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DIFFUSION DYNAMICS OF AN ELECTRON GAS CONFINED

BETWEEN TWO PLATES∗

P. DEGOND† , V. LATOCHA† , S. MANCINI‡ , AND A. MELLET†

Abstract. We consider electrons constrained to move in the gap between two plane parallel
plates, confined by a magnetic field perpendicular to the plates and accelerated by an electric field
parallel to them. The electrons are subject to elastic collisions against the solid plates on the one hand
and against atoms or ions in the gap between the plates on the other hand. Under the assumption
that the dynamics is dominated by the collisions, we derive a diffusion type model for the energy
distribution function of the electrons. The present paper is an extension of a previous one [17] where
only collisions against the solid boundaries were considered.

1. Introduction. In a previous paper [17], we considered electrons constrained
to move in the gap between two plane parallel plates, confined by a magnetic field
perpendicular to the plates and accelerated by an electric field parallel to them. The
electrons were subject to elastic collisions against the solid plates. Under the assump-
tions that the distance between the plates is small compared with the typical lateral
extension of the phenomenon and that the dynamics is dominated by the collisions
against the wall, we derived a diffusion type model for the dynamics of the electrons
in the lateral directions. This obtained diffusion model is of ’Spherical Harmonics Ex-
pansion’ (SHE) type as the main macroscopic quantity which is evolved by the model
is the energy distribution function. The present paper is an extension of [17] to the
case where collisions against atoms or ions in the gap between the plates are consid-
ered in addition to collisions against the solid boundaries. The situation so-depicted
is typical of certain plasma devices like plasma propellors for satellites (see [10], [20]
for more details about these devices, [13], [14] for a formal derivation of these models,
[15] for numerical applications and [29], [30] for related physical approaches).

Like in [17], following the formal approach [13], [14], we consider that the ratio
(denoted by α) of the distance between the two plates to the typical longitudinal length
scale (i.e. along the planes) is small and simultaneously that the magnetic field is large
(of order α−1) so that the Larmor radius (or gyration radius in the magnetic field)
stays of order unity. Besides, we suppose that the electrons are subject to elastically
diffusive collisions when they hit the solid plates i.e. they are reemitted with their
incident energy but random velocity directions. In [17], collisions with the boundary
was the only source of collisions and particle motion in the gap between the plates was
supposed collisionless. We showed that the large time behaviour (on time scales of
order α−2) of the particle distribution function is, to leading order, given by F (ξ, ε, t),
where ξ denotes the longitudinal position variable (i.e. the vector ξ is parallel to the

plates), ε = |v|2/2 is the electron kinetic energy (with v the velocity) and t the time.
The function F was proved to satisfy a diffusion equation in position and energy space
known in the literature as the SHE model (see references below).

∗Received October 31, 2000; accepted for publication April 6, 2001. This work has been supported
by the TMR network No. ERB FMBX CT97 0157 on ’Asymptotic methods in kinetic theory’ of
the European Community and by the network ’SPARCH’ of the Centre National de la Recherche
Scientifique.
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In the present paper, we consider the more realistic situation where electrons
moving in the gap between the plates can undergo elastic collisions against atoms or
ions. These collisions add another source of diffusion which combines in a somehow
complex way to collisions with the plates and yield a compound diffusivity in the SHE
model. We rigorously prove the convergence of the kinetic model towards the SHE
equation when the parameter α tends to 0, and additionally, we provide an explicit
expression of the diffusivity in the case of isotropic collisions, which is extremely useful
for numerical applications of the model [16], [25]. The proof differs from that of [17]
in several instances which will be outlined in the course of the paper.

The SHE model has first been derived by a formal truncation of the Spherical
Harmonics Expansion of the Boltzmann equation (hence the terminology). We refer
to [5], [12] for applications to semiconductor modeling and [18], [34] for applications
to plasmas and discharge physics. In the SHE model, energy diffusion is caused by
the combined effects of the electric field and of the collisions. Position and energy
diffusions are not independent (in other words, the diffusion is degenerate) because
total energy is preserved during both free flight and collisions.

A related problem had previously been considered by [1] and [2]. The authors
considered a collisionless neutral gas flowing in a thin domain (e.g. the gap between
two plane parallel plates) and subject to accomodation at the boundary (i.e. ree-
mission according to a given distribution function after collisions against the solid
plates). In this case, since collisions against the boundary were inelastic, the large
time dynamics was that of an ordinary diffusion equation in position space only. We
refer to [17] for a detailed description of the analogies and differences between this
earlier approach and ours. Let us just point out that, in the present plane parallel
geometry, the diffusivity of [2] was infinite. This is due to the too large proportion
of particles reemitted with velocities tangent to the plates and which travel a very
large distance between two encounters with the plates. It was later shown in [8] and
in [21], [19] that a logarithmic time rescaling can restore a finite diffusivity. In our
case, the diffusivity stays finite without logarithmic time rescaling. This is because
Larmor gyration in the magnetic field on the one hand [17] and collisions with atoms
on the other hand limit the distance travelled by a particle between two encounters
with the plates.

Mathematically, the present problem belongs to the class of diffusion approxima-
tion problems for kinetic equations. We refer to [17] for a summary and bibliography
of the various mathematical techniques that are used in this area. Let us just mention
the important references that are landmarks of this field: [7], [4], [22] as well as [11]
for a general exposition of kinetic theory.

The paper is organized as follows. First, an introduction to the kinetic model
is given in Section 2 and the main result is stated. Then, properties of the collision
operators are reviewed in Section 3. An existence theorem for the kinetic model is
proved in Section 4. The convergence of the kinetic model to the SHE model is then
investigated in Section 5 and some properties of the diffusivity tensor are outlined.
Eventually, an explicit formula for the diffusivity in the case of isotropic collision
operators is given in Section 6 and a short conclusion is drawn in Section 7.

2. The kinetic model. We introduce a coordinate system (x, y, z) such that the
two solid plates are located at {x = 0} and {x = 1}. The electron gas occupies the
domain X := (x, y, z) ∈ [0, 1] × R

2. We denote by ξ = (y, z) ∈ R
2 the component of

the position vector parallel to the plates. Let v ∈ R
3 denote the particle velocity. We

decompose: v = (vx; v), where vx is the velocity component parallel to the x-axis and
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v = (vy, vz) ∈ R
2 is the component parallel to the plates. The electrons are subject

to a magnetic field transverse to the plates (B(ξ), 0, 0) and to an electric field parallel
to the plates, (0, Ey(ξ), Ez(ξ)) = (0;E(ξ)), where B and E are supposed to depend
only upon ξ due to the divergence-free and curl-free constraints respectively. We shall

denote by Θ the domain of phase-space: Θ = {(X, v), X ∈ [0, 1] × R
2, v ∈ R

3}.
Let fα(X, v, t) = fα(x, ξ, vx, v, t) denote the electron distribution function, i.e.

the density of particles in an elementary phase-space volume element about the posi-
tion X and velocity v at time t > 0. It obeys the following scaled Boltzmann equation

(2.1) α2 ∂fα

∂t
+ α(v · ∇ξf

α − E · ∇vfα) + vx
∂fα

∂x
− (v × B) · ∇vfα = Lfα,

where (v × B) = (0, vzB,−vyB). The scaling parameter α measures the ratio be-
tween the microscopic length scale (typically, the distance between the plates) and
the macroscopic length scale (typically, the lateral extension of the device in the di-
rection ξ). Note that the ratio between the microscopic time scale (typically the time
elapsed between two encounter with the solid plates) and the macroscopic time scale
(i.e. the observation time) is of order α2. This ratio between the position and time
scales is typical of diffusion processes. We shall see that this is the relevant scaling
for the present problem. We also observe that the magnetic and electric field scales
are such that the number of particle gyrations under the magnetic field between two
encounters with the plates is of order 1, while the acceleration of the particles due to
the electric field in the same interval is of order α.

The operator L models elastic collisions with atoms or ions present in the gap
between the two plates. We first introduce the spherical coordinates in velocity space:
v = |v|ω, where ω belongs to the unit sphere S

2. Then L is given by:

(2.2) L(f)(v) =

∫

ω′∈S2

Φ(ξ, ω, ω′) (f(x, |v|ω′, t) − f(x, |v|ω, t)) dω′ .

The fact that the integration is carried over a sphere expresses the conservation of
energy during an elementary collision which sends the electron from velocity v = |v|ω
to v′ = |v|ω′. The factor Φ(ξ, ω, ω′) is related to the differential scattering cross-
section associated with the collision mechanism and is supposed given and smooth.
Moreover, Φ may depend on ξ as the characterisitics of the atoms or ion gases may
depend on the spatial coordinate. However, we shall suppose that these characteristics
are homogeneous within a given section {ξ = Constant } of the device, hence the
dependence on ξ only.

The scaling of the collision operator is such that the number of elastic collisions
with atoms or ions which a given electron suffers between two encounters with the
plates is of order unity. We point out that restricting to elastic collisions amounts
to neglecting the velocity of the atoms or ions as well as energy transfers between
them and the electrons. This limitation could be overcome by considering inelastic
collisions. Indeed, our analysis would apply if an inelastic collision operator α2I(fα)
was added as an order α2 term at the right-hand side of (2.1). This scaling is valid as
long as energy tranfers between electrons and atoms or ions are small, which is usually
the case due to the very small electron mass. However, for the sake of simplicity, we
shall disregard inelastic collisions in the present work.

Equation (2.1) is supplemented with conservative boundary conditions expressing
the incoming flux of particles in terms of the outgoing flux. We first need to define the
traces of fα on the boundaries of the domain Θ. Therefore, we consider the boundary
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Γ = {0, 1}×R
2×R

3 and the following incoming and outgoing sets respectively denoted
by Γ− and Γ+:

Γ± = {(X, v) ∈ Θ , s.t. (x = 0 and ∓ vx > 0) or (x = 1 and ± vx > 0)} .

Denoting by f− and f+ the traces of the distribution function f on the sets Γ− and
Γ+, the boundary conditions read as follows:

(2.3) f− = Bf+ := βJ f+ + (1 − β)K(f+), (X, v) ∈ Γ−,

where the accommodation coefficient β = β(x, ξ, |v|) is such that 0 ≤ β < 1. J
is the mirror reflection operator given according by J f+(v) = f+(v∗) where v∗ =
(−vx, vy, vz) is the specular reflection of the vector v with respect to the boundary.
The operator K operates from functions defined on Γ+ towards functions defined on
Γ− according to:

(2.4) K(f+)(X, v) =

∫

{ω′∈S2,(X,|v|ω′)∈Γ+}

K(X, |v|;ω′ → ω) f+(X, |v|ω′) |ω′
x| dω′.

The dependence of the kernel K with respect to X = (x; ξ), x ∈ {0, 1}, ξ ∈ R
2 and |v|

will be omitted, otherwise specified. The quantity K(ω′ → ω) |ωx|dω is the probability
than an electron impinging on a plane at a position (y, z) with velocity modulus |v|
and velocity direction ω′ will be reflected with new velocity angle ω belonging to the
solid angle dω (and the same velocity modulus). Hence, the boundary condition (2.3)
states that an electron colliding with the boundary can undergo a mirror reflection
with probability β and a diffuse reflection with probability (1 − β). The diffuse
reflection is obviously elastic as the reflected velocity v = |v|ω has the same modulus
as the incoming one v′ = |v′|ω.

The same remark as for the collisions with neutrals atoms or ions can be made
here. In realistic physical situations, collisions with the boundary are not elastic.
However, there is a range of energies for which the relative energy change is small
and can be neglected or accounted for by a (boundary) inelastic collision operator of
magnitude α2. This occurence has been considered in [13]. Again, for the sake of
simplicity, these inelastic collisions will not be considered here.

In this paper, we investigate the limit α → 0 of (2.1). To avoid the treatment of
initial layers, we first assume that the initial data are well prepared:

Hypothesis 2.1. We suppose that there exists a function FI such that
fI(x, ξ, v) = FI(ξ, |v|2/2) and that fI satisfies: fI ∈ L2(Θ), (v·∇ξ−E ·∇v)fI ∈ L2(Θ).

Then, we prove the following result:

Theorem 2.1. Under a certain number of hypotheses listed in the following
sections, problem (2.1), (2.2), (2.3) admits a solution fα, for every α > 0. Moreover,
when α tends to zero, fα converges to f0 in the weak star topology of L∞([0, T ], L2(Θ))
for any T > 0, where f0(X, v, t) = F (ξ, |v|2/2, t), and F (ξ, ε, t) is a distributional
solution of the problem:

4π
√

2ε
∂F

∂t
+

(

∇ξ − E
∂

∂ε

)

· J = 0,(2.5)

J(ξ, ε, t) = −D

(

∇ξ − E
∂

∂ε

)

F (ξ, ε, t),(2.6)

F |t=0 = FI .(2.7)
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The diffusion tensor D = D(ξ, ε) is given by

(2.8) D(ξ, ε) = (2ε)3/2

∫ 1

0

∫

S2

D(x, ω; ξ, ε)ω dx dω,

where ω = (ωy, ωz), D = (Dy, Dz), and the 2 × 2 matrix D ω is the tensor product of
D and ω. The functions Di(x, ω; ξ, ε) with i = y, z are solutions of the problem

−vx
∂Di

∂x
+ (v × B) · ∇vDi − LDi = ωi , in Θ(2.9)

(Di)+ = B∗(Di)− , on Γ(2.10)

and are unique up to addition of an arbitrary function of ξ and ε.

Moreover, we shall see that the matrix D is definite positive (Proposition 5.3)
and satisfies the Onsager relation (Proposition 5.4). Note that D is not symmetric in
general (see the explicit computation Proposition 6.1). System (2.5)-(2.6) is the “so
called” Spherical Harmonic Equation (SHE) model (see references in the introduc-
tion).

The proof of Theorem 2.1 will be divided in the following steps. In the next
section, we recall some properties of the collision operators (see [17] for the boundary
operator, and [5], [27] for operator L). In Section 4, we prove the existence and
uniqueness of the solution fα of the evolution problem (2.1) with boundary conditions
(2.3). Then, we establish estimates on fα which show the existence of a weak limit
f0 which additionally does not depend on x and ω. Then, we show that the current
converges weakly and we establish equation (2.6). Finally, we derive the continuity
equation (2.5), first for fα, then letting α → 0, for its limit f0, which concludes the
proof.

3. The collision operators.

3.1. Collisions with the boundary. The study of the boundary operator B
has been extensively developped in [17]. In the present section, we summarize the
main assumptions and results. Let S±(x), x = 0, 1 be the following half-spheres:

(3.1) S±(0) = {ω ∈ S
2,±ωx < 0} , S±(1) = {ω ∈ S

2,±ωx > 0} .

Introduce the domain S = [0, 1] × S
2, with incoming and outgoing sets respectively

denoted by S− and S+ and given by S± = ({0} ×S ∓(0)) ∪ ({1} × S±(1)).

We shall consider L2-based functional spaces with the associated inner products
on L2(Θ), L2(Γ+) and L2(Γ−):

(f, g)Θ =

∫

Θ

fg dθ , (f, g)Γ± =

∫

Γ±

fg |vx| dΓ,

where dθ = dxdξdv is the volume element in phase space, and dΓ =
∑

x=0,1 dξdv is

the surface element. The inner products on L2(S), L2(S±) are defined analogously
by:

(3.2) (f, g)S =

∫ 1

0

∫

S2

fg(x, ω) dx dω, (f, g)S± =
∑

x=0,1

∫

S±(x)

|ωx| fg(x, ω) dω .
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Let us define (as in [17]) the operator Q+ as the orthogonal projection (for the inner
product (·, ·)S+) of L2(S+) on the space C+ of constant functions on each connected
component, i.e.:

(3.3) Q+f(x, ω) =
1

π

∫

S+(x)

|ωx| f(x, ω) dω , ω ∈ S+(x) , x ∈ {0, 1},

and the operator P+ as the orthogonal complement of Q+: P+ = I − Q+ . In the
same way, we define the operators Q− and P− on the space C− of constant functions
on each connected component of S−.

We now list the required assumptions on the operator K. For that purpose, we
consider that the operator K operates on the variable ω only, i.e. we consider that
x ∈ {0, 1}, ξ ∈ R

2 and |v| > 0 as parameters.

Hypothesis 3.1. We assume that the kernel K satisfies the following properties:
(o) K bounded from L2(S+(x)) to L2(S−(x)), for any x ∈ {0, 1},
(i) positivity: K(ω′ → ω) > 0 ,
(ii) flux conservation: for any x ∈ {0, 1} we have

(3.4)

∫

S−(x)

K(ω′ → ω) |ωx| dω = 1,

(iii) reciprocity relation:

(3.5) K(ω′ → ω) = K(−ω → −ω′), ∀ω ∈ S−(x), ω′ ∈ S+(x), ∀x ∈ {0, 1} .

As proved in [17], from Hypothesis 3.1 follows the normalization identity: For any
x ∈ {0, 1}, we have

(3.6)

∫

S+(x)

K(ω′ → ω) |ω′
x| dω′ = 1 ,

and the Darrozes-Guiraud inequality: For any x ∈ {0, 1}, we have

(3.7)

∫

S−(x)

|f−(x, ω)|2 |ωx| dω ≤
∫

S+(x)

|f+(x, ω)|2 |ωx| dω .

We consider the adjoint operator K∗ of K. Obviously, K∗ operates from L2(S−(x))
to L2(S+(x)) and is given by

(3.8) K∗(f)(x, ω) =

∫

S−(x)

K(ω → ω′) |ω′
x| f(x, ω′) dω′, ω ∈ S+(x) .

Hence, the adjoint operator B∗ of B operates on the same spaces as K∗ and is given
by:

(3.9) B∗ = βJ ∗ + (1 − β)K∗ ,

where J ∗ is the adjoint of J and is the mirror reflection operator acting from functions
defined on S−(x) to functions defined on S+(x). Additionnally to Hypothesis 3.1, we
assume that:
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Hypothesis 3.2. (i) The operator K is a compact operator from L2(S+) to
L2(S−). Analogously, the operator K∗ is compact from L2(S−) to L2(S+),
(ii) there exists a constant k < 1 such that:

(3.10) ‖KP+‖L(L2(S+),L2(S−)) ≤ k < 1 , |v| ∈ R
+ , ξ ∈ R

2 ,

(iii) there exists β0 < 1 such that 0 ≤ β ≤ β0 < 1 , ξ ∈ R
2 , |v| > 0 , x = 0, 1.

It follows that:

(3.11) ‖BP+‖L(L2(S+),L2(S−)) ≤
√

β0 + (1 − β0)k2 = k0 < 1 .

As consequences we get the two following lemmas (see [17]),

Lemma 3.1. Under Hypotheses 3.1, 3.2, we have:
(i) The Null-Space of I − JB∗ and of I − J ∗B are respectively given by:

N(I − JB∗) = C− , N(I − J ∗B) = C+ ,

(ii) B as an operator from L2(S+) to L2(S−) is of norm 1,
(iii) if K(ω′ → ω) ≥ C > 0, where C is a constant, then assumption (3.10) holds.

Lemma 3.2. Let the projection operators Q±, P±, B be defined as above. Then
the following equalities hold:

(3.12) BQ+ = Q−B = JQ+ = Q−J , BP+ = P−B.

and similarly (mutatis mutandis) for B∗.

3.2. Collisions with atoms or ions. The properties of the collision operator
L are fairly classical. We refer to [5], [12], [27] for details of the proofs. We assume
that the scattering cross section related quantity Φ satisfies the following:

Hypothesis 3.3. (i) There exist two constants, c1 and c2, such that

0 < c1 ≤ Φ ≤ c2 ,

(ii) Φ is invariant by exchange of v and v′, i.e. for every ω, ω′ ∈ S
2,

Φ(ω′, ω) = Φ(ω, ω′) .

Let define:

λ(ω) =

∫

S2

Φ(ω, ω′) dω′ ,

(remark that λ may depends on ξ and |v|), then, the operator Lf may be split in a
’gain’ part L+f and a ’loss’ part −λf :

(3.13) Lf = L+f − λf , L+f =

∫

S2

Φ(ω, ω′)f(ω′) dω′.

Again, we note that L can be viewed as an operator acting on functions of ω only.
Therefore, the other variables can be treated as simple parameters. We define the
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space L2(S2) equipped with the usual inner product (f, g)S2 =
∫

S2 f(ω)g(ω)dω. We
deduce ([5], [12], [27]):

Lemma 3.3. Under Hypothesis 3.3, we have:
(i) For every f, g ∈ L2(S2):

(3.14) (L(f), g)S2 = −1

2

∫

S2

Φ(f ′ − f)(g′ − g) dω dω′ ,

(ii) L is uniformly bounded, i.e. ∃M such that ‖L‖L2(S2) ≤ M , independently of X
and |v|,
(iii) L is self-adjoint, i.e. (Lf, g)S2 = (f,Lg)S2 ∀f, g ∈ L2(S2),
(iv) L is a dissipative operator, i.e. (Lf, f)S2 ≤ 0 for every f ∈ L2(S2),
(v) the Null-Space N(L) of L is the one dimensional space of constant functions.

Moreover, considering the projection operator onto constant functions over the
sphere S

2, defined for every f ∈ L2(S2) by :

(3.15) [f ] =
1

4π

∫

S2

f(ω) dω ,

one can derive the following coercivity property and characterization of the range
R(L) of L (see [5] and [12]):

Lemma 3.4. (i) For every f ∈ L2(S2),

(3.16) −(Lf, f)S2 ≥ c14π|f − [f ]|2L2(S2) ,

(ii) R(L) = N(L)⊥ = {f ∈ L2(S2), s.t. [f ] = 0}.

4. The evolution problem. The following hypotheses make the transport op-
erator in equation (2.1) easily solvable. Some of the regularity assumptions could be
relaxed at the expense of technicalities, but we shall avoid them in the present paper.

Hypothesis 4.1. (i) The electric field satisfies E = E(ξ) ∈ (W 1,∞(R2))2 and is
independent of t,
(ii) similarly B = B(ξ) ∈ C1(R2) and is independent of t,

(iii) there exists a constant B0 > 0 such that |B(ξ)| ≥ B0 > 0, for every ξ ∈ R
2.

We now define the following operator on L2(Θ):

(4.1) Aαf = v · ∇ξf − E · ∇vf +
1

α

(

vx
∂f

∂x
− (v × B) · ∇vf

)

,

with domain D(Aα) defined by:

D(Aα) = {f ∈ L2(Θ), Aαf ∈ L2(Θ), f+ ∈ L2(Γ+), f− = Bf+} .

We denote by A the bare differential operator (4.1) when no indication of the domain
is needed. Following [3], [33], we define the spaces:

H(Aα) = {f ∈ L2(Θ),Aαf ∈ L2(Θ)} ,(4.2)

H0(Aα) = {f ∈ H(Aα), f− ∈ L2(Γ−)} = {f ∈ H(Aα), f+ ∈ L2(Γ+)}.(4.3)

Then, from [3], [33], we deduce:
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Lemma 4.1 (Green’s Formula). Under Hypothesis 4.1, for f and g in H0(Aα)
with compact support with respect to v, we have:

(4.4) (Aαf, g)Θ + (f,Aαg)Θ =
1

α

(

(f+, g+)Γ+
− (f−, g−)Γ−

)

.

It is difficult to show that D(Aα) is closed for the graph norm |f |2Aα = |f |2L2(Θ) +

|Aαf |2L2(Θ) because we are lacking a control of |f+|2L2(Γ+) (and more precisely of

|Q+f+|2L2(Γ+) since B acts like the identity on the spaces C±). In [17], following [6],

we perturb the boundary operator in order to control |Q+f+|2L2(Γ+) and, by passing

to the limit in the perturbation parameter, we can show the existence (but not the
uniqueness) of a solution of the kinetic problem (2.1) (with L = 0), (2.3). Since the
collision operator L is a bounded perturbation of the transport operator, the same
proof can be applied to the present case without any modification. Therefore, we
simply summarize the main steps of the proof (in order to fix the notations) and state
the main estimates below. We shall refer to [17] for details.

For η > 0, we introduce the operator:

Bη = BP+ +
1

1 + η
JQ+ ,

and the operator Aα
η = A with domain

(4.5) D(Aα
η ) = {u ∈ H(Aα) , u+ ∈ L2(Γ+) , u− = Bηu+ } ,

We now have

(4.6) ||Bη||L(L2(S+),L2(S−)) < 1 , ∀η > 0 ,

It is readily seen that the operator Aα
η is closed. In [17], we prove that it generates a

strongly continuous semigroup of contraction:

Proposition 4.1. Aα
η , with domain D(Aα

η ), is a maximal accretive operator.

Since L is a bounded perturbation and −L is accretive, it follows that Aα
η − α−1L

also generates a strongly continuous semigroup of contractions. We point out that
α > 0 is kept fixed in this part. However, for future use, we shall keep track of the
dependences of the various estimates upon α. Then, we apply Hille-Yosida’s theorem
(see [9]) and get:

Lemma 4.2. For all η > 0, for all Fη ∈ D(Aα
η ), there exits a unique function

fα
η ∈ C([0, T ];D(Aα

η )) ∩ C1([0, T ];L2(Θ)), solution of

(4.7) α∂tf
α
η + Aηfα

η =
1

α
Lfα

η , fα
η |t=0 = Fη

Moreover, we have the following estimates:

|fα
η |L2(Θ) ≤ |Fη|L2(Θ) ,(4.8)

|α∂tf
α
η |L2(Θ) = |(Aη − α−1L)fα

η |L2(Θ) ≤ |(Aη − α−1L)Fη|L2(Θ) .(4.9)

We then notice [6]:
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Lemma 4.3. Let FI be as in Hypothesis 2.1. There exists a sequence (Fη)η>0

such that Fη ∈ D(Aα
η ) and

Fη −→ FI , AFη −→ AFI in L2(Θ)-weak ,

as η → 0.

We now give estimates of the boundary values |f±|L2(Γ±) in terms of |f |Aα for func-
tions of D(Aα

η ). We first state that the projection P+ of the trace at the boundary
of a function of D(Aα

η ) is controlled by the graph norm. This is done by evaluating
(Aα

η f, f)Θ using Green’s formula (4.4):

Lemma 4.4. If f ∈ D(Aα
η ), then there exists a constant C > 0 such that:

(4.10) |P−f−|2L2(Γ−) ≤ |P+f+|2L2(Γ+) ≤
2α

1 − k2
0

(Aαf, f)Θ ≤ Cα|f |2Aα .

We now notice that, if f ∈ D(Aα
η ), then (1 + η)Q−f− = JQ+f+ (thanks to Lemma

3.2 and to the definition of Bη). Thus, there exists a single function q(f) = q(x, ξ, |v|),
x = 0, 1, ξ ∈ R

2, |v| > 0, such that

(4.11) q = (1 + η)Q−f− , on Γ−, q = Q+f+ , on Γ+

The following estimate is obtained in a similar way as (4.10), but using a suitable
multiplier prior to the application of Green’s formula (4.4):

Lemma 4.5. Let f ∈ D(Aα
η ), then:

(4.12) |q(f)|2L2
R

(Γ) ≤ C
(

α|f |2Aα + R|f |2L2(Θ)

)

,

where the family of semi-norms |ϕ|2
L2

R
(Γ)

, for R > 0, is defined by:

(4.13) |ϕ|2L2
R

(Γ) =

∫

Γ,|v|≤R

|vx| |ϕ|2 dΓ,

and the associated function space is denoted L2
R(Γ).

With all this material, it is now easy to pass to the limit in (4.7) as η → 0 and obtain
the following existence result and estimates:

Proposition 4.2. Under Hypotheses 2.1, 3.1, 3.2, 3.3, 4.1, there exists a solu-
tion fα to problem (2.1), (2.3), such that fα ∈ L∞(0, T ;L2(Θ)),
Afα ∈ L∞(0, T, L2(Θ)), P+fα

+ ∈ L∞(0, T, L2(Γ+)), Q+fα
+ ∈ L∞(0, T, L2

R(Γ+)), for
all R > 0, and the boundary condition is satisfied in the sense that:

P−fα
− = BP+fα

+ , Q−fα
− = JQ+fα

+ .
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Moreover, we have:

|fα|C0([O,T ],L2(Θ)) ≤ |FI |L2(Θ) ,(4.14)
∣

∣Aαfα − α−1Lfα
∣

∣

C0([O,T ],L2(Θ))
≤ |AαFI |L2(Θ) ,(4.15)

∫ T

0

∣

∣P+fα
+(t)

∣

∣

2

L2(Γ+)
dt ≤ Cα2 |FI |2L2(Θ) ,(4.16)

∫ T

0

∣

∣P−fα
−(t)

∣

∣

2

L2(Γ−)
dt ≤ Cα2 |FI |2L2(Θ) ,(4.17)

∫ T

0

|q(fα(t))|2L2
R

(Γ) dt ≤ CR|FI |Aα , ∀R > 0 ,(4.18)

∫ T

0

|fα − [fα]|2L2(Θ) ds ≤ −C

∫ T

0

(Lfα, fα)Θds ≤ Cα2|FI |2L2(Θ) .(4.19)

where we denote by q(fα) = Q−fα
− = JQ+fα

+.

Proof. Only estimate (4.19) does not follow directly from Lemmas 4.4 and 4.5.
But it is an easy consequence of the coercivity estimate (3.16).

5. Convergence towards the asymptotic model.

5.1. Weak limit of fα. As a consequence of Proposition 4.2, as α tends to zero,
there exists a subsequence, still denoted by fα, which converges in L∞(0, T ;L2(Θ))
weak star to a function f0. Furthermore, using the diagonal extraction process, the
subsequence q(fα) converges to a function q(x, ξ, |v|, t) with x = 0, 1 in

L2(0, T, L2(ΓR)) weak star for any R, where ΓR = {(X, v) ∈ Γ, s.t. |v| < R}. Also,
from (4.16), (4.17), the traces P+fα

+ (resp. P−fα
−) converge in L2(0, T ;L2(Γ+)) (resp.

L2(0, T ;L2(Γ−))), strongly towards zero. Finally, from estimates (4.19) we also obtain
that the limit function f0 is independent on ω in Θ, i.e. f0 = f0(x, ξ, |v|, t).

We now introduce the weak formulation of problem (2.1), (2.3):

Lemma 5.1. Let fα be a solution of problem (2.1), (2.3) given by Proposition
4.2. Then, for any test function φ ∈ C1

0 ([0, T ] × Θ), compactly supported in Θ such
that φ(·, ·, T ) = 0, we have:

∫ T

0

∫

Θ

fα

(

α
∂

∂t
φ + (v · ∇ξφ − E · ∇vφ)

)

dt dθ + α

∫

Θ

fIφ|t=0 dθ

+
1

α

∫ T

0

∫

Θ

fα

(

vx
∂

∂x
φ − (v × B) · ∇vφ + Lφ

)

dt dθ

=
1

α

(

∫ T

0

∫

Γ+

|vx| fα
+(φ+ − B∗φ−) dt dΓ

)

.(5.1)

Proof. Multiplying equation (2.1), using the Green Formula (4.4) and the bound-
ary conditions (2.3) yields equation (5.1), which is nothing but the weak formulation
of (2.1)-(2.3).

We now prove that the limit function f0 does not depend on x nor on ω. By
using the collision operator L, the proof is considerably simpler than in [17].
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Lemma 5.2. The limit function f0 is a function of ξ, |v|, t only, i.e. f0 =

f0(ξ, |v|, t).
Proof. We already know that f0 does not depend on ω. In particular we have

L(f0) = 0. Then, multiplying (5.1) by α, using a test function φ with compact
support in Θ, and letting α → 0, we get:

(5.2)

∫ T

0

∫

Θ

f0

(

vx
∂

∂x
φ − (v × B) · ∇vφ + Lφ

)

dt dθ = 0 .

This is equivalent to saying that f0 is a distributional solution of the equation A0f0 =
Lf0, where A0 is given by:

(5.3) A0f = vx
∂f

∂x
− (v × B) · ∇vf.

But Lf0 = 0 and f0 does not depend on ω, so that (v × B) · ∇vf0 = 0. Thus, f0

satisfies

vx
∂f0

∂x
= 0.

Hence, f0 is independent on x too, and is given by f0(X, v, t) = f0(ξ, |v|, t).

From now on we shall denote F (ξ, ε, t) = f0(ξ, |v|, t), where ε = |v|2/2 is the
kinetic energy.

5.2. Auxiliary equation. This is the part which differs the most substantially
from [17] as we shall develop below. Let us define the following operator, for f ∈
L2(Θ):

(5.4) T f = −vx
∂f

∂x
+ (v × B) · ∇vf = −|v|ωx

∂f

∂x
− B

∂f

∂ω
(ex × ω)

where ∂f
∂ω (ex ×ω) is the differential of f with respect to ω ∈ S

2 acting on the tangent

vector to S
2, ex × ω. Note that we formally have T = A0∗. Nevertheless, we shall

avoid this notation, since the determination of the domain D(A0∗) is not clear.
In this section we are concerned with solving the following equation:

(5.5) T f − Lf = g , f+ = B∗f− ,

where g is a given function, which is intended to be equal to ωy and ωz. In [17] where
L = 0, equation (5.5) reduced to a first order differential equation. Therefore, it was
possible to integrate it along the characteristics and to reduce it to a Fredholm fixed
point problem for the boundary values of f . This procedure was borrowed from [2].
In the present case, this method is no longer operative, because of the presence of the
collision operator L. The most direct extension of the method of [17] would make use
of stochastic trajectories. However, we will rather solve the problem in a deterministic
framework.

It is easy to check that T and L only operate on the variables (x,ω) ∈ [0, 1]× S
2,

leaving ξ ∈ R
2 and |v| ≥ 0 as parameters. Therefore, we only consider the dependence

of f on (x,ω) ∈ S = [0, 1] × S
2, and assume |v| to be a real positive number. We

introduce the following domain:

(5.6) D(T ) = {f ∈ L2(S) ; T f ∈ L2(S), f− ∈ L2(S−), f+ = B∗f− } .
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An easy computation shows that if (5.5) holds, then we have

∫ 1

0

∫

S2

g(x, ω)dω dx =

0. The following proposition asserts that this condition is sufficient to ensure the
existence of f :

Proposition 5.1. For all g in L2(S) such that

(5.7)

∫ 1

0

∫

S2

g(x, ω)dω dx = 0 ,

there exists a unique function f in D(T ), solving (5.5) and such that

(5.8)

∫ 1

0

∫

S2

f(x, ω)dω dx = 0 .

Furthermore, all solutions in this space are equal to f , up to addition of an arbitrary
function of ξ and |v|.

Proof. The proof relies on a procedure first developed in [28]. We introduce the
operator

T = −|v|ωx
∂

∂x
− B

∂

∂ω
(ex × ω) − L = T − L ,

with domain D(T ) = D(T ). As a first step, we recall that D(T ) is closed for the graph
norm |f |L2 + |T (f)|L2 . Indeed, we have the following trace estimate, which follows
directly from Lemmas 4.4 and 4.5:

(5.9) |v|
(

|f−|2L2(S−) + |f+|2L2(S+)

)

≤ C|v| |f |2L2(S) + C |T f |2L2(S) .

From this estimate, using similar methods as for the proof of Proposition 4.2, we
deduce (see [28] for further details):

Lemma 5.3. The operator T = −|v|ωx
∂
∂x −B ∂

∂ω (ex ×ω) is maximal accretive on
the domain D(T ).

We can now get to the very heart of the proof of Proposition 5.1, with the following
lemma:

Lemma 5.4. The range R(T ) of the operator T satisfies:

R(T ) =

{

g ∈ L2(S) :

∫ 1

0

∫

S2

g(x, ω)dωdx = 0

}

.

Proof. By the fact that R(T ) = N(T ∗)
⊥

, it is equivalent to show that the kernel
N(T ∗) is reduced to the constant functions on L2(S). First, notice that since L is a
self adjoint bounded operator, one has

T ∗ = T ∗ − L = |v|ωx
∂

∂x
+ B

∂

∂ω
(ex × ω) − L ,

with D(T ∗) = D(T ∗), since L is bounded. The operator T being maximal accretive
(Lemma 5.3), its formal adjoint T ∗ is also maximal accretive on D(T ∗) (see [9]). Note
that we do not need to characterize D(T ∗). Lemma 3.4 then yields for all f in D(T ∗):

(T ∗f, f)L2(S) ≥ (T ∗f, f)L2(S) − (Lf, f)L2(S) ≥ 4πc1|f − [f ]|2L2(S)
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Let now f belongs to the Null-Space N(T ∗). Then it also belongs to N(L), and thus
only depends on x (since on S

2 the kernel of L is reduced to the constants, by Lemma
3.3). Now, by the same argument as in the proof of Lemma 5.2, f satisfies,

(

|v|ωx
∂

∂x
+ B

∂

∂ω
(ex × ω)

)

f = +|v|ωx
∂

∂x
f = 0 ,

which implies that f is also independent of x and is therefore a constant on S
2× [0, 1].

Conversely, it is readily seen that the constant functions lie in N(T ∗), which concludes
the proof of the lemma.

Note that in the same way, we have N(T ) = R, and the uniqueness condition

(5.8) amounts to choose f ∈ N(T )
⊥

. We now prove

Lemma 5.5. R(T ) is closed in L2(S).

Proof. Of course, by proving this lemma, we shall also complete the proof of
Proposition 5.1. Let (gn)n∈N be a sequence in R(T ) such that:

gn
n→∞−→ g in L2(S) strong ,

and let (fn)n∈N be the associated sequence in D(T ) ∩ N(T )
⊥

such that Tfn = gn.
If we prove that |fn|L2(S) is bounded, there exists a function f ∈ L2(S) such that
fn ⇀ f in L2 weakly and Tfn −→ g in L2 strongly. Thanks to estimate (5.9), we
then check that f ∈ D(T ) and thus g ∈ R(T ), which is the result to be proved.

To show that |fn|L2(S) is bounded, we proceed by contradiction. Suppose that
|fn|L2(S) is not bounded. First notice that, up to a subsequence, we have |fn|L2(S) →
∞. Setting Fn = fn/|fn|L2(S), we have:

(5.10)







TFn −→ 0 in L2(S) strongly,
|Fn|L2(S) = 1 ,
∫

S2

∫ 1

0
Fn(x, ω) dx dω = 0 ,

the last condition following from the choice fn ∈ N(T )
⊥

. This implies Fn ⇀ F weakly
in L2(S). Furthermore, since we have:

(TFn, Fn)L2(S) ≥ 4πc1|Fn − [Fn]|2L2(S) ,

we deduce from (5.10) that Fn − [Fn] → 0 in L2(S) strongly.
Writing Fn = [Fn] + (Fn − [Fn]), we readily obtain:

|Fn|2L2(S) = 1 = |Fn − [Fn]|2L2(S) + |[Fn]|2L2(S) ,

and

(5.11) |[Fn]|L2(S) −→ 1 .

We will have a contradiction if we prove

(5.12) [Fn] −→ 0 in L2(S) strongly .

To this purpose, we write, following P.L. Lions and G. Toscani [26] (see also T. Goudon
and F. Poupaud [24]):

−T [Fn] = ωx|v|∂x[Fn] = T (Fn − [Fn]) − T Fn

= T (Fn − [Fn]) − T (Fn) − L(Fn) .
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Multiplying the equality by ωx, and integrating with respect to ω ∈ S
2 (we recall that

[Fn] is constant on S
2), we get:

(5.13) |v|
(

∫

S2

|ωx|2dω

)

∂x[Fn] =

∫

S2

ωxT (Fn−[Fn])dω −
∫

S2

ωx(T (Fn)+L(Fn))dω .

We now notice that, for all f with sufficient regularity, we have:
∫

S2

ωx
∂f

∂ω
(ex × ω)dω = 0 ,

∫

S2

ωxT fdω = − ∂

∂x

∫

S2

|v||ωx|2fdω .

Therefore, since Fn − [Fn] converges towards 0 in L2(S), the first term in the right-
hand side of (5.13) converges to 0 in H−1([0, 1]), and the second one obviously strongly
converges to 0 in L2([0, 1]). Moreover we obviously have:

(5.14) |v|
∫

S2

|ωx|2dω > 0 .

Hence |∂x[Fn]|H−1([0,1]) tends to 0. Defining ϕ(x) =
∫ x

0
[Fn](z)dz, the last condition

(5.10) is equivalent to say that ϕ ∈ H1
0 ([0, 1]). We deduce:

(5.15) −〈∂x[Fn], ϕ〉H−1,H1
0

= |[Fn]|2L2([0,1]) ≤ |∂x[Fn]|H−1 |ϕ|H1
0
,

and since |ϕ|H1
0
≤ C|∂xϕ|L2([0,1]) = C|[Fn]|L2([0,1]), (5.15) yields:

(5.16) |[Fn]|L2([0,1]) −→ 0 ,

which contradicts (5.11) and ends the proof of Lemma 5.5 as well as that of Proposi-
tion 5.1.

We notice that the above proof is not constructive. We now give an alternate
proof of Proposition 5.1 in the case of isotropic collision operators L and rotationally
invariant boundary collision operators K. This proof is more constructive and is an
adaptation of the proof of [17]. However, it cannot be used in the general case. We
assume (see [27] for more details):

Hypothesis 5.1. (i) K is rotationally invariant under rotations about the x-axis,
i.e. there exists a function K̃(ωx, ω′

x, θ) such that:

(5.17) K(ω′ → ω) = K̃(ωx, ω′
x,

ω

|ω| ·
ω′

|ω′| ) .

(ii) Φ is constant.

From Hypothesis 5.1 follows that:

(5.18) Lf = λ([f ] − f) , [f ] =
1

4π

∫

S2

f(ω) dω , λ = 4πΦ .

We note that S
2 can be parametrized by ω = (σ,ω), where σ = ωx/|ωx| ∈ {−1,+1}.

The fact that σ is equal to ±1 recalls that we need two maps to parametrize the sphere
in this way. Next, we note R+

(x,σ)(ω) the rotation of ω about the x-axis of angle bx,

where:

b =
B

|v|ωx
, ωx = σ

√

1 − ω2
y − ω2

z .
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In other words, ω† = R+
(x,σ)(ω) = (ω†

y, ω†
z) is given by:

(5.19)

{

ω†
y = ωy cos bx − ωz sin bx

ω†
z = ωy sin bx + ωz cos bx

We note that ω† also depends on |v| and ξ, but we shall not stress this dependence

otherwise needed. Similarly, R−
(x,σ)(ω) is the rotation of angle −bx. We have: ω† =

R+
(x,σ)(ω) if and only if ω = R−

(x,σ)(ω
†), and

R−
(x′,σ)R

+
(x,σ) = R+

(x−x′,σ) = R−
(x′−x,σ).

We also define the operator I such that If(x,σ,ω) = f(x,σ,−ω). With Hypothesis
5.1, we clearly have:

Lemma 5.6. (i) The boundary operators B and B∗ commute with I:

BI = IB , B∗I = IB∗.

(ii) The transport operator T commutes with I.

T I = IT

Now, we have the

Lemma 5.7. Let g be a function such that Ig = −g, and suppose that the problem

(5.20) T f + λf = g , f+ = B∗f− ,

∫ 1

0

∫

S2

f(x,ω) dx dω = 0 ,

has a unique solution f ∈ L2(S). Then, f is the solution of problem (5.5) as given
by Proposition 5.1.

Proof. By uniqueness, we have If = −f . Therefore, f is odd with respect to ω

and consequently [f ] = 0. Then, it follows that f is also a solution of problem

T f + λf = λ[f ] + g , f+ = B∗f− ,

∫ 1

0

∫

S2

f(x,ω) dx dω = 0 ,

i.e. is the solution of problem (5.5) as given by proposition 5.1.

We now show

Proposition 5.2. The problem (5.20) has a unique solution f ∈ L2(S).

Proof. Applying the change of variables (5.19), equation (5.20) reads:

(5.21) −|v|ωx
∂f†

∂x
+ λf† = g†

where f†(x,σ,ω†) = f(x,σ, R+
(x,σ)(ω

†)) and g†(x,σ,ω†) = g(x,σ, R+
(x,σ)(ω

†)). Inte-

grating with respect to x we get:

(5.22) f†(x,σ,ω†) =

{

e−γ(1−x)f†(1,σ,ω†) + G†(x,σ,ω†) , σ = +1 ,

eγxf†(0,σ,ω†) + G†(x,σ,ω†) , σ = −1 ,
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where γ = λ/|v|ωx and G† is given by

(5.23) G†(x,σ,ω†) =















1

|v| |ωx|

∫ 1

x

e−γ(x′−x)g†(x′,σ,ω†) dx′ , σ = +1 ,

1

|v| |ωx|

∫ x

0

eγ(x−x′)g†(x′,σ,ω†) dx′ , σ = −1 .

Back to the original variables we have:

(5.24) f(x,σ,ω) =

{

e−γ(1−x)f+(1,σ, R+
(1−x,σ)(ω)) + G(x,σ,ω) , σ = +1 ,

eγxf+(0,σ, R−
(x,σ)(ω)) + G(x,σ,ω) , σ = −1 ,

where G is defined by

(5.25) G(x,σ,ω) =















1

|v| |ωx|

∫ 1

x

e−γ(x′−x)g(x′,σ, R+
(x′−x,σ)(ω)) dx′ , σ = +1 ,

1

|v| |ωx|

∫ x

0

eγ(x−x′)g(x′,σ, R−
(x−x′,σ)(ω)) dx′ , σ = −1 .

Note that G also depends on |v| and ξ, and that f+(0) and f+(1) have to be determined
by means of the boundary conditions. Evaluating (5.24) for x = 0, 1, we get:

f−(1,σ,ω) = e−|γ|f+(0,σ, R−
(1,σ)(ω)) + G−(1,σ,ω) , σ = −1 ,(5.26)

f−(0,σ,ω) = e−|γ|f+(1,σ, R+
(1,σ)(ω)) + G−(0,σ,ω) , σ = +1 ,(5.27)

where,

G−(1,σ,ω) =
1

|v| |ωx|

∫ 1

0

e−|γ|(1−x′)g(x′,σ, R−
(1−x′,σ)(ω)) dx′ , σ = −1 ,

G−(0,σ,ω) =
1

|v| |ωx|

∫ 1

0

e−|γ|x′

g(x′,σ, R+
(x′,σ)(ω)) dx′ , σ = +1 .

Equs. (5.26) and (5.27) can be written compactly:

(5.28) f− = M+f+ + G−

where M+ is a bounded operator of norm strictly smaller than 1 from L2(S+) onto
L2(S−). Now, thanks to the boundary conditions, we have, omitting the dependence
on σ and ω:

f+(1) = B∗
1f−(1) = B∗

1M+f+(0) + B∗
1G−(1) ,

f+(0) = B∗
0f−(0) = B∗

0M+f+(1) + B∗
0G−(0) ,

where B∗
1 is the boundary operator defined on the plane x = 1 and B∗

0 is the one
defined on x = 0. Iterating, we get

(I − B∗
1M+B∗

0M+)f+(1) = B∗
1M+B∗

0G−(0) + B∗
1G−(1) ,

(I − B∗
0M+B∗

1M+)f+(0) = B∗
0M+B∗

1G−(1) + B∗
0G−(0) ,

where I is the identity operator. Now, since M+ is of norm smaller than 1, so
are B∗

1M+B∗
0M+ and B∗

0M+B∗
1M+ (since B is of norm 1). Therefore, the opera-

tors (I − B∗
1M+B∗

0M+) and (I − B∗
0M+B∗

1M+) are invertible, and provide a unique



148 P. DEGOND, V. LATOCHA, S. MANCINI AND A. MELLET

expression of f+(1) and f+(0) in terms of g. Then, with (5.24), we find a uniquely
defined expression of the solution of problem (5.20) which is easily proved to belong
to L2([0, 1] × S

2). This ends the proof of Proposition 5.2.

For g ∈ L2(S) satisfying
∫ 1

0

∫

S2 g(x, ω)dωdx = 0, we denote by T−1
v (g) the unique

function f ∈ D(T ) given by Proposition 5.1. Then the previous proof can be adapted
in order to provide the following estimate (see [28] for further details):

Lemma 5.8. For all δ > 0, there exists a constant Cδ such that:

(5.29) ∀|v| ≥ δ , ∀g ∈ Im(Tv) , |T−1
v (g)|L2(S) ≤ Cδ|g|L2(S) .

We point out that the restriction that |v| should be far enough from zero is needed
by the coercivity condition (5.14). In the remainder of the paper, we only need g to
be equal to ωy and ωz. We obviously have (since these functions are odd with respect
to ω ∈ S

2):

Lemma 5.9. The functions g = ωy and g = ωz satisfy the assumptions of Propo-
sitions 5.1 and 5.2.

Thus there exist functions Dy(x, ω; ξ, ε), Dz(x, ω; ξ, ε), solutions of problem (5.5)
with right-hand sides g = ωy and g = ωz respectively, unique up to additive functions
of ξ and ε. In addition, we need the following regularity for Dy, Dz:

Hypothesis 5.2. (i) Dy, Dz are bounded functions with bounded derivatives with
respect to v, ξ on Θ\{v = 0}.
(ii) The functions ωiDj(x, ω; ξ, ε) belongs to L1(S) and

∫ 1

0

∫

S2

ωiDj dx dω

is a C1 function of (ξ, ε) ∈ R
2
ξ × R

+
ε .

Remark 5.1. Hypothesis 5.2 can be viewed as a regularity assumption on the
data: the magnetic field B, the boundary scattering kernel K and the accommoda-
tion coefficient β. We do not look for explicit condition on these data because the
developments would be technical and of rather limited interest.

5.3. Obtention of the SHE model. The rest of the proof of Theorem 2.1
follows the same route as [17]. We just summarize the main steps. Given Dy (respec-
tively Dz) the solutions of problem (5.5) with g = ωy (respectively g = ωz), we define
the diffusivity tensor as follows:

Dij = (2ε)3/2

∫ 1

0

∫

S2

ωj Di(x, ω; ξ, ε) dx dω , i, j ∈ {y, z}.

We remark that D is a C1 function of (ξ, ε) ∈ R
2×R

+. We also note that the definition
of Dij does not depend on the arbitrary additive function of ξ and ε which enters in
the definition of Dj . Let us introduce the current Jα(ξ, ε, t) = (Jα

y , Jα
z ) as follows:

(5.30) Jα(ξ, ε, t) =
|v|
α

∫ 1

0

∫

S2

vfα(x, ξ, |v|, ω, t) dx dω
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Now, denoting by Θ′ the position-energy space Θ′ = R
2 × R

+ and by dθ′ its volume
element dθ′ = dξ dε (note that dv = |v|2d|v| dω =

√
2ε dε dω), we have:

Lemma 5.10. As α goes to 0, the current Jα(ξ, ε, t) converges in the distribu-

tional sense towards J0(ξ, ε, t). More precisely, for every ψ ∈ C1(Θ′× [0, T ], R2) with

compact support in R
2 × R

+
∗ × [0, T [, we have:

lim
α→0

∫ T

0

∫

Θ′

Jα · ψ dθ′ dt =

∫ T

0

∫

Θ′

J0 · ψ dt dθ′

=

∫ T

0

∫

Θ′

F

(

∇ξ − E
∂

∂ε

)

· (DT ψ) dt dθ′,(5.31)

and thus

(5.32) J0 = −D ·
(

∇ξ − E
∂

∂ε

)

F 0.

We note that the right-hand side of equation (5.31) is the weak form of that of
equation (2.6).

Proof. We recall that the proof consists in using the weak formulation (5.1) with
φ =

√
2εψ(ξ, ε, t) · D(x,ω; ξ, ε) as a test function (Hypothesis 5.2 provides all the

necessary assumptions to allow this computation). The terms of the order α−1 in the
weak formulation (5.1) exactly give the integral at the left-hand side of (5.31). By
passing to the limit as α → 0, and after some computations, the order 1 terms of (5.1)
lead to the expression at the right-hand side of (5.31). The computations are detailed
in [17].

To end the proof of Theorem 2.1, there remains to prove that equation (2.5) holds
in a weak sense. The result is just stated below. The proof relies on the use of the
weak formulation (5.1) with φ = ψ(ξ, ε, t) as a test function and is detailed in [17].

Lemma 5.11. For any test function ψ belonging to C2(Θ′ × [0, T ]), with compact
support in R

2 × R
+ × [0, T [, we have:

(5.33)
∫ T

0

∫

Θ′

(

4π
√

2εF 0 ∂ψ

∂t
+ J0 ·

(

∇ξ − E
∂

∂ε

)

ψ

)

dt dθ′ +

∫

Θ′

4π
√

2εFIψ|t=0 dθ′ = 0 .

5.4. Properties of the diffusivity. In this section, we underline that the diffu-
sion tensor D is positive definite. Moreover, under a certain invariant property of the
collision operator L (always satisfied in practice), it satisfies the Onsager reciprocity
relation saying that the transpose of D(B) for a given magnetic field B equals the
diffusion tensor associated with −B.

Proposition 5.3. The diffusion tensor D is positive definite: there exists C > 0
such that:

(5.34) (DY, Y ) =

2
∑

i,j=1

DijYiYj ≥ C|Y |2 = C

2
∑

i=1

Y 2
i .

Proof. The proof is a minor modification of the proof of [17] and is left to the
reader.
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Proposition 5.4. Suppose that the collision operator L satisfies the following
invariance property :

L(f(−ω)) = (Lf)(−ω) ,

then the diffusion tensor D satisfies the Onsager relation:

D(B)T = D(−B).

Proof. Again, the proof follows that of [17].

6. Explicit expression of the diffusivity for isotropic collisions opera-

tors. In this section, we are concerned with a subcase of Hypothesis 5.1, the case
where both the collision operator with atoms or ions L and the boundary collision
operator K are isotropic. L being isotropic means that it is given by (5.18) i.e.

(6.1) Lf = λ([f ] − f) , [f ] =
1

4π

∫

S2

f(ω) dω .

The boundary collision operator K is isotropic if its kernel K(ω′ → ω) does not
depend on the outgoing angle ω. Given the constraints of the flux conservation and
reciprocity (see Hypothesis 3.1), we find that K = π−1 and the boundary operator B
is written, using the coordinate system (σ,ω) on the sphere S

2 (see Section 5.2):

f(x = 0,σ = +1,ω) = β0f(x = 0,σ = −1,ω) +

+(1 − β0)π
−1

∫

|ω|≤1

f(x = 0,σ = −1,ω) dω ,(6.2)

f(x = 1,σ = −1,ω) = β1f(x = 1,σ = 1,ω) +

+(1 − β1)π
−1

∫

|ω|≤1

f(x = 1,σ = 1,ω) dω ,(6.3)

where β0 stands for β(x = 0) and similarly for β1. We note that in the parametrization
(σ,ω), the surface element is given by dω = |ωx|−1 dω so that the integrals at the
right-hand sides of (6.2) and (6.3) are actually integrals

∫

S+(x)
f+(x,ω)|ωx|dω.

We concentrate on the explicit computation of the solutions Dj , j ∈ {y, z} of the
auxiliary equation (5.5) with right-hand side g = ωj . By using the same invariance
arguments under the action of the operator I as in Section 5.2, it is readily seen
that the unique solution of (5.5) satisfying the additional condition (5.8) is actually
a solution Dj(x,σ,ωy,ωz) of the problem

−|v|ωx
∂Dj

∂x
+ B

(

ωz
∂Dj

∂ωy
− ωy

∂Dj

∂ωz

)

+ λDj = ωj ,(6.4)

Dj(x = 0,σ = −1,ω) = β0Dj(x = 0,σ = 1,ω) ,(6.5)

Dj(x = 1,σ = 1,ω) = β1Dj(x = 1,σ = −1,ω) .(6.6)

We recall that we denote by σ = ωx/|ωx| ∈ {−1, 1} and consider the parametrization
(σ,ωy,ωz) of the sphere S

2, for which the surface element is dω = |ωx|−1dωydωz. We
shall also be concerned with finding an explicit formula for the diffusivity tensor D

(2.8).
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We use the notations:

b =
B

|v| |ωx|
, γ =

λ

|v| |ωx|
,

where we note a slight change compared with the definitions used in Section 5.2. We
shall rather consider D̃j(x

′) = 2Dj((x
′ + 1)/2), which is defined for x′ ∈ [−1, 1] and

solves the problem (dropping the prime):

−|v|ωx
∂D̃j

∂x
+

B

2

(

ωz
∂D̃j

∂ωy
− ωy

∂D̃j

∂ωz

)

+
λ

2
D̃j = ωj ,(6.7)

D̃j(x = −1,σ = −1,ω) = β−1D̃j(x = −1,σ = 1,ω) ,(6.8)

D̃j(x = 1,σ = 1,ω) = β1D̃j(x = 1,σ = −1,ω) ,(6.9)

(where we use β−1 instead of β0), and the diffusivity is given by

(6.10) D = (2ε)3/2 1

4

∫ 1

−1

∫

S2

D̃(x,ω)ω dx dω .

We shall drop the tildes in the remainder of this section. We introduce the change of
variables

(6.11) ω†
y = ωy cos(σbx/2)+ωz sin(σbx/2) , ω†

z = −ωy sin(σbx/2)+ωz cos(σbx/2) ,

and D†
j(x,σ,ω†

y,ω†
z) = Dj(x,σ,ωy,ωz), . We introduce the following complex numbers

(with i such that i2 = −1):

Λ = λ − iB , Γ =
Λ

|v| |ωx|
= γ − ib , Ω† = ω†

y + iω†
z , D† = D†

y + iD†
z .

Then, D†(x,σ,Ω†) is a solution of

(6.12)
∂D†

∂x
− σγ

2
D† = − 1

σ |v| |ωx|
Ω†eiσbx/2 ,

together with the boundary conditions (6.8) and (6.9). For D†, we prove:

Lemma 6.1. We have

(6.13) D†(x,σ,Ω†) =
Ω†

Λ/2
eσγx/2

[

2A sinh(Γ/2) (e−γβσ + 1) + e−σΓx/2 − eΓ/2
]

,

with A = (1 − β1β−1e
−2γ)−1.

Proof. By integrating (6.12), we find

D†(x,σ,Ω†) = eσγ(x+1)/2D†(−1,σ,Ω†) + ψ−1(x,σ,Ω†) ,(6.14)

= eσγ(x−1)/2D†(1,σ,Ω†) + ψ1(x,σ,Ω†) ,(6.15)

with

(6.16) ψ∓1(x,σ,Ω†) =
Ω†

Λ/2
eσγx/2 (e−σΓx/2 − e±σΓ/2) .
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Then, iterating formulae (6.14), (6.15) with the boundary conditions (6.8), (6.9), we
obtain:

(6.17) D†(x = −σ,σ,Ω†) = A
[

e−γβσψ−σ(x = σ,−σ,Ω†) + ψσ(x = −σ,σ,Ω†)
]

.

Inserting the boundary values (6.17) into (6.15) and using (6.16) for ψ±1, we find
(6.13).

Then, we prove

Proposition 6.1. The diffusion matrix D is given by:

(6.18) D = (2ε)3/2

(

dr −di

di dr

)

,

where the complex number d = dr + idi has the expression:
(6.19)

d =
1

Λ

∫ 1

0

[

1 − sinh(Γ/2)eΓ/2

Γ/2
+ A

sinh2(Γ/2)

Γ/2

(

e−γ(β−1 + β1) + 2
)

]

(1 − w2) 2π dw ,

with

Γ = Γ(w) =
Λ√
2ε w

, γ = γ(w) =
λ√
2ε w

, A = A(w) =
1

1 − β1β−1e−2γ(w)
,

and Λ = λ − iB.

We remark that the formula is considerably more complex than in the case of no
collisions with the atoms or ions (λ = 0, see [13]). The collisions with the boundary
and inside the gap combine in a fairly complex way. The coefficients dr and di can be
compared with the so-called Pedersen and Hall conductivities of collisional magnetized
plasmas (see e.g. [31]). However, there is no such simple formula for the diffusivities
in the present case like that of the Pedersen and Hall conductivities.

We note that the value of d can be computed by numerical integrations: it can be
expressed as a combination of elementary integrals which are functions of the three
parameters λ/

√
2ε, B/

√
2ε and β1β−1. This expression is used in [16] for numerical

computations of the electron fluid in a real plasma propellor for satellites.

Proof. By an argument involving rotational invariance, it is easy to show that
the diffusion matrix D has the form (6.18) and that

dr =
1

4

∫ 1

−1

∑

σ=±1

∫

|Ω|<1

Dyωy |ωx|−1 dΩ dx

=
1

4

∫ 1

−1

∑

σ=±1

∫

|Ω|<1

Dzωz |ωx|−1 dΩ dx

=
1

8

∫ 1

−1

∑

σ=±1

∫

|Ω|<1

(Dyωy + Dzωz) |ωx|−1 dΩ dx ,

and similarly

di =
1

8

∫ 1

−1

∑

σ=±1

∫

|Ω|<1

(Dzωy − Dyωz) |ωx|−1 dΩ dx .
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Therefore

d = dr + idi =
1

8

∫ 1

−1

∑

σ=±1

∫

|Ω|<1

D(Ω) Ω∗ |ωx|−1 dΩ dx ,

where Ω∗ denotes the complex conjugate of Ω, and, by the change of variables (6.11):

d = dr + idi =
1

8

∫ 1

−1

∑

σ=±1

∫

|Ω†|<1

D†(Ω†)
(

Ω†eiσbx/2
)∗

|ωx|−1 dΩ† dx .

Now, inserting the expression (6.13) of D†, and performing the integration with re-
spect to x, we obtain:

d =
1

Λ

∫

|Ω†|<1

[

1 − sinh(Γ/2)eΓ/2

Γ/2
+ A

sinh2(Γ/2)

Γ/2

(

e−γ(β−1 + β1) + 2
)

]

×

×|Ω†|2 |ωx|−1 dΩ† .

Then, the expression (6.19) is obtained by using the change to polar coordinates in
Ω†: |Ω†|2 = 1 − w2, dΩ† = 2πw dw, |ωx| = w.

7. Conclusion. In this paper, we have studied the macroscopic behaviour of an
electron fluid confined between two plane parallel solid plates and subject to crossed
electric and magnetic fields (the magnetic field being normal to the plates). The
electrons undergo collisions both with the solid plates and with the atoms or ions of
a gas filling the gap between the plates. We showed that, under physically realistic
assumptions on the nature of the collisions, the macroscopic behaviour of the gas
is described by a ’Spherical Harmonics Expansion’ (SHE) type model. A rigorous
derivation of the model from the microscopic kinetic description has been given. An
explicit computation of the diffusivity in the case of isotropic collisions, which is a
very useful practical case, is also derived.
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coefficients réels; Théorèmes d’approximation; application à l’équation de transport, Ann.
Scient. Ec. Norm. Sup., 4 (1970), pp.185–233.

[4] C. Bardos, R. Santos, R. Sentis, Diffusion approximation and computation of the critical

size, Trans. A. M. S., 284 (1984), pp. 617–649.
[5] N. Ben Abdallah, P. Degond, On a hierarchy of macroscopic models for semiconductors, J.

Maths. Phys., 37 (1996), pp. 3306–3333.
[6] N. Ben Abdallah, P. Degond, A. Mellet, F. Poupaud, Electron transport in semiconductor

superlattices, to appear in Quarterly App. Math.
[7] A. Bensoussan, J. L. Lions, G. C. Papanicolaou, Boundary layers and homogenization of

transport processes, J. Publ. RIMS Kyoto Univ., 15 (1979), pp. 53–157.
[8] C. Börgers, C. Greengard, E. Thomann, The diffusion limit of free molecular flow in thin

plane channels, SIAM J. Appl. Math., 52, # 4, (1992), pp. 1057–1075.
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