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Abstract

In this paper we study the transport operator given by the sum of a free-streaming
term and of an absorption term. The velocity coefficient appearing in the definition of
the operator is unbounded (v € R) while the position coordinate belongs to the one-
dimensional bounded set [—b, +b]. The boundary condition associated to the transport
operator are given by means of a bounded and positive operator A. We prove that an
evolution problem associated to the above transport operator has a unique positive
solution whose explicit form is given by means of a Cp-semigroup in the case ||A]| <1
and by means of an integrated semigroup or a C-semigroup in the case [|A[|| > 1.

1 Introduction

In [10], [11] and [12] we have studied the generation properties of a linear transport
operator equipped with general boundary conditions by means of classical semigroup tech-
niques.

In particular, in [10] we have proved the generation of a Cyp-semigroup when the position
coordinate x belongs to the one-dimensional set [—b,+b] and the velocity has a fixed
modulus. On the other hand, the classical models for charged particles transport consider
unbounded velocities ([13]). Thus, in [11] and [12] we have considered the free-streaming
transport operator with velocity v € R. In particular, in [12] the generation of a Cjy-
semigroup was proved in the case of boundary conditions given by means of a positive
linear bounded operator A with ||A|| <1 (dissipative and conservative “general” boundary
conditions).

It is not possible to extend the techniques used to study dissipative and conservative
boundary conditions to the case of multiplying boundary conditions ( ||A]| > 1) . In fact,
the assumption ||A]| < 1 plays a fundamental role in order to prove the generation of the
semigroup by using the classical theorem of Hille-Yosida.



On the other hand, if multiplying boundary conditions are taken into account, an
absorption term must be added to the free-streaming operator in order to avoid the ‘blow
up’ of the system of particles. Hence, in this paper we study the properties of the sum of
the free-streaming operator with an absorption term proportional to the modulus of the
velocity. We shall call it the transport operator. We consider general boundary conditions
given by means of a linear, positive and bounded operator A which relates the outgoing
flux of particles with the incoming one. The norm of A can be smaller, equal or bigger
than one.

In section 2, we give the explicit form of the transport operator and we introduce the
functional spaces needed in order to study its properties. Moreover, we prove that the
resolvent operator R(\, L) is a positive operator and we give estimates of || R(\, L)|| both
in the cases ||A|| <1 and [|A]] > 1. Section 3 is devoted to a summary of the definitions
and the theorems related to the generation of Cy-semigroups, intergrated semigroups and
C-semigroups. In section 4, we prove that in the case ||A]| < 1 the transport operator gen-
erates a Cp-semigroup, while in the case ||A|| > 1 the transport operator is the generator
of an integrated semigroup and a C-semigroup for a particular operator C'. We justify the
study of such an operator describing a physical application. Moreover, under a specific
assumption on the initial distribution function (i.e. the density function at time ¢ = 0),
we shall prove that the proposed evolution problem has a unique positive solution which
can be expressed by means of the Cy-semigroup in the case ||A]| < 1 and of the integrated
semigroup or the C-semigroup in the case ||A|| > 1. Finally, we give the relation between
the integrated semigroup and the C-semigroup.

2 The transport operator
We consider the set 2 = [—b, +b] x R and introduce the incoming and outgoing sets:
Q" = ({=b} x (0, +00)) U ({+b} x (=00,0)),

and
Q" = ({=b} x (—00,0)) U ({+b} x (0, +00)).

Further, we introduce the functional space:
X = M (@dedv) . 171 = [ |f(a,0)] dodo,
Q

and denote by X the positive cone of X.
We also define the incoming and outgoing functional spaces:

X = LNQ oldo), X = LY(Q0; Joldo), (1)
with norms respectively given by:
. “+00 0
wmm:A MN%MW%/ o] 1£ (5, 0)] v, @)
and
0 “+00
IWsz/IWNﬁM%+A olf (b,0)] dv, 3)



where ", foU are the traces of the function f on the spaces X" and X%, respectively:

F = flxm, [ = flxou.

We shall denote by fim and f2%, where i = 1,2, the i-th component of the functions
™ and f°“ belonging to the component spaces X?* and X!", and by |- ||i.in and || - || out,
1 = 1,2, the associated norms. For instance,

. +oo
1 im = /0 olf (—b,0)]|dv,

denotes the first term on the right hand side of the norm || - ||;, given by (2). In other
words, we may interpret X as X|" x X4 and X as X' x XgU!. Thus:

X = LY(({~b} x (0, +00));0dv) x L'({+b} x (00, 0)); [uldv) = X" x X3,
X = LH(({=b} x (—00,0)); foldo) x L' ({+b} x (0, +00)); velv) = X§* x X5",

. in out
fm:(fén)7 fOUt:<f$)ut>v (4)

where fi" = f(=b,v), for v > 0, fi* = f(b,v), for v < 0, and f{* = f(—b,v), for v < 0,
fout = f(b,v), for v > 0.
Our goal is the study of the transport operator:

of

Lf = —Ug - |Q)|Uf,
D(L) — {f EX, ,Ug_i c )(7 |'U|O'f EX, fzn e)(z'n7 fout c Xout7 fm :Af(mt}, (5)
R(L) C X,

where o is a suitable positive constant and A is a bounded positive operator such that
D(A) = X°“  R(A) C X

Remark 2.1 We note that, by using a suitable operator A, we can describe any kind of
boundary conditions. For example the reflection conditions:

f(_bav) = Oéf(—b, —Q)), v > 03

(6)
f(b,v) = af(b,—v), v <0,

where o > 0 is a suitable constant, can be written in the following way:
fin — Afout
with

A= ( 3‘ g ) , D(A) =X R(A)C X™. (7)



Now we prove some results on the resolvent operator of L which we shall use in order

to study the semigroup generation properties of L.
Let A > 0 and define the following linear operator :

a=( 2 A2} puay=xm, R cxow
A21 0

where the operators Ao and Ay are defined by:
Anfir = e 2opn | D(Aw) = X5, R(Ai) C X",
Anfin = e Mv e Do fin | D(Ay) = Xi" | R(Au) C X3,

Let also define:

_ 0 Ap _ yin
A—(A21 ! ) D(A) = X", R(A) C X,

where the operators A5 and Ay are defined by:
Appfin = e@+b)dfin  D(A) = X v <0,
Aot fitr = @00 gin - D(Ay) = X", v >0,
with 0 = 6(v) = —(A + |v|o) /v.
Lemma 2.1 The operator A defined by (8) is bounded and:
IIA|| < exp(—2bo).

Proof:
From the definition of the spaces X and X°“ we obtain, for each A > 0, that:

A" [l out :/ [v|| f3" (v)] exp(2bA/v) exp(—2bo) dv

+oo .
+/ [vl| f1" (v)| exp(—2bA/v) exp(—2bo) dv
0

0 , 00 . .
< exp(~2bo) ( | wlgopa+ | |v||ff"<v>|dv) — exp(~2b0) £ -

Lemma 2.2 The operator A given by (10) is bounded and:
1

Il < A>0.

X )

(10)

(11)



Proof:
We first remark that, if v > 0:

o A+ |vlo — —2b v
- b dr = — -1 -
/_b eXp( (@0, ) T X T Tl (p< . *'”"’)) >—A+|v|a

Analogously, if v < 0:

+ A+ |v|o v ]
—(x—0b dr < — = .
/b exp( (z =) v ) = A+vlo A+ |vlo

Since fi® and fi* do not depend on x, we have that:

+b +b 400
| Af]l —/ / | £47) exp( x—b)é)dwdv—F/ / | £ exp((z + b)) dz dv

< i TLd <_ Z’I’L"
[ [ S < 1

and the lemma is proved. [ ]

In the next theorem we prove that the resolvent operator R(A, L) of the operator L
exists for each A > 0 and maps the positive cone of X into itself, that is R(\, L) is a
positive operator.

Theorem 2.1 If

(i) the norm of A is smaller or equal to 1,
or

(ii) the norm of A is larger than 1, and

In [| Al
2b
then the resolvent R(\, L) of the operator L exists for each A > 0 and is a positive operator.

(13)

Proof:
Consider the resolvent equation for the operator L:
A —Lf =g,
that is:
0
vk blo)f =g, (149)

where g is a given element of X and the unknown f must be sought in D(L). Integrating
equation (14) with respect to x, we obtain:

1 T
exp((z +0)8)Cy + Y / exp((x — 2')d)g(z',v)dz", v >0
—b

fz,v) = . (15)
exp((z — b)d§)Cy — % / exp((z — 2')d)g(z',v) dx', v <0



where 6 = §(v) = —(A + |v]o) /v and C; = Ci(v) and Cy = Cy(v) are to be determined by
means of the boundary conditions defined in (5).
Evaluating f(x,v) on the boundary we get:

n — f(=b,v) =Ci(v), v>0, (16)

3= f(+b,v) = Ca(v), v <0, (17)

out 1 h ! / !
13" = f(+b,v) = exp(2b0)Cy (v) + Y / exp((b — z")0)g(z',v)dz', v >0,
b

out 1 o ! l /
T = f(=b,v) = exp(—2b5)Csy(v) — Y /b exp(—(b+z')d)g(z',v)dz', v <O.

Hence,
fout = Af" 4+ G, (18)

where A is defined in (8) and G is defined as follows:

G =Gv) = ( g;gz; ) € Xout, (19)
with : R
g1(v) = ——/ exp(—(b+z')d)g(z',v)dz’, v <0
vJ b
and

1 +b
p(0) =+ / exp((b— 2')d)g(a’,v) da’, v > 0.
—b

Taking into account the boundary conditions, we have from (18):
FiM = AfoU — AAF 4 AG,
and so:
™= (I - AA)T'AG, (20)

provided that the operator (I — AA)~! exists. This is the case if [|[AA|| < 1.

The above condition is satisfied when ||A|| < 1, because ||A]| < 1 (see lemma 2.1). On
the other hand, if [|A|| > 1 and the parameter o fulfills conditions (13) we also have that
IAA]| < [|A]| exp(—2bo) < 1.

Hence, we can obtain f and so C; and Cs, from (16) and (17) as a function of g (see
(19)). By substituting C; and C5 into (15) we get the esplicit form of the solution of (14).

By taking into account that the integral term appearing in the righthand-side of (15)
is the resolvent operator of the operator L defined as follows:

of

LOf:Lf7 D(LO) = {f GX, U% EX? |U|Uf GX, fln eXinv fZ”ZO}’ (2]‘)



the solution f of the resolvent equation (14) reads:
f=R(\ L)yg=A(I—AA)""AG + R(), Lo)g, (22)

where the operator A is defined by (10).

It is not difficult to prove that R(\, L) is a positive operator because A, A, A, R(\, L)
are positive operators. [ ]
Now we give some estimates on the resolvent operator R()\, L).

Theorem 2.2 Let ||A|| < 1, then the resolvent operator R(A, L) of the operator L is a
bounded operator and satisfies the following conditions:

1
IR(A, L)gll < S llgll, 2> 0.

Proof:
Let g € Xt and X > 0. By integrating (14) with respect to x and v and by taking into
account that the solution f belongs to X' according to the above Theorem, we obtain

Al + / :o[vf(b,v) —uf(=b,v)ldv + / bb d / :o lof(z,o)d = gl (23)
Since ||fm|| < ||f"“t|| because ||A]| < 1, we obtain that
o0 .
/ wf (b,0) — vf (—b,0)]dv = —|f7 + £ > 0.

Hence, we get from (23)
AIFIE< llgll,

and the theorem is proved. [ |

Theorem 2.3 Let ||A|| > 1, then the resolvent operator R(X, L) of the operator L is a
bounded operator and satisfies the following conditions:

M
IR(A, L)gll < —=llgll,
with

IAll(1 — exp(—2bo)) + 1
M= ,
1 — ||A|lexp(—2bo)

where the parameter o satisfies (13).

Proof:
The resolvent operator is bounded since is a positive operator defined on the whole space
X ([15)).



To evaluate its norm it is enough to consider relation (22) and use Lemma 2.1 and
Lemma 2.2. We have from (22) that:

IR(A, L)gll = A — AA)T'AG + R(A, Lo)g]|

1 1

1
< —
— a1
1 A||(1 — exp(—2bo)) + 1 M
< 1 g (PN eopC 20D £ 1) _ 2Ty,
A 1 — ||Allexp(—2bo) A

To get relation (24) we used the fact that ||G|lour < ||g|| as one can easily check and
1
the well known inequality ||[R(, Lo)|| < 3 ,VA > 0. [ |

3 Integrated semigroups and C-semigroups

Throughout this section X will be a Banach space and A a linear operator with domain
D(A) C X and range R(A) C X.

We shall write p(A) for the resolvent set of A.

The space of bounded operators from X into X will be denoted by B(X). When the
operator A generates a strongly continuous semigroup (Cj- semigroup) we shall write such
a semigroup {exp(tA),t > 0}

We recall some definitions and theorems we need to solve the abstract Cauchy problem

du(t)
e Au(t), t>0, (25)
u(0) = uy .

In (25) u(t) is a function from [0, +00) into X and the derivative is in the strong sense.
According to [6] we give the following definitions.

Definition 3.1 A strong solution of (25) is a map t — u(t) such that u(t) € C*([0,+00), X),
u(t) € D(A), fort >0 and u(t) satisfies (25).

Definition 3.2 A mild solution of (25) is a map t — u(t) such that u € C([0, +00), X),
t
v(t) :/ u(s)ds € D(A), t>0,
0

and J
v
— = Av(t) + t>0.
dt U( ) uo , =
Definition 3.3 Ifn € N, an n-times integrated semigroup is a strongly continuous family
of operators {S(t), t > 0} such that:

S(0) =0



and

s+t
S(1)S(s) = — ; (/t (s 4+t — )" S(r) dr

(n—1
(26)

S
—/ (s+t—r)n_15’(r)dr> , Vs, t>0.
0

If n =1, S(¢) is called a once integrated semigroup (or simply an integrated semigroup).
S(t) is called “non-degenerate” if:
S(t)f=0,Vt>0 implies f = 0. (27)
S(t) is called “increasing” if:
0=S(0)<S(s) <S(t), Vt>s>0. (28)
S(t) is called “exponentially bounded” if there exist M and w € R such that:
IS@)|| < Me™*, Vit >o. (29)

The generator A of the integrated semigroup {S(t), ¢t > 0} is defined as follows. If:

D(A):{f : HgsuchthatS(t)f:i—n'f—i—/tS(r)gdr, ‘v’tZO},
- 0

then Af = g by definition.

Definition 3.4 Let C € B(X) be an injective operator. A family {W(t), t > 0} C B(X)
is called a C-regularized semigroup (briefly a C-semigroup) if:

a) W(0) =0,
b)) WEHW(s)=CW(t+s), Vst>0.

We say that an operator A generates {W(t), t > 0} if
1
Af =C7  {lim-(W(t)f — Cf)|,
t—0 ¢t

with
D(A) = {f : the limit exists and belongs to R(C)}.

Note that in general, C~! does not belong to B(X).

Finally, we give some definitions and theorems which ensure the existence of Cy-
semigroup, integrated semigroup and C-semigroup and the relations among all these fam-
ilies of semigroups and the solution of (25).

Definition 3.5 ([1]) We say that the positive cone X of X is generating and normal if
X = Xt — X7 (that is every f € X can be written as the sum of two elements g and h
with g € Xt and —h € X1), and X' = X'" — X'" where X'" denotes the dual cone.



Definition 3.6 ([1]) We say that X is an ideal in X" (the bidual of X) if for f € X,
g € X" such that 0 < g < f we have g € X.

Remark 3.1 From now on, we assume that the Banach space X has generating and
normal cone and it is an ideal in X”. We note that the Banach space X defined in section
2 has generating and normal cone and it is an ideal in X".

Definition 3.7 ([1]) A linear operator A is resolvent positive if there exists w € R such
that (w,00) C p(A) and R(X, A) >0 for every A > w.

If A is resolvent positive we introduce the following notation:
s(A) = inf{w € R, (w,00) C p(A), R(\,A) >0, VA > w}.

Theorem 3.1 ([8]) If A generates a Cy-semigroup in X and uy € D(A), then the solution
of (25) is given by u(t) = exp(tA)ug, t > 0.

Theorem 3.2 (Hille-Yosida theorem) ([8], [14]) If the following hold:
a) A is a closed operator;

b) A is densely defined (D(A4) = X);
c) there exist w € R and M > 0 such that (w,o00) C p(A4) and

M

IROA I < e

k=1,2...;

then A generates a Cp-semigroup, {ezp(tA),t > 0} such that:
lezp(tA)|| < Me**, t>0
and conversely.

Remark 3.2 The inf of the family of the numbers w appearing in c) of Theorem (3.2) is
called w(A) the type (or the growth bound) of the semigroup generated by A.

Corollary 3.1 If A satisfies the assumption of theorem 3.2 and is resolvent positive, then
the semigroup exp(tA) is a positive operator.

Theorem 3.3 ([1]) Let A be a densely defined and resolvent positive operator. If there
exists A9 > s(A4) and ¢ > 0 such that

IR0, A)fll Z ellfll, VfeXT,
then A is the generator of a positive Cy- semigroup and s(A4) = w(A).

Remark 3.3 The converse of Theorem 3.3 is not true, see [1] for examples. Anyway,
Theorem 3.3 is useful in applications when multiplying boundary conditions are considered
and it is not possible to prove the estimate c) of the Hille-Yosida Theorem (see [10]).

10



Theorem 3.4 ([1]) Suppose that X is an ideal in X”. Let A be a resolvent positive
operator, then there exists a unique strongly continuous family {S(t), t > 0} of operators
on X that is an increasing integrated semigroup. Moreover:

R\ A) = /Ooo e MdS(t), > s(A).

The family {S(t), ¢t > 0} is called the integrated semigroup generated by A.

Theorem 3.5 ([1]) Let {S(¢), t > 0} be an increasing integrated semigroup. Then S(t)
is exponentially bounded.

Theorem 3.6 ([1]) Let A be a resolvent positive operator and let {S(¢), ¢ > 0} the
integrated semigroup generated by A, then:

a) if s(A) > 0 then s(A) =inf{w >0:3 M >0, ||S(t)|| < Me“'Vt>0};

b) if s(A) < 0 then s(A) = inf{w > 0:3 M >0, ||R(0, A) — S(t)|| < Me** V¥Vt >0}, and

. -1

tlirgo S(t) = R(0,A) = —A"".
Theorem 3.7 ([1]) Assume that A is resolvent positive and either D(A) dense in X or
X is an ideal in X”. Then for every ug € D(A?) there exists a unique solution of the
problem (25). Furthermore, if S(¢) is the integrated semigroup generated by A such a
solution reads:

u(t) = S(t)Auo + ug y t Z 0.

Finally, if ug € X also u(t) € X for every ¢t > 0.

Theorem 3.8 ([4], [5], [6]) If A € p(A) and n € N, then the following statements are
equivalent:

a) The problem (25) has a unique strong solution for all ug € D(A™1);

b) The problem (25) has a unique mild solution for all ug € D(A™);

c) The operator A generates an (A — A)~" regularized semigroup {W (¢), t > 0};

d) The operator A generates a n-times integrated non-degenerate semigroup {S(t),t > 0}.

Furthermore, we have:

d

W (t)z = (#n St (A — A) ",

St)r = (A — A)"J"W (t)z, Ve X,

where

110 = [ 7)ds

Theorem 3.9 ([2]) Let X be a Banach space with generating and normal cone X . Let
the operator L has dense domain in X. If the resolvent set of L contains the interval
(a,4+00) for some positive a and the resolvent R(A, L) is positive for A > a, then L is the
generator of an integrated semigroup S(t), for every ¢ > 0.

Finally, we quote this result from [4] (theorem 2.4).

11



Theorem 3.10 Assume that A generates a C-semigroup W(t), then if f € D(A), W(t)f

d
is a differentiable function of ¢ and %W(t)f =AW () f =W(t)AS.
Remark 3.4 From the above theorem it follows that if we know that a solution of (25)
exists, and ug € R(C), then we can write u(t) = W (t)C~uy.

4 The transport problem

Let us now consider the following evolution model for charged or uncharged particles
(see [3], [13)):

%+Ug—z+|v|an:0, (30)
where the function n = n(z,v,t) represents the density of the particles which at time ¢
are in z € [—b, +b] with velocity v € R and o > 0 is the absorption cross section (i.e. the
probability of a particle to be absorbed by the host medium). Equation (30) describes the
evolution of a system of particles moving in a host medium capable to capture particles.

Equation (30) is usually equipped with the initial condition:

n($7U70) = ’77,[)(:13,’0), (31)
and with the boundary conditions:
n'™ = An°“ (32)

where ||A|| may be smaller, equal or larger than 1 and A represents the interaction of the
outgoing flux of particles with the boundaries (i.e. reflection, diffusion). Introducing the
linear operator L, given by (5), the evolution problem (30)-(32) reads:

dn(t)
ke Ln(t), t>0, (33)
n(0) = no ,

where now n(t) = n(-,-,t) is a function from [0, +-00) with values in X, the Banach space
defined in Section 2 and we assume that ng € D(L) or ng € D(L?) with

D(L*) = {n € D(L), Ln € D(L)}.

We remark that, if n is a particle density, then n € X and ||n|| gives the total number
of particles in the considered region. Moreover, ||n™||;, and ||n°% ||y, respectively are the
total ingoing and outgoing fluxes at the boundaries, ([7]).

Now, we use the results of the preceding sections to prove that (33) has a unique
solution and to write it.

We note that the operator L is resolvent positive from theorem 2.1 and has dense
domain because C§° C D(L).

12



Theorem 4.1 If ng € D(L) and ||A]| < 1, there exists a unique solution of the Cauchy
problem (33) given by:

n(t) = exp(tL)ng, Vt>0, (34)

where {exp(tL),t > 0} is the Cj -semigroup generated by L. Moreover, if ng € X then
n(t) € XT for every t > 0.

Proof:
The Theorem directly follows from Theorem 2.2, Theorem 3.2 and Corollary 3.1. [ ]

In the case ||A]| > 1 we can apply Theorem 3.4 , Theorem 3.5 and Theorem 3.9. Thus,
we obtain that L generates an integrated semigroup S(t) that is increasing and expo-
nentially bounded from Remark 3.1. Hence, the following Theorem follows by Theorem
3.7.

Theorem 4.2 Assume that ng € D(L?), then there exists a unique solution of the Cauchy
problem (33) given by:

n(t) = S(t)Lno + no y Vi Z 0, (35)

where {S(t),t > 0} is the integrated semigroup generated by L. Moreover, if ng € X*
then n(t) € Xt for every ¢t > 0.

Theorem 4.3 If ng € D(L) and ||A|| > 1 then system (33) has a unique mild solution.

Proof:
The theorem follows from b) of Theorem 3.8 with n = 1 because L generates an integrated
non-degenerate semigroup. [ ]

By using Theorem 3.8 it is possible to relate the integrated semigroup generated by
L and the solution of (33) with the C-semigroup generated by L with C = (A — L)7!,
A> 0.

Theorem 4.4 Let A > 0,[|A]| > 1 and ng € D(L?), then system (33) has a unique strong
solution given by:

n(t) = S(t)Lng + ng = W (t)A\ng — W (t)Lng (36)

where S(t), W (t) are the integrated semigroup and the (Al — L)~ '-semigroup generated
by L respectively.

Proof:

We know that L generates an integrated semigroup from Theorem 3.9. Hence, by Theorem
3.8 we have that L generates an (A — L)~ !-semigroup {W (t),t > 0} for A > 0. Relation
(36) follows from Theorem 3.10 and Remark 3.4. [ |

If |A|l > 1 by using a result of [1] (Theorem 9.1) it is possible to construct a new
Banach space E such that the Banach space X is an ideal in E. Then, L is closable in

13



E and generates a positive Cy-semigroup in E. This approach on one side gives better
results than those obtained in Theorem 4.3, but on the other makes us to work in a space
that is not useful from a physical point of view. Thus, we have preferred to deal with
integrated semigroup and C-semigroup in the space X = L'(£2) that we have chosen for
physical reasons.

In [9] the existence and uniqueness of the solution of problem (33) has been recently
proved by means of a B-bounded semigroup (see [9] and references therein). Hence, we have
also the following relation between integrated semigroups, C-semigroups and B-bounded
semigroups:

n(t) = S(t)Lng +ng = W (t)A\ng — W (t)Lng = B~ Z(t)ny. (37)

In (37), Z(t) = exp(Lt)B is the B-semigroup generated by the operators L and B, where
B is a suitable bounded positive operator depending on 0 < 5 < 1/||A|| and L acts like L
with boundary conditions given by f = BAfoU.
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