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Abstract

We present a mathematically rigorous derivation of a diffusion model previ-
ously introduced by the first author to model the diffusion of charged-particles
moving in the gap between two plane parallel plates. The particles are sub-
ject to crossed electric and magnetic fields and to collisions against the surface
of the solid plates. The surface collisions are supposed to be elastic. Under
appropriate scaling assumptions, the particle distribution function converges
to a function of the energy and of the longitudinal position coordinates only,
which evolves in time according to a diffusion equation. A rigorous conver-
gence proof is given. The proof relies on precise estimates on the trace of the
distribution function at the boundary.
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1 Introduction

Our goal is the mathematically rigorous derivation of a diffusion model which has
formally been introduced by the first author in [11], [12]. This model describes
the diffusion of charged-particles (say electrons to fix the ideas), moving in the gap
between two solid plane parallel plates. The particles are subject to crossed electric
and magnetic fields and to diffusion by collisions against the solid plates. This
situation arises for instance in certain kind of ion propellors for satellites (see [9],
[16] for more details about these devices, [13], [20], for numerical applications of the
model and [21], [22] for related physical approaches).

It has first been demonstrated in [1] (by probablistic arguments) and in [2] (by
functional theoretic arguments) that collisions with the boundary can drive a particle
system towards a diffusion regime. To some extent, the present work is a follow-up
of [2] in a different physical framework but it also departs from [2] in important
mathematical aspects.

In [2], the authors consider a collisionless neutral gas flowing in a thin domain
(e.g. the gap between two plane parallel plates) and subject to a combination
of specular reflection (i.e. reflection like a billiard ball) and pure diffusion (i.e.
reemission according to a given distribution function) at the solid plates. If the ratio
(denoted by «) of the distance between the two plates to the typical longitudinal
length scale (i.e. along the planes) is small, they show that the large time behaviour
(on time scales of order a2) of the particle distribution function is, to leading
order, given by n(&,t)M(x,v), where £ denotes the longitudinal position variable
while z is the transversal coordinate, v is the velocity and ¢ the time. M is the
normalized distribution function in transversal sections of the domain (typically,
M is the Maxwellian at the plates temperature) and n is a solution of a diffusion
equation, which describes how the flow evolves between the plates.

The associated diffusion constant is the most important characteristic parameter
of the flow at this scale. It is related to the typical distance that a particle travels
between two encounters with the plates. Particles with grazing velocities (i.e. almost
tangent to the plates) travel a very large distance before hitting them, giving rise
to a large diffusivity. In fact, for the present plane parallel geometry, the diffusivity
of [2] is infinite. It has been shown in [8] (by probabilistic tools) and in [18] (by
functional theoretic arguments) that a logarithmic time rescaling restores a finite
diffusivity.

In our case, motivated by the physical context [12], we consider elastically diffu-
sive collisions at the plates: the particles are reemitted with the same energy as their
incident one and with a random velocity direction. As a consequence, the large time
behaviour of the distribution function is given by an ’energy distribution function’
F(&,e,t), where £ = |v|?/2 is the particle kinetic energy and F satisfies a diffusion
equation in both position and energy. Energy diffusion is caused by the combined
effects of the electric field and of the collisions with the plates. Position and energy
diffusions are not independent (in other words, the diffusion is degenerate) because
total energy is preserved during both free flight and collisions. The resulting dif-



fusion model is known in semiconductor physics as the SHE model (for Spherical
Harmonics Expansion, a terminology originating from its early derivation, see [5]
and references therein) and is also used in plasma physics [15] and gas discharge
physics [26].

Another very important fact in our model is the presence of a strong magnetic
field directed transversally to the plates. Particle motion then does not occur along
straight lines, but rather, along helices whose axis are parallel to the magnetic field
lines. The distance that a particle travels between two encounters with the plates
cannot be larger than the radii of these helices (the so-called "Larmor’ radius). This
limitation results in the finiteness of the diffusivity without time rescaling.

Mathematically, the present problem belongs to the class of diffusion approxi-
mation problems for kinetic equations (see e.g. [7], [4] in the context of neutron
transport, [23], [19] for semiconductors and [14] for plasmas). Two methods are
usually developped: the Hilbert expansion method [4] and the moment method [19].
The latter, although providing only weak convergence results without explicit rates,
is more flexible as it requires only mild regularity assumptions on the solution. It
proceeds in three steps:

(i) prove that the time asymptotic profile of the distribution function is of the form
F(&,¢e,t), with the macroscopic variable F still to be determined at this stage.
(ii)_by using the conservation properties of the collision operator, show that the
macroscopic variable obeys a continuity equation, i.e. that its time derivative is
balanced by the divergence of a current to be determined.

(iii) find an expression for the current. This is the delicate point of the proof, as
the current depends on the first (order «) correction to the asymptotic profile. It is
determined through the so-called ’auxilliary function’, which essentially provides the
response of the microscopic system to gradients of the macroscopic variable. The
equation for the current is found as a moment of the kinetic equation through the
auxiliary function (hence justifying the terminology 'moment method’).

Point (ii) of the proof is actually straightforward. For (i), we first derive trace
estimates (that to our knowledge are original) of the distribution function at the
boundary (the plates). These estimates allow us to show that, in the limit o — 0,
the traces converge in an L? sense to a function which is independent of the velocity
direction w = v/|v|. Tt is then easy to prove that this property 'propagates’ inside the
domain and that the limiting distribution function is independent of the transversal
coordinate x and of w, the result to be proved. The trace estimate directly follows
from the dissipative character of the boundary operator measured in terms of the
maximal eigenvalue of its projection onto the orthogonal space to the equilibrium
states. This technique has also proved its usefullness in other applications as well
(see [6] for an application to semiconductor superlattices).

Concerning point (iii), the auxiliary equation takes the form A} f = g, where Aj
is the adjoint of the leading order operator in the kinetic equation and ¢ are special
functions which measure the microscopic effects of gradients in the macroscopic vari-
able F'. In the present case, the auxiliary equation is not solvable in f for arbitrary
data g. Instead, we need to use the fact that, for our specific data, the action of



the magnetic field balances the singularity which appears at grazing velocities. Note
that we cannot apply the theory of [2]: indeed, in our case, hypothesis (52) of [2],
which would mean the integrability of the function w € S? — |w,|™! on the sphere,
breaks down due to grazing velocities.

This paper is organized as follows. First, an introduction to the kinetic model
which serves as starting point to the present work is given in section 2. Then, in
section 3, we focus on the study of the boundary collision operator. In section 4,
we deduce both an existence result and fundamental trace estimates for the initial
kinetic model. Section 5 is the core of the paper: it develops the convergence proof
of the kinetic model towards the diffusion model. The proof is divided in several
steps corresponding to points (i) to (iii) mentionned above. Finally, in section 6, we
state and prove some properties of the diffusivites.

2 Setting of the problem

We consider a domain which consists of the gap between two plane parallel plates (see
[12] for a more realistic geometry). The distance between the plates is normalized
to 1. We denote by X = (z,y,z2), 2 € [0,1], (y,2) € R* and by v = (v, v,,v,) € R?
the position and the velocity vectors of an electron in between the planes, where
the x coordinate is perpendicular and the vector & = (y, z), parallel to the plates.
Similarly, we denote by v = (v,,v,) the velocity coordinates that are parallel to the
planes. Accordingly, the gradient operators are decomposed : Vx = (0/0x, V),
V, = (0/0vs, Vy).

Electrons moving between the two planes are subject to a given time-independent
electric field directed parallel to the (y, ) directions £ = E(y, 2) = (0, E,, E,) and
to a given time-independent magnetic field directed along the x direction B =
B(y, z) = (B, 0,0). For simplicity we note E = (E,, E,) and B = B,.

The electrons are supposed to move in between the planes according to a scaled
collisionless transport equation for the electron distribution function f(X,v,t) writ-
ten as follows:

fOé

) afe
27 X a B «
o +OZ(Q Vef*—E ng)+vx

5y~ WxB)-Vuf*=0, (2.1)

where X € 0 = [0,1] x R?, v € R® and a < 1 is a small parameter. This scaling,
which is exposed in details in [12] corresponds to a small distance between the plates,
a large magnetic field and a long (diffusion) time scale.

The collisions of the electrons against the solid plates are modeled by a com-
bination of specular and diffuse reflections (see [12] and references therein). We
introduce the set © = Q x R?, its boundary I' = v x R*, where v = {0, 1} x R?, and
the following incoming and outgoing subsets of I' (respectively representing incoming
and outgoing particles to the domain 2):

I =({0} xR x{veR,v,>0})U ({1} xR x {veR, v, <0}),



and [', obtained by reversing the inequalities.
Denoting by f¢ and f¢ the traces of the distribution function f* on the sets I'_
and I';, the boundary conditions at x = 0 and x = 1 read as follows:

JEX 0) = BIEHX v) + (1= DK (X,0),  (X,v) el (2.2)

where the accommodation coefficient 5 = 5(z,v, 2, |v|) is such that 0 < 5 < 1, v,
is the specularly reflected velocity v, = (—v,, vy, v,) and K is the diffuse reflection

operator. K maps the outgoing trace f to the incoming one f< and is defined for
(X,v) eI'_ by

K(fH)(X,v) = /K(X, ;W' — w) X, v|w') |wy| dw', (2.3)

where w = v/|v| belongs to the unit sphere S%. The integration is carried over the
set of directions w’ that are incoming with respect to the boundary at the point X.

The dependence of the kernel K with respect to X = (z,y, 2), z € {0,1}, (y, 2) €
R? and |v| will be omitted, otherwise specified. The quantity K (w' — w)|w,|dw is the
probability for an electron impinging on the plate at a position (y, z) with velocity
|v|w’ to be reflected with a new velocity |v|w such that w belongs to the solid angle
dw.

The aim of the present work is to show that the limit of f* when « goes to 0
is a function of the longitudinal coordinate &, of the energy ¢ = |v|?/2 and of the
time, F(&,¢,t), which obeys a diffusion equation in the position-energy space. This
equation is often referred to in the literature as the SHE model (see introduction for
references). More precisely, we prove:

Theorem 2.1 Under some hypotheses listed later on (namely hypotheses 3.1, 3.2,
8.8, 4.1, 5.1, 5.2), f* converges to f° as a — 0 in the weak star topology of
L>([0,T),L*(©)) for any T > 0, where f°(X,v,t) = F(&, |v|?/2,t) and F(&,¢,t)
18 a distributional solution of the problem: B B

OF i,
47r\/%a + <v§ —~ E%) J =0, (2.4)
J(&,e,t) = —D <v§ - E%) F(&e,t), (2.5)
Fli=o = I, (2.6)

in the domain (r,£) € R x (0,00). The diffusion tensor D = ID(§,¢) is given by

1
DE.e) = (2% [ [ Dlwwig, chaddo, (27)

where w = (wy,w,), D = (Dy,D,), Dw is the tensor product (Diw;);jciy,.} and
finally D;(z,w; &, [v]*/2), (i =y, 2) is a solution of the problem

D:
_Ux%—F(QX B) VQDZ = W, in@, (28)
(Di)+ = B*(D;)—, onT, (2.9)

5



unique, up to an additive function of £ and €.

Remark 2.1 Hypothesis 5.2 supposes that the diffusion tensor vanishes for van-
ishing energy D(£,e = 0) = 0, V§ € R?. Therefore, the diffusion problem in ¢ is
degenerate and does not require additional boundary conditions at ¢ = 0. This
hypothesis is satisfied in practice [12]

We introduce the functional setting and prove the existence of solutions of (2.1)
in the following sections.

3 The boundary operator: assumptions and prop-
erties

We begin with some notations. We denote Si(z), x = 0,1 the following half-spheres:
S, (0)=8_(1)={weS%w, <0}, S_(0)=8,(1) ={weS%w, >0}, (3.1)

We introduce the domain S = [0, 1], x S2, with its associated incoming and outgoing
boundaries defined by:

= ({0} xS (0)u ({1} xS (1)), S = ({0} x §+(0)) U ({1} x S¢-(1)).

We define the inner products on L?(0) and on L?(T'y) respectively by:
o= [ s9a0, (Fow.= [ solilar

where df = dxdfdv is the volume element in phase space, and dI" = Zx:O,l d€dv is
the surface element. The inner products on L?(S), L?*(S,) are defined analogously:

s = [ [ fotww)dzas, (3.2

(f, ), = / wa] F9(0, ) dio + / wal F(1, ) dov, (3.3)
S+(0) S+(1)

We now introduce the orthogonal projection Q+ of L?(S.) on the space C* of
constant functions on each connected component of Sy, i.e.:

Qif(r,w) = %/s ( )|w;|f(x,w') dw', we Se(zx),z=0,1, (3.4)

and its orthogonal complement P, = Is, — Q)+, where Ig, is the identity.



We now define the boundary operator B the following way: for ¢ € L*(S,),
Bo € L2(S_) and

B(¢) = BJp+ (1 - B)K(9), (3.5)
where the mirror reflection operator J from L*(S,) to L?(S_) is defined by:
Jq/)(x,w) = d)(x,w*), (36)

with w. = (—ws, wy, w,). Moreover, its adjoint J* from L*(S_) to L*(S;) is also the
mirror reflection operator, and so J and J* satisfy J*J = Ids, , JJ* = Ids._.

We now list the required assumptions on the operator . We recall that we omit
the dependence of K on (z,§, |v|) when the context is clear.

Hypothesis 3.1 We assume that the kernel K satisfies the following properties:
(i) Positivity:

K(w' — w) >0, (3.7)
for almost all (w,w') € S_(z) X S4(x), x =0, 1.
(i1) Fluz conservation:

/ K(w = w)|ws|do=1,2=0,1. (3.8)
S_(z)

(1ii) Reciprocity relation:
Kw —w)=K(~w— —-v'), V(wuw)eS_(r) xS (zr),z=0,1. (3.9)

Positivity and flux conservation are natural physical assumptions. Reciprocity
is a translation of the time reversibility of the microscopic interaction process which
occurs at the boundary. Its relevance is discussed in [10]. From relations (3.8) and
(3.9), the normalization identity easily follows:

KW = w)|wi|do'=1, z=0,1. (3.10)
Si(z)

Moreover, from Hypothesis 3.1, we derive the Darrozes-Guiraud inequality:

Lemma 3.1 (i) Let f, € L*(Sy) and f_ = Bf,. Then,

/ o, ) P o] oo < / o) fondo, =01  (311)
S_(x)

Si(z)

(ii) B, as an operator from L*(S.) to L*(S_), is of norm 1.



Proof: (i): follows straightforwardly from the Cauchy-Schwartz inequality and
(3.10).
(if): From (3.11), we deduce that |Bf|7.s ) < |f[72(s,), and therefore that [|B|| < 1.
Now, from (3.10), any f in CT is such that Bf = Jf. Then, |Bf|%2(8_) = |flr2sy)s
showing that ||B]| = 1. [ |

We now remark that the dual operator B* of B maps L*(S_) to L?(S.) according
to:

B¢ =pJ"¢+ (1—-B)K*(¢) (3.12)
with

K () (z w) = /S K o ) ) 0 € 81, 2 =01 (313

We now suppose:
Hypothesis 3.2 The operator IC is compact.
We note that this implies that C* is compact. We now prove:
Lemma 3.2 Under Hypothesis 3.1, 3.2, we have:
N(I-JB)Y=C", N{I-JB)=cC",
where N denotes the Null-Space.

Proof: We first remark from (3.10) that a function ¢ of C* satisfies (I—J*B)yp =
0. Conversely, let ¢ € L?(S;) be a solution of (I — J*B)p = 0, then:

p— BT Jp— (1= 5)JK(p) =0,

which implies (because § < 1) that (I — J*K)p = 0. This equation can be decom-

posed in:
(1= TKO)go =0, (I—TK1)e =0,

where ¢, = ¢ls, () and K(z) = K125, @2)), # =0, 1.

The operators J*IC(z), © = 0,1 satisfy the following properties which are de-
duced from hypotheses 3.1 and 3.2:
(i) J*K(z) is a compact operator on L?(S, (z)).
(i) J*K(z) is positive: ¢ > 0 implies J*IC(x)(¢) > 0.
(iii) The constant function 1 is an eigenfunction of J*/C(x) associated with the eigen-
value 1, i.e. J*K(z)(1) = 1.

Thanks to the Krein-Rutman theorem, it follows that 1 is an eigenvalue of multi-
plicity 1. Therefore, N(I—J*K(z)) = Span{l}, z = 0,1 and thus N(I—J*K) =C™,
which proves the result. The proof is clearly similar for I — JB*. [ |



Lemma 3.3 The following equalities hold:
BQ+ - Q,B - JQ+ - Q,J, BP+ - P,B (314)
and similarly (mutatis mutandis) for B*.

Proof: First, it is clear that JQ, = Q_J. Let ¢ = P, p+Q.p be the decomposition
of ¢ € L*(Sy). Then:

But Q. € C™ and, by Lemma 3.2, BQ,¢ = JQ,.¢ = Q_Jp. Therefore,
By =BP,o+Q _Jp. (3.16)

We shall prove that (3.16) is the decomposition of By on P_ and @_. Indeed, let
q € C~, then, by duality, (BP1y,q)s_. = (Pyp, B*q)s,, and B*q¢ = J*q € C*. Hence,
from the definition Py, (Pi¢,J*q)s, = 0. Therefore, BP, is orthogonal to C~
which proves the desired property. We deduce BP,p = P_By and BQ ¢ = Q_By,
which ends the proof of the Lemma. [ |

By elementary operator theory, we remark that, for every £ € R? and for every
lu| € R, there exists k(&, |v|) such that ||KCPy|| < k(& |v]) < 1. In the remainder,
we shall assume that this constant is bounded away from 1, as ¢ and |v| vary. More
precisely: -

Hypothesis 3.3 (i) There ezists a constant k < 1 such that:
P crasyy sy <k <1,|v] € RY, £ e R (3.17)
(i) There exists By < 1 such that 0 < < By <1, £€R*, ]| >0,2=0,1.
It follows that:

I1BPL| 2y, 0252y < vV Bo + (1 — Bo)k? (3.18)

We note that, if the kernel K is constant, then K = JQ,, and so CP, = JQ P, =0,
and KC satisfies the assumption (3.17). More generally, we have:

Lemma 3.4 If K(w' — w) > C > 0, where C is a constant, then assumption (3.17)
holds.

Proof: It is enough to prove the result for x = 1 , the proof being analogous
for = 0 (with the sign of w, reversed). We prove equivalently that there exists &,
0 < k < 1, only depending on C' such that:

|’C(1)90|%2(s_(1)) < k2|@|%2(s+(1))’ (3.19)



for all ¢ € L*(S. (1)) such that:

/ ¢ |wg| dw = 0. (3.20)
wy >0

Omitting the dependence of the kernel K (w" — w) upon & and |v|, we have:

Rolw) = [ K@ »w) o) lslded = [ (10 =) = C/2) o) | d

x

because of (3.20). But K(w' —w) —C/2 > C/2 > 0 and
/ (K( = w) = C/2) |wl|du! =1 — Cr/2> Cr/2> 0.
wh >0

Therefore, noting k* = 1 — Cm/2, we have 0 < k* < 1 and by the Cauchy-Schwartz
inequality:

[Kow)]* < k2/ (KW' = w) = C/2) [p(w")|* wy | du’
wh >0
< k2/ K (W — w)|p(@)? o] du'.
wh, >0
Then, using the normalization property, we deduce that:

Kol ap = | [Kp)Plolds 8 [ o) ol ds' = Blols, )
we <

wh >0

Thus proving the result. [ |

As a final remark,we note the obvious fact:

Lemma 3.5 Let ¢ = ¢(|v|?) bounded and f € L*(S.). Then B(of) = ¢B(f).
Similarly, for f € L*(S_), B*(¢f) = ¢B*(f).
4 The transport operator

We define the following operator on L?*(©):

AP =r Vel BV (WS e

with domain D(A%) defined by:

D(A%) = {f € L*(©), A*f € L*(©), P, f, € L*(y),

4.2
Qif+ € LlZOC(F+)7 fo= Bf+} ( )

10



where

L2

loc

(T+) = {f such that ¢(|v|)f € L*(T'+),V¢ € C™, ¢ bounded}. (4.3)

L2

i.(L+) is equipped with the family of semi-norms | - |r, g:

FPon= / fop] |2 T (1.4)
T'4,jv|<R

L7 .(T) is defined in a similar way with the family of semi-norms | - |r z.
The goal of the present section is to establish trace estimates for functions of

D(A®) which will show that D(A®) is closed for the graph norm

e = |f|%2(e) + |Aaf|%2(e)-

We then prove that A% generates a strongly continuous semi-group of contractions,
thus providing an existence setting for the kinetic problem (2.1). We suppose:

Hypothesis 4.1 (i) E = E(§) € (W"™(R?))*.
(ii) B = B(€) € CY N W= (R?).

(ii) There exists a constant By > 0 such that |B(§)| > By > 0, for every £ € R?.

We first establish a Green’s Formula for functions in D(A®). Let us notice that
for two functions f, g € C}(©) we have :

hge = ~(Ago+ ([ wloladr= [ wglodr)

R2xR3
1
= ot o ([l fegrar= [ i) s

Define the space :
H(A%) = {f € L*(©), A"f € L*(©)} (4.6)

By making f = g in (4.5), we easily convince ourselves that the regularity f € H(A?%)
is not sufficient to guarantee the integrability of | f,|* over the boundary because of
the minus sign at the right-hand-side of (4.5). Following [3], [24], we define:

Hy(A™) = {f € H(A%), | € TA(T )} = {f € H(A"), f. € IAT)}.  (47)
Then, from [3], [24], we deduce:

Lemma 4.1 (Green’s Formula) Under Hypothesis 4.1, for f and g in Hy(.A®)
with compact support with respect to v, we have:

((f+,g+)F+ - (f*:gf)f‘_) . (48)

SHE

(Aafa g)@ + (fa Aag)O -

11



We first prove that the "non constant” part of the trace at the boundary of a
function of D(A%) is controlled by the graph norm.

Lemma 4.2 If f € D(A%), then there exists a constant C > 0 such that:

2a
[P f T2y < TPy filfor,y < 1 ko

(A, o < Calfle.  (4.9)
Proof: We apply Green’s Formula (4.8) with a cut off function yg(|v|?) such

that xr(|v]?) = x(Jv|*/R?) , x € C®°(R"), 0 < x <1, x(u) =1 for u < 1 and
X(u) = 0 for u > 2 and obtain, thanks to Lemma 3.3 and Hypothesis 3.3:

(f ol bt = [ o s r)

r, r_

([ et ben 1 ar = [ el B2l ar)
ry r_

/F ol (PS4 4 1Qus?) xal T

2(AXrf, xrf)o =

Rl RI= QK

1
2 [t (P-BEL +1Q-B14P) e ar

1
= - (/ |V | |P+f+|2 |XR|2 dl’ — / |V | |BP+f+|2 |XR|2 dF)
@ \Jr, r_

1 k2

> [ el 1Put el ar,
Iy

where we have used that P_f_ = P_Bf, = BP, f,. But, we have:

,¢WX&ﬂ==XRA9f%—Z%§QfX’(%g). (4.10)
Therefore,
2(A%rf, xrf)o < 21A% |i2e) | |r2e) + (C/R)IS 2o
The result follows by letting R — oo. [ |

We now notice that, if f € D(A%), then Q_f = JQ.f+ (thanks to Lemma
3.3). Thus, there exists a single function ¢(f) = q(z,&, |v|), = 0,1,£ € R?, |v| > 0,
such that

q:Q,f, ) Oana q:Q+f+7 OHF+ (411)
We have:
Lemma 4.3 Let f € D(A%), then:

a(H)IF g < C (el flha + RIfF) (4.12)

12



Proof: We multiply A®f by sgn(v,)¢(x)f, where ¢(x) = 22 — 1 and sgn(v,) is
the sign of v,. Note that ¢(1) = 1, ¢(0) = —1. Hence, applying Green’s Formula
(4.8) with the cut off function yp, we obtain:

(AXa 58 (02) () xrf iz + I T

1 Vg Vg
= / o] |XRf(1)|2dF+/ sl | (@) ar
6% R2 xR3 2 R2 xRR3 2

1 Uy
:_/ |2| (|P+f+|2+|Q+f+|2) IXr|?dl
Iy

1 v
T I A A R

1 Ve Uy
— ([ b iapar s [ i g prar)
a \Jr, 2 r. 2

1 Vg
+— (/ ] Q4 f+ 7 Ixr|” dF+/
(6% F+ 2 I_

The second term on the right hand side is estimated from below by:

1 - N 1
1 ( / + el ) Plalar + | Bl ) Pl dr) S

(07

lv

Q1P juaftar).

whereas, the first term on the left hand side is smaller than |f|4., and the second
term on the left hand side is bounded by (C/a)|\/vuxrf|7:0) = C(R/)|f[12(0)-
Hence, (4.3) follows. [ |

Thanks to lemmas 4.2, 4.3, we can prove:
Lemma 4.4 The operator A* given by (4.1) is a closed operator.

Proof: Assume that a sequence of function f,, € D(A%) converges to a function
f, and that A%f, converges to g. It is clear that ¢ = A%f in the distributional
sense. There is still to prove that P, f, € L*(I'y), Q4 fy € L? (['y) and f_ = Bf,.
From Lemmas 4.2 and 4.3, we have that P, f,. and Q)4 f,; are Cauchy sequence in
L*(T'y) and L7 (T ) respectively, thus convergent to Py f, and Q4 f.. (This follows
from the fact that the traces converge in a weak sense, like e.g. H~'/2). Then, the

continuity of B allows to find f = Bf,. [ ]

In order to prove that the operator —A® given by (4.1) generates a strongly
continuous semigroup of contractions it is sufficient to prove that its dual operator,
A% is accretive.

Lemma 4.5 (i) We have A** f = —A*f, with domain:
D(A™) = {fel*©),A"fe L*®©), P_f e L*I.),
Qf LM ) fi=BF}, (413)
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where B* is the adjoint of B given by (3.12).
(i) A* is accretive, i.e. (A% f, f)e >0, Vf € D(A*).

Proof: First, define Ac by @f = —A®f with the domain defined by (4.13).
Let f € D(A%) and f* € D(A**). By Green’s Formula (4.8), we have:

(A*f, fe =(f, =A% [Te + (f+, [{)ry — (f=, fDr-

But,

(For Fre = (o e = (F FDry = (Bfy, f)r
= ([ ey — (f+, B fH)r_ = 0.

Therefore, (A%f, f*)o < C(f*)|f|r2(0) proving that f* € D(A*"). (The truncation
argument, which must be used as above, is omitted for brevity), and that D(.ZE‘) C
D(A*). Now, D(A%) is closed for the graph norm from the same arguments as
for A“®. Therefore, D(@) and D(A**) are two closed spaces for the graph norm,
which contain the same dense subspace (for instance D(©)). Thus they are equal.

(ii) Let f € D(A**). We have, thanks to Green’s formula (via a truncation argument
which is omitted):

20410 = — ([l £ a0 = [ e ig-ar)

_ l(/ |vm||f|2dF—/ |vx||B*f|2dF>20.
@ \Jr_ Iy

The inequality follows from the Darrozes-Guiraud formula for B*, the proof of which
is omitted. [ |

Collecting all the previous Lemmas and using the Lumer-Phillips theorem (see
[25]) gives the following:

Theorem 4.1 The operator —A* given by (4.1) generates a strongly continuous
semigroup of contractions on L*(O).

5 Convergence towards the macroscopic model.

Now, we consider the limit v — 0 of the following problem:
a « a ro 3 « « «
aaf +A%f*=0 inO, fX=BfY onl', [f%=0=fr. (5.1)

To avoid the treatment of initial layers, we assume that the initial data are well
prepared:

14



Hypothesis 5.1 We suppose that there exists a function Fy such that fr(xz,& v) =

Fr(&, [v*/2) and that fr satisfies: fr € L*(©), (v- Ve — E-V,)fr € L*(©).

We note that hypothesis 5.1 implies that f; € D(A%) for all @« > 0. By The-
orem 4.1, for any T" > 0, problem (5.1) has a unique solution f® belonging to
C°([0,T], D(A*))NC'([0,T], L*(®)). In this section we are concerned with proving
the main theorem 2.1. The proof will be divided in the following steps. First, we
establish estimates on f showing the existence of a weak limit f° which does not
depend on x and w. After studying the auxilliary problem (2.8), (2.9), we show that
the current converges weakly and we establish equation (2.5). Finally, we derive the
continuity equation (2.4), which concludes the proof.

5.1 Weak limit of f¢
Lemma 5.1 There exists a constant C, only depending on the data, such that:
| f¥ Lo (0,m200)) < O, (5.2)
T
/ Py f o, dt < 02C (5.3)
0

Moreover, for any R > 0, there exists C'r only depending on R and on the data,
such that:

T
/0 4(f) R dt < Ch (5.4)

where the definition of q(f*) is given by (4.11).
Proof: Multiplying the first equation of (5.1) by f*, we have:

t
@ (1£° 0~ olize) + [ (A7, Fads =0 (5.5
and using (4.9):

a 1—kj ' a
7Ol + 5z [ 1Pl ds < Ififoy (5.6

which immediately gives (5.2) and (5.3). Moreover, from the proof of Lemma 4.3,
we deduce:

4Rk < € (oA xa S, Foxnsan(e:)d)o + CRIa)) -

9,
But, using (4.10) to evaluate A%(xrf®) and the fact that A“f® = —aafa, we

obtain:

T T a T
[larieds < a2 [ (xag s tsnno) ds+CR [ 1 ds
0 0 €} 0

IN

T
—a? {/ |fa|25gn(vx)¢xiz dx dédv} +C (RT|fo|%2(@))
© 0
Ckg.

IN
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Thus, proving (5.4). |

As a consequence of Lemma 5.1, as a tends to 0, there exists a subsequence, still
denoted by f®, of solutions of problem (5.1), which converges in L*°(0,T; L*(©))
weak star to a function f°. Furthermore, using the diagonal extraction process,
the subsequence of ¢(f®) converges to a function ¢(z,&,|v|,t) with z = 0,1 in
L*(0,T, L?*(y x Bg)) weak star for any R, where By, is the ball centered at 0 and of
radius R in the velocity space. Also, from (5.3), the traces P, f and P_f® converge
in L*(0,T; L*(Ty)) and L*(0,T; L*(T"_)) (respectively) strongly towards zero.

Finally, we note that, since f is bounded in L*°(0,T; L?(©)), then, by equation
(5.1), A*f® is bounded (and even tends to zero) in H='(0,T; L?(0)). This implies
that (v, f®)|r is bounded in H~'(0,T; H'/?(y x Bg)) for any ball By in the velocity
space, by standard properties of H (div) spaces (see [24], [17]). Therefore, the traces
of f¢ on I have limits in the distributional sense that are the traces of f® on I'. By
the preceding considerations, we deduce that the traces f$ of f° on ' satisfy:

Pf=Pfl=0, Q[°=Q.f° =g,

and so:

lr =q, (5.7)

where ¢ = q(z,&, |v],t) , with x = 0, 1, is independent of w.
We now introduce the weak formulation:

Lemma 5.2 Let f* be the solution of problem (5.1). Then, f® is a weak solution,
i.e. for any test function ¢ € C'([0,T] x ©), compactly supported in © and such
that ¢(-,-,T) =0, we have:

/ / (a 6+ -Vep—E- v¢)> dtd9+a/fl¢|t a0
_/ /fa (U:v—ﬁb_(QXB)-vaf)) dtdo
</ / [v] f1(9 )dtdF> (5.8)

Proof: Multiply equation (5.1) by ¢, use Green’s Formula (4.8) and the bound-
ary conditions. [ |

Lemma 5.3 The limit function f° is a function of (&, |v],t) only, i.e. f*= fO(&, |v], ).

Proof: Using (5.8) with ¢ compactly supported in O, we get:

aQ/OT/Gf"‘%qbdtd9+a/0T/@fo‘(y-végb—ﬂ~vvd))dtd9

T N a B
+/0 /@f (vx%qﬁ—(yxB)-V,jd)) dtd9+a2/®f1¢|t:0d9_0. (5.9)
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Hence, when a goes to 0 in (5.9), using the fact that f* is bounded in L>(0, T, L?(0)),
we get:

/T/ f° <yx3¢ — (v x B)- vab) dt df = 0. (5.10)
0o Je Ox

This is equivalent to saying that f° is a distributional solution of the problem
Aof():o, f0|F:q7 (511)
where A is defined by:

of

0r __ -
Af_vxax

(v x B)-V,f, (5.12)
and ¢ = q(z, &, |v|,t) is independent of w, as a consequence of (5.7).

To solve problem A°f = 0, we first note that A° operates only on the variables
(z,w) € [0,1] x S and that £ € R* and |v| > 0 are mere parameters. Indeed, we
can write:

of

A'f = |v|wxa—x + B(§)=—(e; X w) (5.13)

of
Ow

o)
where —f(ex X w) is the differential of f with respect to w € S? acting on the tangent

ow

vector to S?, e, X w.

We therefore only consider the dependence of f on (x,w) € [0,1] x S2. Note
that S? can be parameterized by the map w(o,w), where 0 = w,/|w,| € {-1,1}
and w = (wy,w,). The fact that o is equal to £1 recalls that we need two maps to
parameterize the sphere in this way.

Next, we note Raﬁ) (w), the rotation of w about the x-axis of an angle bx, where

B
b= (§), Wy =0y/1 — w2 — w2
|v]wg Y

In other words, w! = RE; ow) = (w),wl) is given by:

w; = wy cosbr —w,sinbr, w! = w, sinbx + w, cos bz (5.14)
We note that w' also depends on |v| and &, but we shall not stress this dependence
otherwise needed.

Similarly, R, ,,(w) is the rotation of an angle —bz. Obviously, wh = RZ; (W)

if and only if w = R(; o) (w'). Also, R(x, J)R(Z o = Ra_x, o = R(;,_x o) Then, with
the change of unknowns:
fT(x,a,g) = f(.T,O', Ra7g)(g))7 (515)
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a simple application of the chain rule gives:

off of
v =V — (ux B) -V, f = A’f =0, 5.16
s = ol — (0 x B) V.S = Af (516)
which means that fT is constant with respect to z. Note that in obtaining (5.16),
we have used that w, = olw,| and |w,| = /1 —|w? = /1 — [wi]? with [w]? =
|lwy|? + |w, 2. Therefore,
iz, 0,w) = f1(0,0,w) = f1(1,0,w) (5.17)

which, back to f, gives:
flz,0,w) = f(0,0,R, , (W) = f(1,0, R _, ,(w))- (5.18)
Now, let f° be a solution of (5.11). Then, there exists ¢(z), = 0, 1, such that,
£200,0,w) = q(0),  f°(1,0,w) = q(1).
From (5.18), this implies that
fo(a,0,w) = q(0) = ¢(1) = ¢.
Writing again the full set of variables, we get:
f(z,0,t) = q(&, 0], 1) (5.19)

which was the result to be proved. [ |

Remark 5.1 The trace estimates (5.3) and (5.4) were essential to establish that
the traces of the limit function f° converge in an L? sense. In [2], the convergence
of the traces happen in a weaker sense and it is not clear why the limit trace should
satisfy the boundary operator.

Formula (5.18) implies that:

{ G-

which can be written compactly f, = M_f | thus defining a map M_ from L*(S_)
to L?(Sy). The inverse map M, from L?(S;) to L?(S_) is defined by f = M f,
with:

(OUR ()), o=1,

OaR*ﬁ@%g:_L (5.20)

f-
f-

{ f(0,0,w) = f1(1,0, Ry (w)), o=1, (5.21)

f*(laaag) = f+(0507 R(I7g)(g))7 0 = _17

Remark that M_ and M, are isometries between the spaces L?(S_) and L?*(S.).
Formulas (5.20) and (5.21) are illustrated on Figure 5.1. The mappings M_ and
M, will be used below. We also define the kinetic energy € = |v|?/2 and the energy
distribution function F'(&,e,t) = f°(&, |v|, t).

18



Figure 5.1 Action of the transport operator (formulae (5.20), (5.21))

5.2 Auxiliary equation

We now study the following auxiliary problem, which will be useful for finding the
limit of the current: to find f(x,w) such that:

A f(,0) = gle,w) , (5,w) € [0,1] x S (5.22
f+(x,w):l3*f_(x,w), (x,w) ES—H (523)
where A°" is the formal adjoint of A%

. of of 0
L BV, f=— 9L L Be)ZL .
A f Vo + (v x B)V,f <|U|%8x + B(§) w(em X w))
We recall that A°", like A°, operates only on (z,w) € [0,1] x S? and not on £ €
R?, |v| > 0 (see (5.13)), which are therefore omitted in the following discussion.
Similarly, B* only operates on w € S2. We now prove:

Lemma 5.4 Let g € L?([0,1] x S?) and define G = G(z,0,w) by:

1 1
/ g(x', g, RE;,*I o) (g)) d!L‘l ) 0= +17
Gz, 0,w) = |U||1%| z

. (5.24)
] / g(a', 0, R(;_x, o) (w))dz', o=-1.
wel Jo ;

vl
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Note that G also depends on [v] and £. Suppose that /|w,|G belongs to L*([0, 1] xS?)
and that its trace G_ on T'_ belongs to L*(S_) for almost every (|v],§) € Ry, x RE.

Then, problem (5.22), (5.23) has a solution f such that \/|w.|f € L*([0,1] x S?) for
almost every (|v],€) € Ry x RE if and only if the condition:

/01 /S2g(x,w) dr dw =0 (5.25)

holds. Furthermore, all solutions in this space are equal to f, up to an additive
function of £ and |v|.

Proof: Using the change of variables (5.14), we are led to:

;
|v|wm% =g (5.26)

Integrating (5.26) with respect to x, we obtain:

1
e oal) - (1, 0,w) + |v|lcfx /I g (@, o,w)de’, o=+1, 5m
f10,0,w") + |v_|wm g, 0w de’, o=-1.
Back to the original variables, this gives:
fla,ow) = {Ml e e T (5.28)
1+(0, JR ( )+ G(z,0,w), o=-1

Now it is clear that, if we find f, in L*(S,) such that f given by (5.28) satisfies
the boundary conditions (5.23), then f is a solution of problem (5.22), (5.23) with
the regularity /|w,|f € L*([0, 1] x S?). This follows from the assumption on G, and
from the fact that R (w) is a rotation of w, and gives:

[ 1o R @) de= [ |fowf de
|w| <1 |w[<1

(Note that, in the parameterization w = (o, w), we have |w,|dw = dw).

Now, we show that there actually exists such an f, € L*(S,). We also show
that f, is unique up to an additive constant, which proves the last statement of
the lemma, since & and |v| are mere parameters throughout this proof. Evaluating
(5.28) at = 0,1 we can write f_ = M, f, + G_ where G_ is the trace of G on T"_.
Thus, by means of the boundary condition (5.23) we have:

fv+ =B (Mify +G-) (5.29)

Using the same notations as in the proof of Lemma 3.2, (5.29) can be written:

{ f+(1) = B (1) My (f+(0)) = B (1)G_(1) (5.30)
f+(0) = B (0)M,(f1(1)) = B(0)G-(0) '
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and so:

{ fr(1) = (B (1) My B*(0) My )(f+(1)

) = h(1)
f4(0) = (B°(0) M. B (1) M) (£1.(0)) = h (5:31)

with:
h(1) = B*(1) M B*(0)G_(0) + B*(1)G_(1)
h(0) = B*(0)MB*(1)G_(1) + B*(0)G_(0) ~
We now concentrate on the first equation of (5.31), the treatment of the second
one being similar. Using the expression (3.12) of B*, we can write:

B ()M, B*(0) M, = B(0)B(1)(J*M)* + L(1) (5.32)

where £(1) is a compact operator on L?(S,(1)). Moreover, equation (5.31) can be
written:

(I —g(1)(f+(1)) = k(1), (5.33)

where:
G(1) = (I—-pB0)B)(J* M) L(D), (5.34)
k(1) = (I—B(0)B(1)(J*M)2) 'h(1), (5.35)

Now, it is an easy matter to check that G(1) is a compact operator on L*(S, (1)),
which is positive (i.e. if ¢ € L*(S,(1)), ¢ > 0, then G(1)¢ > 0) and such that
the constant functions on S, (1) are eigenfunctions associated with the eigenvalue
1. Therefore, by the Krein-Rutman Theorem, the Null-Space N(I — G(1)) is of
dimension 1.

By the Fredholm Alternative, equation (5.33) has a solution f, in L*(S,(1)) if
and only if k(1) € N(I — G*(1))*. Tt is an easy matter to check that N(I — G*(1))
also consists of constant functions. Therefore, the solvability condition for equation
(5.33) reads (k(1),1)r2(s, (1)) = 0, or:

(h(1). (I = BO)BL) (M_T)*) 1) (s, 1y = 0. (5.36)

But, since (I — 8(0)8(1)(M_J)*)1 =1 — 3(0)3(1), condition (5.36) is also written
(h(l), 1)L2(S+(1)) = 0, or, by duality,

(G- (0), BOO)M_B(1)1)12(s_(0y) + (G- (1), B(1)1) 12(s_(1)) = 0 (5.37)
But, B(0)M_B(1)1 =1 and B(1)1 = 1. So (5.37) gives:
(G_(O), 1)L2(S,(0)) + (G_(]_), 1)L2(S,(1)) - 0, (538)
which is written explicitely:

1
_ 1
/0 /w<1 (g(:c,l,Rj;,l)(g)) +g(x,—1,R(17m7,1)(g))) o dedr =0 (5:39)
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But, using the change of variables W' = Ra 1)@) for the first term and W' =
R _, _)(w) for the second one, condition (5.39) reads:

/01 / » (g(z,1,w) + g(z, —1,w)) — dwdz =0 (5.40)

which is exactly the expression of the solvability condition (5.25) in the parametriza-
tion w(o,w).

The existence of f (1) and its uniqueness up to an additive constant (i.e. belong-
ing to the Null-Space of (I —G(1))) are thus proved, under the solvabilty condition
(5.25). Similarly, the existence of f,(0) and its uniqueness, up to an additive con-
stant, are proved under the same condition. That the two arbitrary constants for
f+(1) and f,(0) are equal follows easily from considering equations (5.30). [ |

Remark 5.2 The present technique, based on the reduction to an integral equation
at the boundary is mainly due to [2]. However, we note that the regularity L*(S_)
of the trace does not imply the regularity L?([0,1] x S?) for the function inside the
domain because of the weight |w,|. This point seems to have been overlooked in [2]
and is connected to the question of characterizing the range of the trace operator
for solutions of first order problems, which is still mainly open up to now.

Lemma 5.5 The functions g = w;, (i = y,z) satisfy the assumptions of Lemma

5.4.

Proof:

Let G be the function associated to g = w, by (5.24). We need to show that
V|w:|Gy € L*([0,1] x S?) and (G,)- € L*(S-). The proof is obviously similar for
g = w,. After straightforward computations, we obtain

1
%[wy sinb(1 — z) +w,(cosb(l —x) — 1)]da’ , o = +1,
Gy (z,0,w) = 1 )
———[w, sinbx + w,(1 — cosbx)|dx’ , 0 = —1.
With the Hypothesis 4.1 (iii) on B, it is an easy matter to check that G, satisfies
the required hypothesis. [ |

We note that the magnetic field operator has removed the singularity |w,|™*
that would otherwise be expected. The magnetic field thus contributes to maintain
a finite diffusivity (see introduction).

By Lemma 5.4, there exist functions D;(z,w; &, €), (i = ¥, 2), solutions of problem
(5.22), (5.23) with right-hand-side g = w;, unique up to additive functions of ¢ and
e. We suppose that D; satisfy the following regularity requirements: -
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Hypothesis 5.2 (i) D;, (i =y, z), belong to L*([0, 1] xS?) for almost every (§,¢) €
RZ x RY and are C* bounded functions on © away from the set {v, = 0}.

(i) The functions w;D;(x,w;€,€) belongs to L'([0,1] x S?) and fol Js2wiDj dx dw
is a C" function of (§,¢) € RE x (0,00)., uniformly bounded on R; x [0,00)., and
tending to 0 as ¢ — 0. - -

Hypothesis 5.2 can be viewed as a regularity assumption on the data i.e. on
the magnetic field B, the boundary scattering kernel K and the accommodation
coefficient 5. We do not look for explicit conditions on these data because the
developments would be technical and of rather limited interest. We confine ourselves
to noting that hypothesis 5.2 is not empty, because it is satisfied at least in the case
of isotropic scattering. In this case [12], the scattering kernel K is equal to the
constant 7~!, and we have for w, > 0:

1 1 —
b. = 47 B w;; (1 _ 5?%1(1 — cosb) +COSb—cosbx>
1 1
+47TB w] (1 _+ﬂf%1 sinb—sinb+sinbx> ,

with w! = R, (w) and similarly for w, < 0, and for D,. From hypothesis 4.1 (ii),
(iii) and hypothesis 3.3 (ii), D is bounded and thus , w D is clearly integrable in
(x,w). Furthermore, formula (4.34) and (4.35) of [12] shows that [} [i,w D dx dw
is a C' function of £, ¢ for £ € R* and € > 0, as soon as B and the accommodation
coefficient 3 are C' and that it is bounded and tends to 0 as ¢ — 0. Finally, away
from the plane {v, = 0}, all derivative of D, are smooth, showing that Hypothesis
5.2 is satisfied.

From Hypothesis 5.2 (ii), we deduce that the diffusivity tensor (2.7) is defined
and is a C' function of (§,¢) € Rf x Rf. We also note that the definition of Dj;

does not depend on the arbitrary additive function of ¢ and e which enters in the
definition of Dj.

5.3 The current equation

Let us define the current J%(§,¢,t) = (Jg, J3) as follows:

JE e t) = %/0 /§2Qfo‘(x,§, lv], w, t) dx dw
9s 1
= ES/O /Szgfo‘(x,é,s,w,t) dz dw. (5.41)

We first prove the following technical lemma:

Lemma 5.6 Let p(x,v) be a C' function. We have:

\/_/ /Sz (7, V2ew) da deo = §J Jo(e) = 25/01 /S2g<p(x, V2ew) da dw
(5.42)
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Proof: We only compute the y component. We note that

dp Oy 1 0y
avy - 3|U|wy + (ey wyw)’ (5'43)

where (0p/0w)(e, — wyw) denotes the derivative of ¢ with respect to w acting on
the tangent vector e, — w,w Then, integrating (5.43) with respect to x and w and
using that

/ 3_<p(€y — wyw) dw = —/ p(w) divs: (e, — wyw) dw = —/ o(w)(—2wy) dw,
S2 Ow S2 S?2
which is deduced from Stoke’s Theorem on the sphere, we easily find (5.42). |

We denote by ©' the position-energy space ©' = ]Rg x RY and by df' its volume
element df’ = d§ de. We note that dv = |v[*d|v| dw = v/2¢ de dw.

Lemma 5.7 As o goes to 0, the current J%({,e,t) converges in the sense of dis-
tribution to J(&,e,t) given by (2.5). More precisely, for every ¢ = (¢,,v.) €
CHO' x [0,T],R?) with compact support in Rg X (0,00). x [0,T[, we have:

T T
lim/ / f‘-@bd@’dt:/ / F (vg—ﬁﬁ> (D) dt dby, (5.44)
a—0 0 ’ — 0 ’ = 85 —

where DT denotes the transpose of D.

We note that the right-hand side of equ. (5.44) is the weak form of that of equ.
(2.5).

Proof: We use the weak formulation (5.8) with ¢ = /2e9(&,¢,t) - D(2,w; €, €)
X, (vz) for test function. Since D is not smooth at v, = 0, we use the truncation
function x, which is smooth, vanishes identically for |v,| < p and is equal to 1
for |vz| > 2p. Hypothesis 5.2 provides all the necessary assumptions to allow the
passage p — 0 in (5.8). Therefore, this passage will be omitted in the following
proof and we just use 1) D as a test function as if it were smooth. Because of (5.22),
(5.23), we have for i € {y, z}:

(rege = wx B)- V) (VB D) = VB (0= (X B)- V) (D)

and

(Ve Di) ¢ — B* (Ve Di) - = Vehil(Di)y — B (D;)-] =0, onl.
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Therefore:
/ /f< 9 _(wxB). v)(\/ﬂ) D) dt o
_E/o /ﬁ|Um|fa((@g-2)+—8*(@w-2)dtdF

1 [T T
:__/ /fagw/)\/%dtdﬁz—/ / JYpdtdd,
aJo Je - 0 ’ -

which a posteriori justifies the introduction of the auxilliary function D. Thus, the
weak formulation (5.8) yields:

/ /,Ja T/Jdtdﬁ'—a/ /\/_faD —wdtd9+a/\/§flg.%|tod9
+/0 /efa(ﬂ'vﬁ—E-Vg)(\@gy)dtde. (5.45)

Now, we let o tend to 0. Because D € L*([0,1] x S?), for almost every (&,¢) €
R x RF, the first and second terms on the right hand side of (5.45) converge to 0.

Now, the limit of the last term exists and we have, because of Lemma 5.3:

lim/ /f% Ve(V2eD - )dtde—/ /fv£ [2ew(D - )] dt df

:/0 /,Fvg- ((25)3/2/0 /SQQ(Q-@ dxdw)dtd&’
:/OT/,Fvé- D" ] dt de/, (5.46)

Similarly, using (5.42), we have:
lirr[l)/ /fO‘E »)(V2eD - ¢ )dtde_/ /fo Vo) (V22D - 1) dt df
a—r 0 -

:/0/ FE- <\/_/ [ VD )da:dw)dtdﬁ’
:/OT/O,FE- ( 3/2//S2 da:dw)dtd&’

T 0
— / FE-—(D'y)dtds . (5.47)
0 ’ 88 -

Lemma 5.7 follows by collecting (5.46) and (5.47). |
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5.4 The continuity equation

To end the proof of Theorem 2.1, it remains to prove that equations (2.4) and (2.6)
hold true in the weak sense. This is the object of the following:

Lemma 5.8 For any test function (€, ¢,t) belonging to C*(0' x [0,T1), with com-
pact support in Rg X (0,00)s x [0, T], we have:

T
/ / (M@F%—Tf +J- (vg _Ea%> w) dtd9’+/ 47\ 2e Frip|i—o df' = 0.
0 4 - o'

(5.48)
Note that equ. (5.48) is the weak form of equs. (2.4) and (2.6).
Proof: We first define the function:
1
F*(,e,t) = —/ [z, &, |v|,w, t)dx dw, (5.49)
- 47T 0 S2 -

which weakly converges to F' as « tends to 0. Dividing equation (5.8) by «, and
using ¢ = (£, ¢,t) as a test function, we obtain the weak form of the continuity
equation, which looks exactly similar to (5.48) except that F and J are replaced by
F® and J“. Using the weak convergence of F* and J“ to F' and .J respectively (see
Lemma 5.7), allows to pass to the limit in the continuity equation for F'* and to
obtain equation (5.48). |

6 Properties of the diffusivity

In the next two propositions, we prove that the diffusion tensor D defined in (2.7)
satisfies the Onsager relation D(B)T = D(—B) and that it is positive definite, i.e.
(DY,Y) > 0.

Proposition 6.1 The diffusion tensor D satisfies D(B)" = D(—B).

Proof: For f(z,w), we define the transformation Jf: Jf(z,w) = f(z,—w).
We make the dependence of A° and D upon B explicit by writing A°(B) and D(B).
We begin by noting that J f is a solution of A" (-B)J f =Jg, Tf, =BT f_if
and only if the function f is solution of A°(B)f =g, f- = Bf,. This follows from
the reciprocity relation (3.9), and from:

A" (=B)Tf=TJAB)f , A(B)JTf=JA"(-B)f. (6.1)
Now, we have (see (3.2) for the definition of (-,-)s):

(A% (B)D;(B), I D;j(—B))s = (Di(B), A’(B)J Dj(—B))s.
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But on the one hand:
(A (B)Di(B), T Dj(~B)) s = (wi, T D;j(=B))s = —(wi, Dj(~B))s
and on the other hand, with (6.1):

(Di(B), A(B)ID;(—=B))s = (Di(B),JA” (-=B)D;(-B)),
= (Di(B),Jwj)s = —(Di(B),wj)s

Therefore, (D;(B),w;)s = (w;, Dj(—B))s, which is, up to the multiplication by
(22)%/2, the result to be proved. |

Proposition 6.2 The diffusion tensor D is positive definite: more precisely, for all
£ € R and all g9 > 0, there exists C = C(g9) > 0 such that:

2 2
DY,Y) =Y DYV, >ClYPP=C> V7, WEeR, Ve>g. (62)
=1

ij=1

Proof: Let Y = (yi,y2) such that |Y| > 0. From the definition of D we obtain
that:

(DY,Y) = (25)3/2/0 /S2 (Z wiyi> (Z Diyl) dr dw. (6.3)

Define ®(x,w) as follows:

2

O(z,w) = ZyiDi(a:,w). (6.4)

i=1
Then:
2
> wiyi = A0 (z,w),
i=1

and equation (6.3) reads:

OVY) = A0 = 20 ([ haloP o [ 0. i)

Sy

> (200)2 (10 Fags ) — IB'® Bas,) =0, (6.5)
Now, if there exists Y such that (DY,Y") = 0, the corresponding ® satisfies:
B*®_[Ls,) = 1P [12(s)- (6.6)

From the transposition of equation (3.18) to the adjoint operator B*, equation (6.6)
is possible only if @ is a constant function of w, on each connected component of

27



S_

(i.e. an element of C~, see section 3). Then, ®_ = J&, is the same constant.

Denoting by ®¢ = ®|,—g, ®; = ®|,—1and using (5.28), we have, for w, > 0:

1 1
o, = (I>1+7/ y- R, (w)da!
[oljwsl Jo = 7
1

= O + —=[yi(wisinb + wy(cosb — 1)) 4+ ya(—wi(cosb — 1) + wq sin b)].

B
Obviously, for &3 and ®; to be independent of w, the only possibility is y; = y2 = 0,
which contradicts the fact that |Y'| > 0. This ends the proof of (6.2). |
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