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DIGITAL SEARCH TREES AND CHAOS GAME REPRESENTATION

PEGcY CENAC!, BRIGITTE CHAUVIN?, STEPHANE GINOUILLAC? AND NICOLAS
POUYANNE?

Abstract. In this paper, we consider a possible representation of a DNA sequence in a quaternary
tree, in which one can visualize repetitions of subwords (seen as suffixes of subsequences). The CGR-
tree turns a sequence of letters into a Digital Search Tree (DST), obtained from the suffixes of the
reversed sequence. Several results are known concerning the height, the insertion depth for DST built
from independent successive random sequences having the same distribution. Here the successive
inserted words are strongly dependent. We give the asymptotic behaviour of the insertion depth and
the length of branches for the CGR-tree obtained from the suffixes of a reversed i.i.d. or Markovian
sequence. This behaviour turns out to be at first order the same one as in the case of independent
words. As a by-product, asymptotic results on the length of longest runs in a Markovian sequence are
obtained.

Résumé. La représentation définie ici est une représentation possible de séquence d’ADN dans un
arbre quaternaire dont la construction permet de visualiser les répétitions de suffixes. A partir d’une
séquence de lettres, on construit un arbre digital de recherche (Digital Search Tree) sur I’ensemble
des suffixes de la séquence inversée. Des résultats sur la hauteur et la profondeur d’insertion ont
été établis lorsque les séquences a placer dans I'arbre sont indépendantes les unes des autres. Ici les
mots a insérer sont fortement dépendants. On donne le comportement asymptotique de la profondeur
d’insertion et de la longueur des branches pour un arbre obtenu a partir des suffixes d’une séquence
i.i.d. ou markovienne retournée. Au premier ordre, cette asymptotique est la méme que dans le cas ou
les mots insérés sont indépendants. De plus, certains résultats peuvent aussi s’interpréter comme des
résultats de convergence sur les longueurs de plus longues répétitions d’une lettre dans une séquence
Markovienne.
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1. INTRODUCTION
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1 In the last years, DNA has been represented by means of several methods in order to make pattern
visualization easier and to detect local or global similarities (see for instance Roy et al. [R7]). The
8 Chaos Game Representation (CGR) provides both a graphical representation and a storage tool. From
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a sequence in a finite alphabet, CGR defines a trajectory in a bounded subset of R? that keeps all
statistical properties of the sequence. Jeffrey [@] was the first to apply this iterative method to
DNA sequences. Cénac [[], Cénac et al. [f] study the CGR with an extension of word-counting based
methods of analysis. In this context, sequences are made of 4 nucleotides named A (adenine), C
(cytosine), G (guanine) and T (thymine).

The CGR of a sequence Uj ... U, ... of letters U, from a finite alphabet A is the sequence (X},)n>0
of points in an appropriate compact subset S of R? defined by

{ Xge S
XnJrl :a(Xn+€Un+1)a

where 6 is a real parameter (0 < 6 < 1), each letter u € A being assigned to a given point ¢, € S. In
the particular case of Jeffrey’s representation, A = {A,C,G, T} is the set of nucleotides, S = [0,1]? is
the unit square. Each letter is placed at a vertex as follows:

ly= (0’0)’ le = (0’ 1)’ lg = (1, 1), by = (LO),

0= % and the first point X is the center of the square. Then, iteratively, the point X1 is the
middle of the segment between X, and the square’s vertex (y, ,:

X+ 1y,
Xpy1 = %7

or, equivalently,
n

ly, Xo
Xn=) cotir + o0
k=1
Figure [l| represents the construction of the word ATGCGAGTGT.
With each deterministic word w = uy ... u,, we associate the half-opened subsquare Sw defined by

the formula

n
o 14 1
Sw & E Uk __ 4 on [0,1[2;

on—k+1
k=1
it has center > p_, £y, /2" 1 4+ X (/2" and side 1/2". For a given random or deterministic sequence
Up...U,..., for any word w and any n > |w| (the notation |w| stands for the number of letters

in w), counting the number of points (X;)1<i<pn that belong to the subsquare Sw is tantamount to
counting the number of occurences of w as a subword of Uy ... U,. Indeed, all successive words from
the sequence having w as a suffix are represented in Sw. See Figure [[] for an example with three-letter
subwords. This provides tables of word frequencies (see Goldman [[14]). One can generalize it to any
subdivision of the unit square; when the number of subsquares is not a power of 4, the table of word
frequencies defines a counting of words with noninteger length (see Almeida et al. [H]).

The following property of the CGR is important: the value of any X, contains the historical
information of the whole sequence X1,...X,. Indeed, notice first that, by construction, X, € Su
with U,, = u; the whole sequence is now given by the inductive formula &',,_; = 2X,, — {y,,.

We define a representation of a random DNA sequence U = (Up)p>1 as a random quaternary
tree, the CGR-tree, in which one can visualize repetitions of subwords. We adopt the classical order
(A,C,G,T) on letters. Let 7 be the complete infinite 4-ary tree; each node of 7 has four branches
corresponding to letters (A,C,G,T) that are ordered in the same way. The CGR-tree of U is an
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C(0,1) G(1,1)  C(0,1) G(1,1)
Scc | Sac| Sca| Saa
Sc SG
SAc | Stc | SAG| STG
ScAa | Sga | ScT| SGT
SA ST
SAA | STA | SAT | STT
A(0,0) T(1,0) A(0,0) T(1,0)

C G
[0, 1 [1, 1]

CCC|GCC|CceC|ceC cecijececee

CAC|GAC|CTC|GIC

oG
ACc|Toc|AGe Igeﬁ fos|Aca|Teo
%@\G cTe|gre

AAC|TAC|ATC T)//e AAG|TAGIATG /r&[c;
OCA |acA| ca&| GeA| cCT | GeT Geﬂ

¥8 L
ACA|TCA TGA|ACT Tg4 AGT |TGT

CAA|GAA|CTA|GFA|CAT |GAT |CTT|GTT

AAA|TAA|ATA|TTA|AAT | TAT (ATT|TTT

[o, o [1, 0]
T

FIGURE 1. Chaos Game Representation of the first 10 nucleotides of the E. Coli thre-
onine gene thrA: ATGCGAGTGT. The coordinates for each nucleotide are calculated
recursively using (0.5,0.5) as starting position. The sequence is read from left to right.
Point number 3 corresponds to the first 3-letter word AT'G. It is located in the cor-
responding quadrant. The second 3-letter word T'GC corresponds to point 4 and so
on.

increasing sequence 71 C 74... C 7, C ... of finite subtrees of 7, each 7, having n nodes. The
T,’s are built by successively inserting the reversed prefizes

W(n)=U,...U (1)

as follows in the complete infinite tree. First letter W (1) = Uj is inserted in the complete infinite tree
at level 1, i.e. just under the root, at the node that corresponds to the letter U;. Inductively, the
insertion of the word W (n) = U, ...U; is made as follows: try to insert it at level 1 at the node N
that corresponds to the letter U,,. If this node N is vacant, insert W(n) at N/ ; if A/ is not vacant, try
to insert W(n) in the subtree having A as a root, at the node that corresponds to the letter U,,_1,
and so on. One repeats this operation until the node at level k£ that corresponds to letter U, _jy1 is
vacant; word W (n) is then inserted at that node.
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We complete our construction by labelling the n-th inserted node with the word W (n). One readily
obtains this way the process of a digital search tree (DST), as stated in the following proposition.

Figure 2 shows the very first steps of construction of the tree that corresponds to any sequence that
begins with GAGCACAGTGGAAGGG. The insertion of this complete 16-letter prefix is represented
in Figure 3. In these figures, each node has been labelled by its order of insertion to make the example
more readable.

Proposition 1.1. The CGR-tree of a random sequence U = U1Us . .. is a digital search tree, obtained
by insertion in a quaternary tree of the successive reversed prefizes Uy, UsUy, UsUsUy, ... of the
sequence.

The main results of our paper are the following convergence results, the random sequence U being
supposed to be Markovian. If £, and £,, denote respectively the length of the shortest and of the longest
branch of the CGR-tree, then ¢,,/Inn and L,,/Inn converge almost surely to some constants (Theorem
B.1)). Moreover, if D,, denotes the insertion depth and if M,, is the length of a uniformly chosen random
path, then D, /Inn and M, /Inn converge in probability to a common constant (Theorem [L.1]).

Remark 1.2. A given CGR-tree without its labels (i.e. a given shape of tree) is equivalent to a list
of words in the sequence without their order. More precisely, one can associate with a shape of CGR-
tree, a representation in the unit square as described below. With any node of the tree (which is in
bijection with a word w = Wy ... Wy), we associate the center of the corresponding square Sw,

d
def Cw, Xo
Xw = Z 9d—k+1 + od
k=1
For example, Figure 3 shows this “historyless representation” for the word GAGCACAGTGGAAGGG.
Moreover Figure 4 enables us to qualitatively compare the original and the historyless representations
on an example.

Several results are known (see chap. 6 in Mahmoud [1d]), concerning the height, the insertion depth
and the profile for DST obtained from independent successive sequences, having the same distribution.
It is far from our situation where the successive inserted words are strongly dependent from each other.
Various results concerning the so-called Bernoulli model (binary trees, independent sequences and the
two letters have the same probability 1/2 of appearance) can be found in Mahmoud [[[9]. Aldous
and Shields [[] prove by embedding in continuous time, that the height satisfies H,, — logyn — 0 in
probability. Also Drmota [[i] proves that the height of such DSTs is concentrated: E[H,, — E(H,)]" is
asymptotically bounded for any L > 0.

For DST constructed from independent sequences on an m-letter alphabet with nonsymmetric (i.e.
non equal probabilities on the letters) i.i.d or Markovian sources, Pittel [RJ] gets several results on the
insertion depth and on the height. Despite the independence of the sequences, Pittel’s work seems to
be the closest to ours, and some parts of our proofs are inspired by it.

Some proofs in the sequel use classical results on the distribution of word occurences in a random
sequence of letters (independent or Markovian sequences). Blom and Thorburn [[] give the generating
function of the first occurence of a word for i.i.d. sequences, based on a recurrence relation on the
probabilities. This result is extended to Markovian sequences by Robin and Daudin [R6]. Several
studies in this domain are based on generating functions, for example Régnier 4], Reinert et al.
[BF), Stefanov and Pakes [Rg]. Nonetheless, other approaches are considered: one of the more general
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F1GURE 2. Insertion of a sequence GAGCACAGTGGAAGGG... in its CGR-tree: first,
second, third and seventh steps.
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techniques is the Markov chain embedding method introduced by Fu [[]]] and further developped by
Fu and Koutras [[J], Koutras [[4]. A martingale approach (see Gerber and Li [[[J], Li [1§], Williams
Bd]) is an alternative to the Markov chain embedding method to solve problems around Penney [2]
Game. These two approaches are compared in Pozdnyakov et al. [R3]. Whatever method one uses,
the distribution of the first occurence of a word strongly depends on its overlapping structure. This
dependence is at the core of our proofs.

As a by-product, our results yield asymptotic properties on the length of the longest run, which is a
natural object of study. In i.i.d. and symmetric sequences, Erdds and Révész [[] establish almost sure
results about the growth of the longest run. These results are extended to Markov chains in Samarova
B, and Gordon et al. L] show that the probabilistic behaviour of the length of the longest run is
closely approximated by that of the maximum of some i.i.d. exponential random variables.

The paper is organized as follows. In Section P we establish the assumptions and notations we use
throughout. Section [J is devoted to almost sure convergence of the shortest and the longest branches
in CGR-trees. In Section {] asymptotic behaviour of the insertion depth is studied. An appendix deals
separately with the domain of definition of the generating function of a certain waiting time related
to the overlapping structure of words.

2. ASSUMPTIONS AND NOTATIONS

In all the sequel, the sequence U = Uy ...U, ... is supposed to be a Markov chain of order 1, with
transition matrix ) and invariant measure p as initial distribution.
For any deterministic infinite sequence s, let us denote by s the word formed by the n first letters

of s, that is to say s of $1...8p, where s; is the i-th letter of s. The measure p is extended to

reversed words the following way: p(s(™) ! P(U; = sp,...,U, = s1). The need for reversing the
word 5™ comes from the construction of the CGR-tree which is based on reversed sequences ([l).
We define the constants

o1 1 .
hy nll}r}_looﬁmax{ln<m>, p(s( )) > 0},

.1 1 n
h_ nll}r}_looﬁmm{ln<m>, p(s( )) > 0},

o el )]

[N
e

%
o

Q.
@

Due to an argument of sub-additivity (see Pittel [2J]), these limits are well defined (in fact, in a more
general than Markovian sequences framework). Moreover, Pittel proves the existence of two infinite
sequences denoted here by s; and s_ such that

hy = lim lln<#>, and h_ = lim lln<#> (2)
n—oo n p(Sf)) n—oo n p(S(IL))

For any n > 1, the notation 7, & T ,(W) stands for the finite tree with n nodes (without counting
the root), built from the first n sequences W(1),...,W(n), which are the successive reversed prefixes
of the sequence (Uy,),, as defined by ([l). 7 denotes the tree reduced to the root. In particular, the
random trees are increasing: 7o C71...C7,C...CT.
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Let us define ¢,, (resp. L,) as the length of the shortest (resp. the longest) path from the root
to a feasible external node of the tree 7,,(w). Moreover, D,, denotes the insertion depth of W(n) in
T ,,—1 to build 7,,. Finally M, is the length of a path of 7,,, randomly and uniformly chosen in the n
possible paths.

The following random variables play a key role in the proofs. For the sake of precision, let us recall
that s is deterministic, the randomness is uniquely due to the generation of the sequence U. First we
define for any infinite sequence s and for any n > 0,

X0 () def { 0 if s1 is not in 7T, (3)
max{k such that s*) is already inserted in 7, }.

Notice that Xo(s) = 0. Every infinite sequence corresponds to a branch of the infinite tree 7  (root

at level 0, node that corresponds to s; at level 1, node that corresponds to sy at level 2, etc.); the

random variable X,,(s) is the length of the branch associated with s in the tree 7,,. For any k > 0,

T(s) denotes the size of the first tree where s*) is inserted:

Tio(s) & min{n, X, (s) =k}

(notice that Tp(s) = 0).
These two variables are in duality in the following sense: one has equality of the events

{Xn(s) = k} = {Ti(s) < n} (4)

and consequently, {T%(s) =n} C {X,(s) = k} since X,,(s) — X,,—1(s) € {0,1}.

In our example of Figures 2 and 3, the drawn random sequence is GAGCACAGTGGAAGGG . ..
If one takes a deterministic sequence s such that s = ACA, then Xy(s) = Xi(s) = 0, Xo(s) =
X3(s) = Xu(s) =1, X5(s) = Xg(s) = 2 and Xy(s) = 3 for 7 < k < 18. The first three values of Tj(s)
are consequently T1(s) = 2, Ta(s) =5, T(s) = 1.

Moreover, the random variable T(s) can be decomposed as follows,

Ti(s) = Y Z:(s), (5)

where Z,(s) oof T,(s) — T,—1(s) is the number of letters to read before the branch that corresponds to

s increases by 1. In what follows, Z,.(s) can be viewed as the waiting time n of the first occurence of

s(") in the sequence

o Uni o () Un1471(s) - - Ung 1,y ()57 Y

9

i.e. Z.(s) can also be defined as

ZT(S) = mln{n 2 1, UnJ’,TT_l(S) e Un“rTT—l(S)*T“Fl =S1... ST}.

Because of the Markovianity of the model, the random variables Z,(s) are independent.
Let us then introduce Y;(s) as being the waiting time of the first occurence of s(") in the sequence

o Unar 1) Un—14_1(s) - - - Uty i (s)
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that is to say

YVT(S) = mln{n > r, UnJ’,TT_l(S) . Un“rTT—l(S)*T“Fl = S51... ST}.
One has readily the inequality Z,(s) < Y;(s). More precisely, if the word s(") is inserted in the sequence
before time 7T,_1(s) + r, there is some overlapping between prefixes of s=1) and suffixes of s("). See

Figure 5 for an example where r = 6 and s15283 = $48586. Actually, variables Z,.(s) and Y,.(s) are
related by

Zr(8) = Wiz, (5)<r1 Zr(8) + Lz, (s)>r} Yr(5)-
Since the sequence (Uy,)n>1 is stationary, the conditional distribution of Y(s) given T,_1(s) is the
distribution of the first occurence of the word s() in the realization of a Markov chain of order 1,

whose transition matrix is Q and whose initial distribution is its invariant measure. In particular the
conditional distribution of Y;.(s) given T,_1(s) is independent of T,_1(s).

The generating function ®(s(",¢) = & E[t¥*(*)] is given by Robin and Daudin [26]:

-1

(s, ) = (w(t) + (L= 0ot (6)

where the functions vy and § are respectively defined as

€ 1 ) d ILS...S_ =Sm...S
7 (t) ZQ sps)t™, S () YT et =), (7)

” m>1 m=1 tmp(s(m))

and where Q™ (u,v) denotes the transition probability from u to v in m steps.

Remark 2.1. In the particular case when the sequence of nucleotides (Uy,),>1 is supposed to be
independent and identically distributed according to the non degenerated law (pa,pc,pq,pr), the
transition probability Q™ (s1, s,) is equal to p(s,), and hence ~,(t) = 1.

Proposition 2.2. (i) The generating function of Y,(s) defined by (@) has a ray of convergence
>1+ /{p(s(r)) where K s a positive constant independent of r and s.
(i) Let v denote the second largest eigenvalue of the transition matriz Q. For allt €] —~~1, y71,

1—1¢
‘ ’ l‘i/7 (8)
1=t

where k' is some positive constant independent of v and s (if v = 0 or if the sequence is i.i.d.,
we adopt the convention v~ = 400 so that the result remains valid).

"Yr(t) - 1{ <

Proof. The proof of Proposition .9 is given in Appendix [. O

3. LENGTH OF THE BRANCHES

In this section we are concerned with the asymptotic behaviour of the length ¢,, (resp. £,) of the
shortest (resp. longest) branch of the CGR-tree.

Theorem 3.1.

En a.s. 1 Ln a.s. 1
— = —, and — — —.
Inn n—oo hy Inn n—oo h_
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According to the definition of X,,(s), the lengths ¢,, and £,, are functions of X,:

¢, = min X, (s), and L, = max X,(s). 9)
se A" seA"

The following key lemma gives an asymptotic result on X, (s), under suitable assumptions on s. Our
proof of Theorem B.1] is based on it.

Lemma 3.2. Let s be such that there exists

. 1 1 def
. hnioo - ln<p(s(”))> = h(s) > 0. (10)
Then
Xn(s) a.s. 1
—

Inn n—oo h(s)

Remark 3.3. Let & % vv... consist of repetitions of a letter v. Then Xn(0) is the length of the
branch associated with ¢ in 7,,. For such a sequence (and exclusively for them) the random variable
Y5 (0) is equal to Ty (0). Consequently X,,(0) is the length of the longest run of 'v” in Uy ... U,. When
(Up)n>1 is a sequence of i.i.d. trials, Erdés and Révész [[], Erdds and Révész [I(], Petrov [R]] showed

that -
Xn(v) a.s 1

25—
Inn n—ooln

iS]

where p & P(U; = v). This convergence result is a particular case of Lemma .9.

Simulations. In a first set of computations, two random sequences whose letters are i.i.d. were
generated. On Figure 6, in the first graph, letters are equally-likely drawn; in the second one, they are
drawn with respective probabilities (pa, pc, pa, pr) = (0.4,0.3,0.2,0.1). On can visualize the dynamic
convergence of £,/Inn, £,/Inn and of the normalized insertion depth D,,/Inn (see section ) to their
respective constant limits.

Figure 7 is made from simulations of 2,000 random sequences of length 100,000 with i.i.d. letters
under the distribution (pa,pc, pa,pr) = (0.6,0.1,0.1,0.2). On the z-axis, respectively, lengths of the
shortest branches, insertion depth of the last inserted word, lengths of the longest branches. On the
y-axis, number of occurences (histograms).

Proof of Lemma [3.2. Since X,,(s) = k for n = Tj(s) (see Equation ({l)), by monotonicity arguments,

it is sufficient to prove that
ln Tk; (S) a.s.

P h(s).
Let e, (s) dof Zy(s) —E[Z,(s)], so that Tj(s) admits the decomposition

k
Ti(s) =E[Ti(s)] + > _er(s).
r=1
If (M(s)) is the martingale defined by

k
My (s) =3 " en(s),
r=1
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taking the logarithm in the preceding equation leads to

M (s
InTy(s) = InE[Tk(s)] + In <1 + ﬁ&) . (11)
e It is shown in Robin and Daudin [26] that E[Z,(s)] = 1/p (s(")) so that the sequence L InE [Z,(s)]
converges to h(s) as n tends to infinity (h(s) is defined by ([[d)). Since E[Tj(s)] = ZleE[Zr(s)]
(see (B))), the equality
Jim %lnE[Tk(s)] — h(s)

is a straightforward consequence of the following elementary result: if (zy)x is a sequence of positive
numbers such that limy_, ., % In (xg) = h > 0, then limy_, o % In <Zf:1 xr) = h.

e The martingale (My(s))r is square integrable; its increasing process is denoted by ((M(s)>k>k

Robin and Daudin [R6] have shown that the variance of Z,.(s) satisfies V [Z,.(s)] < 4r/p (s(”))2, so that
(M(s))s = O (ke%h<s>) .

One can thus apply the Law of Large Numbers for martingales (see Duflo for a reference on the
subject): for any a > 0,

M) = 0 (MDY (M) ) as

Consequently,

E]\é]jT((i))] =0 <l<:1+°‘/2) a.s.

which completes the proof of Lemma [3.9. O
Proof of Theorem [5.]. 1t is inspired from Pittel 3]. Clearly the definition given in Equation (f)

yields
l, < X,(sy) and L, > X,(s-)

(definitions of s, and s_ were given in (f])). Hence, by Lemma 3.9

. ly 1 ... Ly 1
— < — —_— > — .S.
hrrln_)solip Inn — hy’ hnn—l>1£f nn = h P
e Proof for ¢,
For any integer r,
Pl <r-1)< > PXp(s)<r—1)< Y P(Tn(s) = n), (12)
s(reAr s(reAr

where the above sums are taken over the set A" of words with length r (for a proper meaning of
this formula, one should replace s by any infinite word having s as prefix, in both occurences).
We abuse of this notation from now on. Since the generating functions ®(s7,¢) are defined for any
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1<t <min{y 114 sp(s')} and j < r (see Assertion i) in Proposition P-J), each term of the sum
(@) can be controlled by

]P)(TT'(S) Z n) S t_nE[tTT(S)] S t—n H (b(s(])’t)
j=1

by 1 in (f]), we deduce

In particular, bounding above all the overlapping functions Iy,
from (f]) and from Assertion ii) of Proposition . that

T J ! !
P(Ty(s) 2 ) < t"H(l +0-9) (Z e 1 fw>> |

j=1

81=8r...8p_j i1}

Let 0 < e < 1. There exists a constant ¢z €]0, 1] depending only on € such that
p(sY9)) > e’ with o &of exp(—(1 +&*)hy)
(for the sake of brevity ¢, ¢; and co denote different constants all along the text). We then have

T

—j i! -1
P(T(s) > n) <t ] (1 +(1- t)(;?a(tai)l) 1o w)) |

j=1

Choosing t = 1 + caka”, Inequality () is valid if r is large enough, so that

r . . 1
_ ol — (14 cora™)™? o’ cork'
P(T, > <ect™ 1-— I - .
(Tr(s) zm) < ¢ jl_[1< e a(l + ceram) — 1 1 —~(1+ cokarm)
Moreover since obvioulsy
.ol — (14 cka”) I 1

lim = ,
j—oo al + cora”™) — 1 11—«

and cokk'/ (1 —v(1+ cyfo/)) is uniformly bounded in 7, there exist two positive constants A and L
independent of j and r such that

P(T3(s) > n) < (1 + era”) "L H<1 —da')

In addition, the product can be bounded above by

[1(- ) ﬁ<1_w) ~R<w.

j=1

Consequently,
P(T,(s) > n) < LR(1 + cora”™)™"
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For r = [ (1 — a)l;;—fj and e small enough, there exists a constant R’ such that

P(T;(s) > n) < R exp(—carn?),
where § = & — 2 + 3 > 0. We then deduce from ([[J) that
P(l, <7 —1) < 4"R exp(—cokn?),

which is the general term of a convergent series. Borel-Cantelli Lemma applies so that

lim inf E—n >

1
Pl B E a.s.

e Proof for L,
To complete the proof, one needs to show that

. Ly, 1
limsup— < — a.s.
n—oo ln n h,

Again, since X, (s) = k for n = Ti(s), by monotonicity arguments it suffices to show that

In T} (s) -

> h_ a.s.

liminf min
k—oo g(k)c Ak k

(notations of ([[2)).
Let 0 < € < 1. As in the previous proof for the shortest branches, it suffices to bound above

P( min Tj(s) < ekh‘(1€)>
s(k)c Ak

by the general term of a convergent series to apply Borel-Cantelli Lemma. Obviously,

P . T kh_(1-¢€) < P(T kh_(1-¢€) )
(s 00 <09) < 5 (1 < -0-9)

If ¢ is any real number in |0, 1] and if n & exp(kh_(1 —¢)),
P (Tk(s) < ekh*(l_‘g)) =P <tT’“(S) > tn)

and the decomposition (f]), together with the independence of the Z,(s) for 1 <r < k, yield
k
P <tTk(S) > tn) < = H E[tZr(S)] .
r=1
The proof consists in bounding above

k
>t IIE[FW] (13)

sk e Ak r=1
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by the general term of a convergent series, taking ¢ of the form
t (14 ¢/n)!

so that the sequence (¢"),, is bounded.

13

The generating function of Z,.(s) is given by Robin and Daudin [2] and strongly depends on the
overlapping structure of the word s(™. As 0 < t < 1, this function is well defined at ¢ and is given by

(see Assertion i) of Proposition R.9)

(1-1)
trp(s™) (e (t) + (1 = £)0,(¢71))

E[tZT(S)] -1

(14)

where 7,(t) and §,(t) are defined in ([). Moreover, from Assertion ii) of Proposition R.3, it is obvious

that there exists a constant 6 independent of r and s such that,
() <14+60(1—1).
Besides, by elementary change of variable, one has successively

r r — t'p S(r)
t p(S( ))5r(t 1) = Z ]]‘{Sr Sr—m+1=Sm.- sl}ﬁ

- zn{}tm

m=1

When m is large enough, h_’s definition implies that

p(st™) < g™, where B exp(—(1—e?)h_),

so that there exists positive constants p and c¢ such that, for any r,

p(s) <" and  tp(sT)6 () ST+ Y Mo, smmss s}

m=2
Thus Formula ([[4) with inequalities (L) and (L) yield, for any r < k,
1

E[t7()] <1 —
cfr (ﬁ + 9) + 1+ qi(s)

)

where g(s), that depends on the overlapping structure of s is defined by

def
Qk(s) = max Z ﬂ{sr Sm=Sr—m-+1-- Sl}ﬁm

2<r<k

(15)

(16)
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Note that whatever the overlapping structure is, gx(s) is controlled by

0 < gu(s) < ﬁ. (18)

Thus,

s 1 -1
HEtZr( <exp[ Zln( P _t)1+9)+1+qk(5)> ]

Since the functlon x — Inl/(1 — ) is increasing, comparing this sum with an integral and after the
change of variable y = cﬁ“”((l —-t) 1+ 9), one obtains

k 1 pe=971+0)

1 —1d
E[t% ()] < [ In(1—- ———M— —y}
T < o8t [y ™0 77T am)

This integral is convergent in a neighbourhood of 400, hence there exists a constant C', independent
of k and s such that

ﬁE[tZ @] < Ce [ o In(1 . )_”ﬂ (19)
T X J— —_— .
11 s Cexp) Ty e e ((1-1)-1+0) y+1l+ar(s)/ vy

The classical dilogarithm Lis(z) = >, 2¥/k?, analytically continued to the complex plane slit along

the ray [1, 400, satisfies diy Liy(—5) = %log(l + v/y). This leads to the formula

[Tt ) e () g, (1)

with the notation aj, = ¢3*((1 —¢)~! +6). Choosing ¢t = (1 + ¢/n)~! yields readily

ar, ~ exp(—kh_ (e — €2)). (20)

Moreover, in a neighbourhood of —oo,

Lis(z) = —5 (=) ~ ((2) + O(3), (21)
and the function Liz(z) + 1 In?(—2) is non-decreasing on | — oo, 0], so that
Lis(z) > —% m2(—z) — ¢(2) (x < 0)
[ (2 (22)
Lig(z) < —3 In®(—z) — N (x < —1),

-5

noting that Lia(—

/G:ooln (1—;> ld—y > Lis (-q’“—(s)> +%1n2(ak)+@ (23)

. Hence, if k is such that ar < 1,

y+ 1+ qr(s) y ag
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with In ay being asymptotically proportional to k because of (BQ). Thus, the behaviour of the integral
in (19) as k tends to +o0o depends on the asymptotics of g (s).

Let z ol exp(—\/E). The end of the proof consists, for a given k, in splitting the sum ([[3)
into prefixes s*) that respectively satisfy qr(s) < exp(—\/E) or qi(s) > exp(—\/E). These two cases
correspond to words that respectly have few or many overlapping patterns. The choice z, = exp(—\/E)
is arbitrary and many other sequence could have been taken provided that they converge to zero with
a speed of the form exp[—o(k)].

First let us consider the case of prefixes s®) such that g;(s) < exp(—\/E). For such words, (R2)
and () imply that

+oo 1 -1 1 1 p)
Y (R, " TS I )
ax y+ 1+ qr(s) Y 2 a 2 2

the second member of this inequality being, as k tends to infinity, of the form
kVkh_(e — %) + O(k).
Consequently,

k
E[t7 )] < exp |- ——k32 + O(k)| .
TT Bt < xp |~k + 00

r=1

There are 4F words of length k, hence very roughly, by taking the sum over the prefixes s*) such that
qx(s) < 21, and since ¢~" is bounded, the contribution of these prefixes to the sum ([[3) satisfies

k
> e [T E[EZ )] < 4 exp [—%ks/z + O(k:)] :
sleAk, qp(s)<z r=1 ©
which is the general term of a convergent series.

It remains to study the case qx(s) > z;. For such words, let us only consider the inequalities ([L§)
and ([9) that lead to

k
1 too 1 ~ldy
[ < Cesp| s [ (1~ ]
#7) < Cexp Ing=t J,, n< y+1+p(1—ﬁ)*1) y

r=1

Since x < log(1 — x)~!, after some work of integration,

k
[T e < exp(—l%ek + o(k:)). (24)

r=1

The natural question arising now is: how many words s) are there, such that gz(s) > 2z, ? Let us
define

B {5, gy(s) = e VELL
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The definition of g(s) implies clearly that

E, C {s(k), Ir <k, p Z ﬂ{sr...sm:sr,mﬂ...sl}ﬂm > e_\/E}.
m=2

For any r < k and x > 0, let us define the set

ST('%') d:6f {S(k)7 ZT: ]l{sr...sm:s,n_m+1...sl}ﬁm < .%'}
m=2

For any [ € {2,...,r}, one has the following inclusion
¢
ﬂﬁ-{-l
ﬂ {S(k), ]l{sr...sm:sr_m+1...sl} = 0} C Sr(l — ﬂ>
m=2

If the notation B¢ denotes the complementary set of B in A*,

S(fi}) - CJ {S(k)’ Lo sm=sromir} = 1}

m=2

Since e=VF = pB1 (1~ §) " for €2 VE/In (57) +In (o7 (1 — 8)) /In B,

k |4]+1

Bec U U 5% 1 sz sy = 11

r=1 m=2
so that the number of words s(*) such that g;(s) > 2 is bounded above by

k [4]+1
#E <Y > amle 0(k4ﬂ/1n(5’1). (25)

r=1 m=2

Putting (B4) and (B3) together is sufficient to show that the contribution of prefixes s such that
qx(s) > 2z, to the sum ([[3), namely

k
S e R
r=1

s(Kle Ak, g (s)>zy

is the general term of a convergent series too.
Finally, the whole sum ([LJ) is the general term of a convergent series, which completes the proof of
the inequality

. Ly, 1
limsup— < — a.s.
n—oo Inn — h_
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4. INSERTION DEPTH

This section is devoted to the asymptotic behaviour of the insertion depth denoted by D,, and to
the length of a path randomly and uniformly chosen denoted by M, (see section f). D,, is defined as
the length of the path leading to the node where W (n) is inserted. In other words, D,, is the amount
of digits to be checked before the position of W (n) is found. Theorem B.1 immediately implies a first
asymptotic result on D,,. Indeed, D,, = ¢, whenever ¢, 11 > £,, which happens infinitely often a.s.,
since lim,, o ¢, = oo a.s. Hence,

D 1
liminf —* = liminf — = — a.s.
n—oo Inn n—oo Inn h+
Similarly, D, = £,, whenever L, 11 > L,, and hence
. D, .. Ly, 1
limsup — = limsup— = — a.s.
n—oo nn n—oo nn h_

Theorem [.1] states full convergence in probability of these random variables to the constant 1/h.
Theorem 4.1.
Dn P 1 . Mn P 1

— — — and lim — — —.
Inn n—oo h n—oo Inn n—oo h

Remark 4.2. For an i.i.d. sequence U = U Us.. ., in the case when the random variables U; are not
uniformly distributed in {4, C, G, T}, Theorem [L.] implies that 113—71 does not converge a.s. because

Proof of Theorem [f.]. 1t suffices to consider D,, since, by definition of M,,
1 n
P(My =1) = — Z;]P’(DV =r).

Let € > 0. To prove Theorem [.1], we get the convergence lim,, ., P(A,) = 0, where

D 1 €
A d:ef{Ue N —"__‘>_}
" A% Inn Al = hJ)’
by using the obvious decomposition

D, 14+¢ D, 1—¢
P(A,) =P — > Pl— < .
(4n) < ~ h >+ <lnn_ h )

e Because of X,,’s definition (f),
D, = nfl(W(n)) +1
so that the duality () between X,,(s) and Ty (s) implies that

P (ﬁ > 1 ‘26> < ]P’(Xn_l(W(n)) >k 1) < P(Tk,l(W(n)) <n- 1) (26)
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with k < | 1£€ Inn|. Furthermore,
P(Tk,l(W(n)) <n-— 1) < IP’( {Teoi(W(n)) <n—1}n Bn,,m) n IP’( ;,k0>

where B,, i, is defined, for any ko < n, by

B, = () {Uea,

ko<j<n

%m(W) —h| <eh}.

Since the sequence U is stationary, P(W(n)(j )) = P(U (G )) so that Ergodic Theorem implies

1 1
lim =In | ———— | =h  as.
i <p(w(n)o))> s

which leads to P(Bn,ko) = 1 when both kg and n are large enough. If S,, 1, denotes the set of words

Sn,ko d:ef {S(n) S An’ VJ S {ko,. .. ,TL} ‘%ln <®> — h‘ < g2h} s

when kg and n are large enough,

P(Tk_l(W(n)) <n-— 1) < Z P(W(n)(") = s, Th_1(s) <n— 1)
sMeS, ik,

< Z ]P’(Tk,l(s)gn—1>.

s(n) eSn,kO

Such a probability has already been bounded above at the end of Theorem B.1I's proof; similarly,

Z P(Tk_l(s) <n-— 1) =0 <nexp ( — 1 ign + a Eli)h\/ﬁ>> (27)

8(”)687%)60

so that (2d) and (1) show that P (22 > 4€) tends to zero when n goes off to infinity.
£

s )
e Our argument showing that P (113—71 < 1%) tends to zero when n tends to infinity is similar. If now

= |55 Inn],

P (5—2 < 1?) <P(Xoa (W) <k—1) =P(T(W(n) = n),

so that

P <& < 1?) <B({T(W () = n} 0 Buy, ) +B(Bi,).

Inn
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As before, IP’(Bf%kO) = 0 when kg and n are large enough and

]P’(Tk(W(n)) > n) < Z ]P’(W(n)(") =5, Tyu(s) > n)

s(n) eSn,kO

Z ]P’(Tk(s) > n>

s(n) GSn7k0

IN

Like in the proof of Theorem .1, on shows that

Z ]P’(Tk(s) > n> =0 <4" exp <—nn9/2)>

s(n) GSn7k0

which implies that P ({Z—Z < 1_78) tends to zero when n tends to infinity. The proof of Theorem [£.1] is
complete. 0O
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APPENDIX A. DOMAIN OF DEFINITION OF THE GENERATING FUNCTION ®(s5( t)

A.1. Proof of Assertion ii)

There exists a function K (s1, s,,m) uniformly bounded by the constant

KX sup |K(s1,58,m))]

S1,8r,M

such that
Qm(shsr) _p(sr) = K(3175T7m)7m7 (28)

where v is the second eigenvalue of the transition matrix. Consequently,

‘ Z K 81,87“5 )
tp sr

K |1 — t
min,, p(u) 1 — 7]t

() —1] =

IN

Hence Assertion ii) holds with &’ LK / min, p(u).
A.2. Proof of Assertion i)

On the unit disc |t| < 1, the series

:e Z Q" (s1, 8. )t (29)

The function

> [Q™ (51, 8r) — p(sr) ]

m>1

is analytically continuable to the domain «|t| < 1, and then the series

1_t ZQ 81737"

tp(sr)
p r m>1
converges on the same domain. One has to determine the zeroes of

D(t) = p(s")r + (1_t th (@ (51, 50) = p(sr)]

z>1

s
p
+ (1—t 1+ E ! p((sj))]l{sr Sj=Sp— 41 51}]
j=2
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Assuming that some 0 < ¢ < 1 were a real root of D(t), then

1 —t
L= O S oo,

z>1

©)
- p(s
= (t-D[1+ th IIS(TJ))H{ST---SJ'=ST1+1~~51}] <0.
=2

It is thus obvious that there are no real root of D(t) in ]0,1[. Moreover, one can readily check that
0 and 1 are not zeroes of D(t). We now look for a root of the form ¢ = 1 + ¢ with € > 0. Such an ¢

satisfies
(14 p(s) (1= s Do 1@ 1) = p(s)])
z>1
8 =
r (4) ’
Jj— 1p( )
so that

€ > ﬂp(s(”)).

This implies that <I>(S(7"), t) is at least defined on [0, 1+ kp (s(r)) [ This implies the result.
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F1GURE 3. Representation of 16 nucleotides of Mus Musculus GAGCACAGTG-
GAAGGG in the CGR-tree (on the left) and in the “historyless representation” (on
the right).

G c G

G | bt
" :@ v

FIGURE 4. Chaos Game Representation (on the left) and historyless representation
(on the right) of the first 400000 nucleotides of Chromosome 2 of Homo Sapiens.
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| Ui Ui | Uims] st | s2 | ss | s S5

[ si | s2 [ ss [ sa | s5 [ s6 |

FIGURE 5. How overlapping intervenes in Z,.(s)’ definition. In this example, one takes
r = 6. In the random sequence, prefix s(® can occur starting from Usy1y(s) only if
§15283 = §45556.-
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Inzertion levels and shortest/longest branches
[length=100000, probs=0,25,0,25,0,25,0,25]

1.6 T T T T
Experimental (insertion level / lnn) ————
theorical (In/ln n) = 0,721348 ———
1e theorical {In/ln n} = 0721348 ———

theorical (Ln/ln n) = 0721348 ———
Experimental (shortest branch / ln n)

Experimental (Longest branch / lnn) ———
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Insertion levels and shortest/longest branches
[length=100000, probs=0,4,0,3,0,2,0,1]
2,5 T T T T
Experimental (insertion level / ln n) ————
theorical (Dn/ln n) = 0,781333 ——
theorical {Infln n} = 0.434294 ———
2 k theorical (Ln/ln n) = 1,0913%%7 ——— 4
Experimental (shortest branch # 1n n)
Experimental {Longest branch / lnn) ——
1.5 F -

N
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R | Imllﬁimmﬂﬂﬂmﬂl!lliff!TTI"'TH'TWH'W'iiHHH'ﬂT'

1

0.5 4

0 20000 40000 B0000 80000 100000

FIGURE 6. Simulations of two random sequences. On the first graphic, letters of the
sequence are i.i.d. and equally likely distributed; on the second one, i.i.d. letters have
probabilities (pa, pc, pa,pr) = (0.4,0.3,0.2,0.1). On the z-axis, number n of inserted
letters; on the y-axis, normalized insertion depth D,,/Inn (oscillating curve), lengths
of the shortest and of the longest branch (regular “under” and “upper envelops”). The
horizontal lines correspond to the constant limits of these three random variables (on

the first graph, these three limits have the same value).
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Shortest and longest branches
[length=100000, 2000 exps, probs=0.6,0.1,0.1,0.2]

2000 T
Experimental shortest branches ———
Experimental longest branches ©

Experimental Dn
Theorical shortest branch=5.000000
Theorical longest branch=22.537878
Theorical Dn=10.572987

1800 [ R

1600 i

1400 i

1200 1

1000 i

800 [ b

600 - E

200 |

20 25 30 35 40

FIGURE 7. Simulations of 2000 sequences of 100,000 i.i.d. letters. On the left, his-
togram of shortest branches; in the middle, histogram of insertion depth of the last
inserted word; on the right, histogram of longest branches. Vertical lines are their

expected values, namely In(10°%) x ¢ where £ respectively equals the limit of £,/Inn,
D,,/Inn and £,/Inn.



