of homogenous type for values of p close to 1, see also
[KL5].

2. Statement of the main results

The main results of the present work are the following.

Theorem 2.1. Let Ω be a smoothly bounded domain of finite type. Let 0 < p ≤ 1.
Then there exists a constant c depending only on p and Ω such that the following
holds. Given any f ∈ Hp(Ω) there exist constants νj and p-atoms aj such that∑∞

j=0 νjaj ∈ Hp(∂Ω) and

f = PS

( ∞∑
j=0

νjaj

)
=

∞∑
j=0

νjPS(aj),

1In order to clarify one point on which there is a little bit of confusion in the litterature, we
remark that, in [MTW] p. 513 it is shown that a generic Hp-function f infinite sum of atoms
cannot be written as finite sum of atoms

∑N
1 νjbj , with

∑N
j=1 |νj |p ≈ ‖f‖p

Hp . This fact does not
of course contradicts the norm convergence of the series in (10).
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and moreover
∞∑
j=0

|νj|p ≤ c‖f‖pHp(Ω).

Theorem 2.2. Let Ω be a smoothly bounded domain of finite type. Let 0 < p ≤ 1
and Hp(∂Ω) be the real-variable Hardy space on ∂Ω. Then

PS : Hp(∂Ω) → Hp(Ω)

is bounded.

Finally, we have the factorization theorem.

Theorem 2.3. Let Ω be a smoothly bounded domain of finite type. Let 0 < p ≤ 1,
1 < q < ∞ and q′ be its conjugate exponent. There exists a constant c depending
only on p, q and Ω such that the following holds. Given any f ∈ Hp(Ω) there exist
fj ∈ Hpq, gj ∈ Hpq′, j = 1, 2, . . . such that

f =
∞∑
j=0

fjgj

and
∞∑
j=0

‖fj‖Hpq‖gj‖Hpq′ ≤ c‖f‖Hp(Ω).

We remark that this theorem was proved in [BPS2] for p = 1, by a different,
more indirect, method. Our proof relies on the atomic decomposition obtained in
Theorem 2.1.

The above theorems are valid on a class of smoothly bounded finite type domains
which includes the convex domains as well as the strongly pseudoconvex domains.
These domains are introduced in [BPS3] and are called H-domains. We will discuss
the extension of these theorems to the H-domains in the last section.

3. Proof of Theorem 2.2

Let f =
∑∞

j=0 νjaj ∈ Hp(∂Ω). By definition,

PS

( ∞∑
j=0

νjaj

)
(z) = 〈

∞∑
j=0

νjaj, SΩ(z, ·)〉

=
∞∑
j=0

〈νjaj, SΩ(z, ·)〉

=
∞∑
j=0

νjPS(aj)(z),

since the serie converges in the sense of distributions. It remains to prove that this
last term belongs to Hp(Ω), with norm controlled by ‖f‖Hp(∂Ω).
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We claim that there exists C > 0 such that ‖PS(a)‖Hp(Ω) ≤ C for any p-atom a.
From this it then follows that, for any m1,m2 ∈ N, m1 ≤ m2,

‖
m2∑
m1

νjPS(aj)‖pHp ≤ Cp

m2∑
m1

|νj|p

so that, by the assumption on {νj} and the completeness of Hp(Ω), one gets that
PS(f) =

∑∞
j=0 νjPS(aj) belongs to Hp(Ω). Moreover, ‖PS(f)‖pHp <∼

∑
j |νj|p when-

ever f =
∑

j νjaj, which gives the desired estimate.

Thus, we only need to estimate ‖PS(a)‖Hp for any p-atom a. Let ε > 0. Then,∫
∂Ωε

|PS(a)(ζ)|pdσε(ζ) =

∫
∂Ω

|PS(a)(ζ − εν(ζ))|pdσ(ζ)

=

(∫
B(ζ0,2δ)

+

∫
cB(ζ0,2δ)

)
|PS(a)(ζε)|pdσ(ζ)

= I + II,

where ν(ζ) denotes the outward unit normal at ζ ∈ ∂Ω and we write ζε = ζ− εν(ζ).
Since p < 2,

I ≤
(∫

B(ζ0,2δ)

|PS(a)(ζε)|2dσ(ζ)

)p/2

· σ
(
B(ζ0, 2δ)

)1−p/2

≤ c‖a‖pL2(∂Ω)σ
(
B(ζ0, 2δ)

)1−p/2

≤ c,

since ‖a‖L2(∂Ω) ≤ σ
(
B(ζ0, 2δ)

)1/2−1/p
and PS maps L2(∂Ωε) into L2(∂Ω) with norm

independent of ε, as a consequence of the T (1)-theorem of David and Journé and of
the results in [McS2].

Next, set Ek = {ζ ∈ ∂Ω : 2kδ ≤ d(ζ, ζ0) ≤ 2k+1δ}. Then,

II =
∞∑
k=0

∫
Ek

|PS(a)(ζ − εν(ζ))|pdσε(ζ),

and

|PS(a)(ζε)| = |
∫
∂Ω

SΩ(ζε, w)a(w)dσ(w)|

≤ ‖SΩ(ζε, ·)‖SNp (B(ζ0,δ)) · σ
(
B(ζ0, 2δ)

)1−1/p
.

Recall that the Szegö kernel satisfies the estimate (8), so that

|LµΛSΩ(ζε, w)| <∼
τ−µ(w,Λ, d(ζε, w))

σ(B(w, d(ζε, w)))
,
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and notice that for ζ ∈ Ek and w ∈ B(ζ0, δ),

d(ζε, w) = ε+ db(ζ, w) ≥ ε+ db(ζ, ζ0)− db(ζ0, w)

≥ ε+ 2kδ − δ ≥ δ2k−1.

Therefore, for ζ ∈ Ek,

‖SΩ(ζε, ·)‖SNp (B(ζ0,δ)) = sup
Λ

∑
|µ|=Np

‖LµΛSΩ(ζε, ·)‖L∞(B(ζ0,δ)) · τµ(ζ0,Λ, δ)

= sup
Λ

∑
|µ|=Np

sup
w∈B(ζ0,δ)

τ−µ(w,Λ, d(ζε, w))

σ(B(w, d(ζε, w)))
· τµ(ζ0,Λ, δ)

<∼ sup
Λ

∑
|µ|=Np

sup
w∈B(ζ0,δ)

τµ(ζ0,Λ, δ)

τµ(w,Λ, δ2k−1)
· 1

σ(B(w, δ2k−1))

<∼ sup
Λ

∑
|µ|=Np

τµ(ζ0,Λ, δ)

τµ(ζ0,Λ, δ2k−1)
· 1

σ(B(w, δ2k−1))

<∼
∑
|µ|=Np

2−k|µ|/MΩ
1

σ(B(w, δ2k−1))
.

Going back to the estimation of II,

II =
∞∑
k=1

∫
Ek

|PS(a)(ζ)|pdσε(ζ)

<∼
∑
k

‖SΩ(ζε, ·)‖pSNp (B(ζ0,δ))
σ
(
B(ζ0, δ)

)p−1
σ(Ek)

<∼
∑
k

∑
|µ|=Np

2−kp|µ|/MΩ
σ(B(ζ0, δ))

p−1

σ(B(w, δ2k))p−1

<∼
∑
k

∑
|µ|=Np

2−k
[
(|µ|/MΩ)p+(1+(2n−2)/MΩ)(p−1)

]
≤ c,

since the term in brackets in the exponent is positive, due to our choice of Np. 2

4. Maximal functions and a partition of unity

In the proof of the atomic decomposition of Hp(Ω) we are going to use some
maximal operators, that now we introduce. These operators are standard variants
of classical ones, see [FS], [St2], and also [KL2].

Given ζ ∈ ∂Ω we define the approach region Aγ(ζ) as the subset of Ω given by

Aγ(ζ) = {z ∈ Ω : d(ζ, π(z)) < γδ(z)}.
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We define the non-tangential maximal function f ∗γ

(11) f ∗γ (ζ) = sup
z∈A(ζ)

|f(z)|,

and the tangential variant

(12) f ∗∗N (ζ) = sup
w∈Ω

(
δ(w)

δ(w) + d(ζ, π(w))

)N

|f(w)|.

We consider a space of smooth bump functions at ζ:

KM
γ (ζ) = {g ∈ C∞(∂Ω) : supp g ⊆ B(ζ0, t0), with ζ0 ∈ Aγ(ζ) and ‖g‖M,ζ0,t0 ≤ 1},

where

(13) ‖g‖M,ζ0,t0 = sup
Λ, |µ|≤M

τµ(ζ0,Λ, t0)σ(B(ζ0, t0))‖LµΛg‖L∞(B(ζ0,t0)).

Following [McS2] Def. 2, we say that a function ψ is a smooth bump function of
order N on B(ζ0, t0) ⊆ ∂Ω if ψ ∈ C∞(B(ζ0, t0)) and

sup
Λ
|LµΛψ(z)|τµ(ζ0,Λ, t0) ≤ Cψ,

for all z ∈ B(ζ0, t0) and |µ| ≤ N . If Cψ = 1, ψ is called a normalized smooth bump
function of order N .

The grand maximal function is defined as

(14) Kγ,M(f)(ζ) = sup
g∈KM

γ (ζ)

∣∣ ∫
∂Ω

f(w)g(w)dσ(w)
∣∣.

Lemma 4.1. With the definitions above, there exist c = c(Ω) and N = N(γ,M)
such that

Kγ,Mf(ζ) <∼ f ∗cγ(ζ) + f ∗∗N (ζ).

Proof. We wish to estimate |
∫
∂Ω
f(w)g(w)dσ(w)| for g ∈ KM

γ (ζ). Given such a g,
there exist ζ0 and t0 such that supp g ⊆ B(ζ0, t0) and d(ζ, ζ0) < γt0, i.e. ζ0−t0ν(ζ0) ∈
Aγ(ζ). Using the holomorphicity of f by integration by parts, see Lemma 6.5 in
[BPS1], we see that there exists a differential operator Yk+1 with smooth coefficients,
of order k + 1 such that

|
∫
∂Ω

f(w)g(w)dσ(w)| = |
∫

Ω

f(w)Yk+1g̃(w)δk(w)dV (w)|,

where g̃ is a smooth extension of g, say

g̃(w) =

{
g(π(w))g1(%(w)) if |%(w)| < 2t0
0 otherwise,

and g1 ∈ C∞0
(
[−2t0, 2t0]

)
, g1(t) = 1 if |t| ≤ t0/2. Here k is a positive integer to be

selected later.
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Notice that |g(j)
1 (t)| ≤ cjt

−j
0 and hence

|Yk+1g̃(w)| <∼
k+1∑
j=0

1

tj0
sup

Λ,|µ|=k+1−j
‖LµΛg‖L∞(B(ζ0,t0))

<∼
k+1∑
j=0

1

tj0
sup

Λ,|µ|=k+1−j

1

τµ(ζ0,Λ, t0)
· 1

σ(B(ζ0, t0))

<∼
1

tk+1
0

· 1

σ(B(ζ0, t0))
.

Now we write,

|
∫
∂Ω

f(w)g(w)dσ(w)| ≤
∫

Ωt0

|f(w)Yk+1g̃(w)|δk(w)dV (w)

+

∫
Ω\Ωt0

|f(w)Yk+1g̃(w)|δk(w)dV (w)

= I + II.

Notice that w ∈ supp g̃ implies that d(π(w), ζ) ≤ cγt0. So, if w ∈ Ωt0 ∩ supp g̃
then w ∈ Acγ(ζ). Hence,

I <∼ f ∗cγ(ζ)

∫
B(ζ0,t0)

∫ 2t0

t0

tk

tk+1
0 σ(B(ζ0, t))

dtdσ(w)

<∼ f ∗cγ(ζ).

Moreover, since

|f(w)| ≤ f ∗∗N (ζ)

(
1 +

d(π(w), ζ)

δ(w)

)N

<∼ f ∗∗N (ζ)

(
1 +

t0
δ(w)

)N

,

we have

II <∼

∫
B(ζ0,t0)

∫ ∞

t0

|f(w)| tk

tk+1
0 σ(B(ζ0, t0))

dtdσ(w)

<∼

∫ ∞

t0

f ∗∗N (ζ)

(
1 +

t0
t

)N
tk

tk+1
0

dt

<∼ f ∗∗N (ζ),

if k −N < −1. 2

The next two lemmas are classical, and they hold on any smoothly bounded
domain. The first one is due to Stein, see [St1], Sec. 9. The second one is a version
of a result of Fefferman and Stein, [FS] Lemma VI.1.



12 S. GRELLIER AND M. M. PELOSO

Lemma 4.2. Let Ω be any smoothly bounded domain, 0 < p ≤ ∞. Then

‖f ∗γ‖Lp(∂Ω) <∼ ‖f‖Hp(Ω).

Lemma 4.3. Let Ω be any smoothly bounded domain, 0 < p ≤ ∞. Then, for N
large enough,

‖f ∗∗N ‖Lp(∂Ω) <∼ ‖f‖Hp(Ω).

We now introduce a smooth partition of unity on any open set O ⊆ ∂Ω.

Lemma 4.4. Let O ⊆ ∂Ω be an open set. Then there exist a collection of balls
Bi = B(ζi, ri), functions φi ∈ C∞(∂Ω), i = 0, 1, 2, . . . , and constants α > 1 > β > 0,
depending only on Ω, such that the following conditions hold:

(i) 0 ≤ φi ≤ 1;
(ii) suppφi ⊆ Bi;
(iii) φi = 1 on 1

α
Bi;

(iv)
∑∞

i=0 φi = χO;
(v) for each i there exists ζi ∈ cO such that, for any integer N we have cNφi/‖φi‖L1

∈ KN
α (ζi), for some cN = c(N,Ω).

Proof. By [McS2] Prop. 1.9, given any ζ0, δ > 0 and C > 1, there exist normalized
smooth bump functions of order N on B(ζ0, Cδ), that are identically equal to 1 on
B(ζ0, δ).

Given this, the proof now proceeds as the proof of Lemma 4.3 in [KL2]. We give
the details for sake of completeness.

Let {B(ζi, ri)} be a sequence of balls satisfying:

(a) ∪iβB(ζi, ri) = O;
(b) B(ζi, ri) ⊆ O, αB(ζi, ri) ∩ cO 6= ∅;
(c) 1

α
B(ζi, ri) are pairwise disjoint;

(d) no point in O lies in more than NΩ of the balls B(ζi, ri),

for some 0 < β < 1 < α. Such a sequence exists, being a Whitney covering for O.
Given Bi = B(ζi, ri) let ψi be a normalized smooth bump function supported in

Bi, that equals 1 on 1
α
Bi. By (d) above,

1 ≤
∑
i

ψi(ζ) ≤ NΩ for all ζ ∈ O.

Now set
φi(ζ) = ψi(ζ)/

∑
j

ψj(ζ).

Then, (i)-(iv) are clearly satisfied. We only need to check (v).
By (b) above, let ξi ∈ αB(ζi, ri) ∩ cO. Then ζi − riν(ζi) ∈ Aγ(ξi), suppφi ⊆ Bi,

with γ > 1, and

sup
Λ,|µ|≤N

τµ(ξi,Λ, ri)σ
(
B(ξi, ri)

)
‖LµΛφi‖L∞(∂Ω) <∼ cNσ

(
B(ξi, ri)

)
<∼ cN‖φi‖L1(∂Ω). �
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5. Beginning of the proof of Theorem 2.1

We let k0 to be the least integer such that

(15) ‖Kγ,M(f) + f ∗γ‖Lp(∂Ω) ≤ 2k0 .

For a positive integer k define

(16) Ok = {z ∈ ∂Ω : Kγ,Mf(z) + f ∗γ (z) > 2k0+k}.

For each k we fix a Whitney covering and a partition of χOk
, {φki }, as in Lemma

4.4.

Let ζ0 ∈ ∂Ω and B(ζ0, r0) be fixed. The ball B(ζ0, r0) is contained in the polydisc
Q(ζ0, r0). By the results in [Mc] there exists an r0-extremal (orthonormal) basis
{v(1), . . . , v(n)} on Q(ζ0, r0), where v(1) is transversal to the boundary. We denote
by (w1, . . . , wn) the coordinates with respect to this basis and we define V`(ζ0, r0) to
be the space of polynomials of degree ≤ ` in Imw1, w2, w2, . . . , wn, wn.

We remark that V`(ζ0, r0) does not depend on r0 since v(1) does not depend on r0.
Hence, we simply write V`(ζ0).

Let φ0 be a smooth bump function supported on B(ζ0, r0). We denote by L2
φ0

(dσ)

the L2-space with respect to the probability measure (φ0/‖φ0‖L1)dσ. We let Pφ0 de-
note the orthogonal projection of L2

φ0
(dσ) onto V`(ζ0) (which is obviously contained

in L2
φ0

(dσ)).
In what follows, we will write w = s + it, s = (s1, s

′), t = (t1, t
′), s1, t1 ∈ R,

s′, t′ ∈ Rn−1, so that V`(ζ0) is the set of polynomials in s′, t1, t
′, of degree ≤ `.

Let {πJ} be an orthonormal basis for V`0 , where `0 = [(1 − 1/p)(MΩ − 2n − 2)]
and J = (j′, j) = (0, j′2, . . . , j

′
n, j1, . . . , jn, ), |J | = j′2 + · · ·+ j′n + j1 + · · ·+ jn.

Lemma 5.1. Let πJ be as above. Then,

(i) |πJ(z)| ≤ cJ on the support of φ0;
(ii) |LµΛπJ(z)| ≤ cJ,µτ

−µ(ζ0,Λ, r0) on the support of φ0.

Proof. We begin with (i). Recall that ζ0 and r0 are fixed. Then B := B(ζ0, r0) =
Q(ζ0, r0)∩∂Ω, where Q(ζ0, r0) is the polydisc centered at ζ0 and polyradius τ1(ζ0, r0)
= r0, τ2(ζ0, r0), . . . , τn(ζ0, r0).

Let

πJ(w) =
∑

|γ′|+|γ|≤`0

aγ′,γs
γ′tγ,

where γ′ = (0, γ′2, . . . , γ
′
n), γ = (γ1, γ2, . . . , γn). Then,

‖πJ‖L∞(B) ≤ sup
(s′,t)∈B

∣∣ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∣∣
= sup

(s̃′,t̃)∈B̃

∣∣ ∑
|γ′|+|γ|≤`0

aγ′,γ s̃
γ′ t̃γτ γ

′+γ(ζ0, r0)
∣∣,
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where s̃ = (0, s′2/τ2, . . . , s
′
n/τn), t̃ = (t1/τ1, t2/τ2, . . . , tn/τn), τj = τj(ζ0, r0), and

B̃ = (−1, 1)2n−1.
Hence, using the equivalence of all norms on finite dimensional vector spaces, we

have

‖πJ‖L∞(B) ≤ sup
(s′,t)∈B

∣∣ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∣∣
<∼

∥∥ ∑
|γ′|+|γ|≤`0

aγ′,γτ
γ′+γ(ζ0, r0)s̃

γ′ t̃γ
∥∥
L2(B̃)

= σ(B)−1/2
∥∥ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∥∥
L2(B)

≈
∥∥ ∑
|γ′|+|γ|≤`0

aγ′,γs
γ′tγ

∥∥
L2

φ0
(B)

= 1.

Here we use the fact that, since φ0 = 1 on B(ζ0, r0) and suppφ0 ⊆ αB, ‖φ0‖L1 ≈
σ(B(ζ0, r0)). This proves (i).

It remains to prove the estimates on the derivatives of πJ . We are going to show
that, for any (γ′, γ) such that |γ′|+ |γ| ≤ `0, there exists cJγ′,γ so that

(17) |aγ′,γ| ≤
cJγ′,γ

τ γ′+γ(ζ0, r0)
.

Assuming this estimate for the moment, it follows that, for any β′, β with |β′| +
|β| ≤ `0, ∣∣∂β′s ∂βt πJ(w)

∣∣ =
∣∣ ∑
γ′≥β′,γ≥β,|γ′|+|γ|≤`0

cβ′,βaγ′,γs
γ′−β′tγ−β

∣∣
≤ cJ,γ′,γ
τ γ′+γ(ζ0, r0)

· τ γ′−β′+γ−β(ζ0, r0)

≤ cJ,γ′,γ
τβ′+β(ζ0, r0)

.

The estimate for any derivative LµΛ follows from the fact that any Lλ is a linear
combination fo the ∂sj

’s and ∂tk ’s, say Lλ =
∑n

j=2 aj∂sj
+

∑n
k=1 bk∂tk , and that

1

τ(ζ0, λ, r0)
≈

n∑
j=1

|aj|+ |bj|
τj(ζ0, r0)

,

(here a1 = 0), see [McS2] Prop. 1.1.
It remains to prove (17). Since the πJ ’s are real-analytic they satisfy the mean-

value property. In particular,

τ γ
′+γ(ζ0, r0)

∣∣∂γ′s ∂γt πJ(ζ0)∣∣ ≤ c

σ(B(ζ0, r0))

∫
B(ζ0,r0)

|πJ(w)|dσ(w) ≤ c̃J ,
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so that

|aγ′,γ| =
∣∣∂γ′s ∂γt πJ(ζ0)∣∣ ≤ c̃J

τ γ′+γ(ζ0, r0)
,

which proves (17) and finishes the proof. 2

Lemma 5.2. With the notation fixed above, there exists c > 0 such that for f ∈
Hp(Ω)

|Pφk
i
(f)(z)φki (z)| ≤ c2k.

Furthermore, ∣∣Pφk+1
j

((
f − Pφk+1

j
(f)

)
φki

)
(z)φk+1

j (z)
∣∣ ≤ c2k+1.

Proof. We use Lemma 5.1 with ζki = ζ0, φ
k
i = φ0, and Bk

i (ζ
k
i , r

k
i ) = B0. Then

Pφk
i
(f)(z) =

∑
|J |≤`0

cJ(f)πJ(z),

where

cJ(f) =

∫
∂Ω

f(w)πJ(w)φki (w)dσ(w).

The estimate on the πJ ’s and φki imply that πJ · φki ∈ KM
γ (ζki ) so that

|cJ(f)| ≤ Kγ,M(f)(ζki ) ≤ c2k.

This estimate, together with Lemma 5.1 again, imply the bound on Pφk
i
(f)φki .

Next we prove the second estimate in the statement. Set h =
(
f − Pφk+1

j
(f)

)
φki .

Then,

c
(k+1)
J (h) =

∫
∂Ω

(
f − Pφk+1

j
(f)

)
(w)φki (w)π

(k+1)
J (w)dσφk+1

j
(w)

=

∫
∂Ω

f(w)φki (w)π
(k+1)
J (w)φk+1

j (w)
dσ(w)

‖φk+1
j ‖L1

−
∫
∂Ω

Pφk+1
j

(f)(w)φki (w)φk+1
j (w)π

(k+1)
J (w)

dσ(w)

‖φk+1
j ‖L1

= I + II.

By condition (v) in Lemma 4.4, for some ξk+1
j ∈ cOk+1,

|I| ≤ Kγ,M(f)(ξk+1
j ) ≤ 2k+1,

by construction. On the other hand, by the previous majorization,

|Pφk+1
j

(f)(w)φk+1
j (w)| ≤ c2k+1,

while |π(k+1)
J (w)| ≤ c, so that the desired conclusion follows. 2
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6. Atomic decomposition

In this section we define the atomic decomposition of a given function f ∈ Hp(Ω),
and finish the proof of Theorem 2.1. As noticed before, f admits boundary values
defined a.e. on ∂Ω, that we still denote by f .

We write,

f =
(
f −

∞∑
i=0

fφki
)

+
∞∑
i=0

fφki

= fk +
∞∑
i=0

fφki

= fk +
∞∑
i=0

Pφk
i
(f)φki +

∞∑
i=0

(
f − Pφk

i
(f)

)
φki

= hk +
∞∑
i=0

(
f − Pφk

i
(f)

)
φki ,

where hk = fk +
∑∞

i=0 Pφk
i
(f)φki .

Notice that,

(18)
∣∣ ∞∑
i=0

Pφk
i
(f)(z)φki (z)

∣∣ ≤ c02
k,

since no point in cOk lies in more than NΩ of the B(ζki , r
k
i )’s. Moreover, notice that

supp

( ∞∑
i=0

(
f − Pφk

i
(f)

)
φki

)
⊆ Ok,

so that the function on the left hand-side above tends to 0 pointwise as k → ∞.
This implies that hk → f pointwise a.e., so that the following equality holds a.e.

(19) f = h0 +
∞∑
k=0

(hk+1 − hk).

Now notice that

(20) f − hk =
∞∑
i=0

(
f − Pφk

i
(f)

)
φki

and that

(21)
∞∑
i=0

Pφk+1
j

((
f − Pφk+1

j
(f)

)
φki

)
= Pφk+1

j

((
f − Pφk+1

j
(f)

))
= 0.
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Then, using (20) and (21) we write

hk+1 − hk =
∞∑
i=0

(
f − Pφk

i
(f)

)
φki −

∞∑
j=0

(
f − Pφk+1

j
(f)

)
φk+1
j

=
∞∑
i=0

{(
f − Pφk

i
(f)

)
φki −

∞∑
j=0

((
f − Pφk+1

j
(f)

)
φkj

− Pφk+1
j

(
(f − Pφk+1

j
(f))φki

))
φk+1
j

}
=

∞∑
i=0

bki ,

i.e. we have set

(22) bki =
(
f−Pφk

i
(f)

)
φki −

∞∑
j=0

((
f−Pφk+1

j
(f)

)
φkj−Pφk+1

j

(
(f−Pφk+1

j
(f))φki

))
φk+1
j .

Hence,

(23) f = h0 +
∞∑
k=0

∞∑
i=0

bki .

Now we let

(24) a0 =
1

ν0

h0, aki =
1

νki
bki ,

where
ν0 = ‖h0‖L∞(∂Ω)σ(∂Ω)1/p and νki = 2k0+k+1σ(Bk

i )
1/p.

Then, equation (23) becomes

f = ν0a0 +
∞∑
k=0

∞∑
i=0

νki a
k
i .

The remaining of this section is devoted to proving that the above is the desired
atomic decomposition of f .

Estimate for h0. By definition,

h0 = f0 +
∞∑
i=0

Pφ0
i
(f)φ0

i .

By (18) we have ∣∣ ∞∑
i=0

Pφ0
i
(f)φ0

i

∣∣ ≤ c,

and, by definition,
|f0| ≤ f ∗|cO0 ≤ 2k0 .
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Then, ‖h0‖L∞ ≤ c2k0 , so that a0 is an atom supported in ∂Ω.

Size estimates for the bki ’s. We have,

|bki | =
∣∣∣∣(f − Pφk

i
(f)

)
φki −

∞∑
j=0

((
f − Pφk+1

j
(f)

)
φki − Pφk+1

j

(
f − Pφk+1

j
(f)

)
φki

)
φk+1
j

∣∣∣∣
≤

∣∣∣∣(f − Pφk
i
(f)

)
φki −

∞∑
j=0

(
f − Pφk+1

j
(f)

)
φki φ

k+1
j

∣∣∣∣
+

∣∣∣∣ ∞∑
j=0

(
Pφk+1

j

(
f − Pφk+1

j
(f)

)
φki

)
φk+1
j

∣∣∣∣.
The second term on the right hand-side above is bounded by c0c2

k+1 by Lemma 5.2,
while the first one is bounded by∣∣∣∣ ∞∑

j=0

((
f − Pφk

i
(f)

)
−

(
f − Pφk+1

j
(f)

)
φki

)
φk+1
j

∣∣∣∣ +
∣∣(f − Pφk

i
(f)

)
φki χcOk+1

∣∣
≤

∣∣∣∣ ∞∑
j=0

(
Pφk+1

j
(f)− Pφk

i
(f)

)
φki φ

k+1
j

∣∣∣∣ +
∣∣(f − Pφk

i
(f)

)
φki χOk\Ok+1

∣∣
≤

∣∣∣∣ ∞∑
j=0

Pφk+1
j

(f)φk+1
j

∣∣∣∣ + |Pφk
i
(f)φki |+ |fχOk\Ok+1

|+ |Pφk
i
(f)φki |

≤ c0c2
k + f ∗χOk\Ok+1

≤ c0c2
k,

where we have used Lemma 5.2.

Support of the bki ’s. The first term in (22) is supported in Bk
i . To unsure that

the terms in the series not to be identically 0, the condition Bk
i ∩Bk+1

j 6= ∅ must be
satisfied for some j.

We claim that if Bk
i ∩Bk+1

j 6= ∅, then rk+1
j ≤ cαrki . For, let w ∈ Bk

i ∩Bk+1
j . Since

Ok+1 ⊆ Ok,

Crk+1
j ≤ d(Bk+1

j , ∂Ok+1) ≤ d(Bk+1
j , ∂Ok)

≤ d(w, ∂Ok) ≤ d(Bk
i , ∂Ok) + 2d(w, ζki )

≤ cαrki ,

since, by the Whitney property, one has Crki ≤ d(Bk
i , ∂Ok) ≤ αrki .

Moment condition. We wish to estimate

|
∫
∂Ω

bki (w)φ(w)dσ(w)|,

for φ ∈ SNp(B
k
i ).
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On Bk
i we work in local coordinates and write the Taylor expansion of φ around

ζki , up to order `0. We denote by S`0φ (ζki ) the corresponding Taylor polynomial.

Notice that S`0φ (ζki ) ∈ V`0(ζki ).
By definition of SNp(B

k
i ) we have

‖φ− S`0φ (ζki )‖L∞(∂Ω) ≤ ‖φ‖SNp (B(ζ0,r0)).

By construction, the first term in bki is orthogonal to V`0(ζ
k
i ) and each non-vanishing

term in the series is orthogonal to some V`0(ζ
k+1
j ), so that Bk

i ∩ Bk+1
j 6= ∅ or when

rk+1
j ≤ Cαrki and Bk+1

j ⊆ C ′αBk
i . In that case it follows that V`0(ζ

k+1
j ) ⊆ V`0(ζ

k
i ),

since the same coordinate system works, and that∣∣ ∫
∂Ω

bki (w)φ(w)dσ(w)
∣∣ =

∣∣ ∫
∂Ω

bki (w)
(
φ(w)− S`0φ (ζki )

)
dσ(w)

∣∣
<∼ ‖φ‖SNp (Bk

i ) · σ(Bk
i ) · 2k+k0 ,

by the size estimate of the bki ’s.

Coefficients in `p. It remains to prove that {νki } ∈ `p. We have

∞∑
k=0

∞∑
i=0

|νki |p ≤ cp
∞∑
k=0

∞∑
i=0

2k+k0σ(Bk
i )

≤ cp
∞∑
k=0

2k+k0σ(Ok)

≤ cp
∫ ∞

1

tp−1σ
(
{ζ ∈ ∂Ω : KM

α f(ζ) + f ∗α(ζ) ≥ t}
)
dt

≤ cp‖f‖pHp .

Convergence in Hp(Ω)-norm. We proved that the boundary value of f ∈ Hp(Ω),
that we still denote by f , admits a decomposition f =

∑
j νjaj, for p-atoms aj and

constants νj such that
∑

j |νj|p <∞.

Such equality, that stems from (23), holds a.e., see (19). We now show that it
also valid in the distribution sense.

¿From this fact and Theorem 2.2, it converges to f in Hp(Ω)-norm.
We now show that the equality

f = h0 +
∞∑
k=0

hk+1 − hk,

that holds a.e., also holds in the distribution sense.
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Recall that hk+1 − hk =
∑∞

i=0 b
k
i , so it suffices to show that

∑m
k=0 hk+1 − hk

converges in the sense of distributions. We show that

∣∣ ∫
∂Ω

( m∑
k=`

hk+1 − hk
)
(z)ψ(z)dσ(z)

∣∣ =
∣∣ m∑
k=`

∫
∂Ω

∞∑
i=0

bkiψ(z)dσ(z)
∣∣(25)

=
∣∣ m∑
k=`

∞∑
i=0

∫
∂Ω

bkiψ(z)dσ(z)
∣∣

<∼
m∑
k=`

∞∑
i=0

2k+k0σ(Bk
i )‖ψ‖SNp (Bk

i )

<∼
m∑
k=`

∞∑
i=0

2k+k0σ(Bk
i )‖ψ‖C`0+1(∂Ω)(r

k
i )

[(1/p−1)(MΩ+2n−2)]+1

<∼
m∑
k=`

∞∑
i=0

2k+k0σ(Bk
i )‖ψ‖C`0+1(∂Ω)(r

k
i )

(1/p−1)(2n−1),

since [(1/p− 1)(MΩ + 2n− 2)] + 1 ≥ (1/p− 1)(MΩ + 2n− 1) ≥ (1/p− 1)(2n− 1).
Hence, using the fact that 1/p ≥ 1 twice, the left hand-side in (25) is less or equal

to a constant times

m∑
k=`

∞∑
i=0

2k+k0σ(Bk
i )

1/p‖ψ‖C`0+1(∂Ω)
<∼

m∑
k=`

2k
( ∞∑
i=0

σ(Bk
i )

1/p

)1/p

<∼

( m∑
k=`

2kpσ(Ok)

)1/p

<∼

( ∞∑
k=`

∫ 2k

2k−1

tp−1σ
(
{f ∗ +KM

α f ≥ t}
)
dt

)1/p

<∼

(∫ ∞

2`−1

tp−1

∫
{f∗+KM

α f≥t}
dσdt

)1/p

<∼

(∫
O`−1

|f ∗ +KM
α f |pdσ

)1/p

,

which tends to 0 as `→∞.
This finishes the proof of the atomic decomposition. 2

7. Proof of Theorem 2.3

The method used in the proof of the atomic decomposition allows one to prove
the same result using atoms with order of cancellation arbitrarly high. Hence, we
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call an atom a (k, p)-atom if k ≥ Np, a is a p-atom and moreover

|
∫
∂Ω

a(ζ)φ(ζ)dσ(ζ)| ≤ ‖φ‖Sk(B(ζ0,r0))σ
(
B(ζ0, r0)

)1−1/p
,

for all φ ∈ C∞((B(ζ0, r0)), B(ζ0, r0) being the support of a.

Lemma 7.1. Let a be a (k, p)-atom, having support in B = B(ζ0, r0), and let
A = PS(a). Then A satisfies the estimates:

(i) ‖A‖H2p ≤ cσ(B)−1/2p;
(ii) for C > 1 and d(ζ, ζ0) ≥ Cr0,

|A(ζ)| ≤ c

(
r0

d(ζ, ζ0)

)1+(k−2+2n)/MΩ

σ
(
B(ζ0, r0)

)−1/p
;

(iii) for C > 1, ` a positive integer and d(ζ, ζ0) ≥ Cr0,

|∇`A(ζ)| ≤ c
r0

1+(k−2+2n)/MΩ

d(ζ, ζ0)1−`+(k−2+2n)/MΩ
σ
(
B(ζ0, r0)

)−1/p
.

In the following we will denote by β = 1 + (k − 2 + 2n)/MΩ.

Proof. The proof follows the same lines as the ones in [BPS2] Lemma 4.7.
The estimate in (i) is the same as the estimate for ‖A‖Hp .
Denote by Sk the Taylor polynomial of w 7→ SΩ(ζ, w) around ζ0 of order k. Then

‖SΩ(ζ, w)− Sk(w)‖L∞ ≤ ‖SΩ(ζ, ·)‖Sk(B(ζ0,r0)).
Hence,

|A(ζ)| =
∣∣ ∫

∂Ω

a(w)SΩ(ζ, w)dσ(w)
∣∣

=
∣∣ ∫

∂Ω

a(w)
(
SΩ(ζ, w)− Sk(w)

)
dσ(w)

∣∣
≤ ‖SΩ(ζ, ·)‖Sk(B(ζ0,r0))σ

(
B(ζ0, r0)

)1−1/p
.

Using the estimate (8) we have

‖SΩ(ζ, ·)‖Sk(B(ζ0,r0)) =
∑
|µ|=k

sup
Λ
‖LµΛ,wSΩ(ζ, ·)‖L∞(B)τ

µ(ζ0,Λ, r0)

<∼
∑
|µ|=k

sup
w∈B

sup
Λ

τµ(ζ0,Λ, r0)

τµ(w,Λ, d(ζ, w))
· 1

σ(B(w, d(ζ, w)))
.

Recall that, when d(ζ, ζ0) ≥ Cr0, for w ∈ B(ζ0, r0) ⊆ B(ζ0, d(ζ0, ζ)/C), d(ζ0, ζ) ≈
d(ζ, w). Then,

‖SΩ(ζ, ·)‖Sk(B(ζ0,r0)) <∼

(
r0

d(ζ, ζ0)

)k/MΩ

· σ
(
B(ζ0, d(ζ, ζ0)

)−1
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so that

|A(ζ)| <∼

(
r0

d(ζ, ζ0)

)β

· σ
(
B(ζ0, r0)

)−1/p

The estimates for the the derivatives of A follow in the same fashion. 2

End of the proof of Theorem 2.3. By the atomic decomposition, it suffices to
factorize each holomorphic atom A = PS(a), for a (k, p)-atom with k large enough,
a having support in some ball B(ζ0, r0).

For this factorization, we rely on a recent result of Diederich and Fornæss [DFo] on
the existence of support functions on convex domains of finite type. More precisely,
there exists a neighborhood U of ∂Ω and a function H : Ω × U → C such that
H ∈ C∞(Ω× U), H(·, w) is holomorphic for each w ∈ U , and

d(z, w) <∼ |H(z, w)| <∼ d(z, w),

on Ω × U . This function H was used in [BPS2] to prove the factorization theorem
for H1.

We set H0 = H(·, ζ̃0), where ζ̃0 = ζ0 − r0ν(ζ0). We write A = AH`
0H

−`
0 , with ` to

be selected later.
We prove the result for q = q′ = 2, the general case being completely analogous.

Writing ζε = ζ − ενζ , we now have

‖H−`
0 ‖2p

H2p
<∼ sup

ε>0

∫
∂Ω

d(ζε, ζ̃0)
−2p`dσ(ζ)

<∼ r−2pl
0 σ(B),

by a standard integration result, see [BPS2] Lemma 2.2.
On the other hand, for a fixed constant C > 1,

‖AH`
0‖

2p
H2p

<∼ sup
ε0>ε>0

∫
B(ζ0,Cr0)

|A(ζε)|2pd(ζε, ζ̃0)2p`dσ(ζ)

+
1

σ(B)

∫
cB(ζ0,Cr0)

r2pβ
0

d(ζ, ζ0)2pβ
d(ζ, ζ̃0)

2p`dσ(ζ)

<∼ (Cr0)
2p`‖A‖2p

Hp +
Cr2p`

0

σ(B)

∫
cB(ζ0,Cr0)

r2pβ
0

d(ζ, ζ0)2pβ

(
1 +

d(ζ, ζ0)

r0

)2p`

dσ(ζ)

<∼
r2p`
0

σ(B)
,

for k large enough, where we have used a standard integral estimate, see Lemma 2.2
in [BPS2].

This finishes the proof of the factorization theorem. 2



HARDY SPACES 23

8. Final remarks

We now introduce the class of H-domains.

Definition 8.1. We say that Ω is an H-domain if it is a smooth bounded domain
of finite type and the following condition hold: For each ζ ∈ ∂Ω there exist a neigh-
borhood Vζ and a biholomorphic map Φζ defined on Vζ such that Φζ(Ω ∩ Vζ) is
geometrically convex.

Such class of domains, that obviously includes the strongly pseudoconvex domains
and the convex domains of finite type, has been analyzed in [BPS3]. In that paper
it is proved that the Szegö and Bergman kernel satisfy the same local estimates (8),
as in the case of the convex domains of finite type (or, more in particular, of the
strongly convex domains). Therefore, Theorems 2.1-2.3 immediately extend to the
case of H-domains, since all the arguments are based on the local estimates for the
kernels, see [BPS3].
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