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1 Introduction

The evolution of a system of particles may be described at a microscopic
level (particle description) or at a macroscopic one (hydrodynamic models).
Kinetic models stand in between this two descriptions and are usually called
mesoscopic models. They are used to describe the evolution of a great number
of particles which are too many to be considered individually and are not in
thermodynamic equilibrium, see [16, 17, 41]. In hydrodynamic models, the
unknowns are macroscopic quantities like the particle density p = p(z,t). On
the other hand, in kinetic theory the unknown is the distribution function
f = f(z,v,t) representing the number of particles which at time ¢ > 0 are in
a position z with a velocity v, and satisfying a partial differential equation
of the form:

Oif +v0, f + FO, f = T_lQ(f) (1)

where 7 is the relaxation time, i.e. the average time between two successive
scattering events, F' is the force field acting on the particles, and @ is the
collision operator, describing the interaction of particles between them or
with other particles present in the domain. We will see later on (Section 2)
its many expressions. We just recall here that, in its more general form, @
acts only on the velocity v, and not on the position z. In many applications,
the force field F' is given in terms of external forces: gravitational, electric
or crossed electro-magnetic forces; or it depends on the particles density, for
example by means of the Poisson or Maxwell equations. In the remainder, we
will focus on the numerical approximation of the right hand-side of equation
(1), i.e. the collision part, refering the reader to [29] for what regards the left
hand-side, i.e. the transport part.

The numerical approximation of kinetic equations is usually based on a
time splitting (see [47]): one time step for the transport part and one for the
collision one. More precisely, we consider equation (1) supplemented by the
initial condition f(z,v,t = 0) = fo(z,v). The solution after one time step At
may be obtained by the sequence of two steps on the intervals At/2. First,
we integrate the collision part: collision step. We remark, that in this case,
the problem is space homogeneous, i.e. is independent with respect to the
space variable z. Thus, we have for all z,
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atf:T_lQ(f) J f(flf,'l},(]) :fo(.fl?,”U),
for a time step At/2. Then one approximates the transport part (convection
step), using the result of the collision step as initial condition,
6tf+v6wf:07 f(.’E,U,O) =f(.’E,1),At/2).

In other words, this splitting method uncouples the transport and collisions
terms. It is proven to be convergent (see [43]) in some particular case. More-
over, in one time step At, we obtain an approximation of f(x,v, At), and the
process is iterated to obtain the numerical solution at later times.

We can discretize the collision part in many ways: discrete velocity meth-
ods, particle methods, finite volume, Monte Carlo or spectral methods. A
survey of these different approximations will be given in Section 3. Let us
remark that the time splitting scheme described above is first order accurate
in space and time. Note that the order of accuracy of this splitting does not
improve even if we solve with great accuracy both collision and convection
steps.

In many engineering applications, the Euler or Navier-Stokes equations of
fluid dynamics are not relevant and an accurate kinetic description through
the Boltzmann equation of rarefied gas dynamics is required. From a com-
putational point of view the numerical solution of the kinetic model is much
more expensive than hydrodynamics one. This fact represents a real chal-
lenge for numerical methods, mainly due to the large number of variables
in the problem and to the multi-dimensional nonlinear integral that defines
the collision operator (see Section 2). Moreover, this integration has to be
handled carefully since it is at the basis of the conservation properties of the
Boltzmann equation.

The paper is organized as follows. In Section 2, we introduce the Boltz-
mann and Fokker-Planck operators describing the scattering of the particles,
and some simplified versions like Lorentz, BGK and linearized models. In
Section 3, we briefly describe the different numerical methods applied for
the discretization of the collision operators. Section 4 is devoted to the pre-
sentation of the “Asymptotic Preserving Schemes”. Finally, in Section 5 we
present the numerical test which can be used to compare the various collision
operators and approximation methods.

2 The collision operators

We introduce some operators which are more frequently used in the modeling
of the particle collisions.
2.1 Boltzmann

The Boltzmann operator (derived in 1872) is a nonlinear, integral operator
of the form:
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N =[ [ B0~ f0) fw)dds @)

where the scattering cross section B = B(|v — v|,0) represents the rate of
particles which are scattered by the collision event from the velocities v and
v’ to the velocities v, and v, respectively. We will call target particles those
which are identified by the distribution function f, and f,. In (2), we denote
by w the velocity angle, i.e. v = |v|w with w € S2%, and we call deviation
angle the angle § between the two relative velocities [v — v.| and o' — v}].
Moreover, we recall a possible parameterization of the velocities after the
scattering event (see [16]):
, UV + Uy V4 Vs

V= + v —viw, o= 5 — v — vi|w.

The scattering cross section B is usually determined by the type of interaction
that the particles undergo. We refer to [56] for a review about the recent
results in the mathematics theory of such collision operators.

2.2 Fokker-Planck-Landau

The scattering cross section B depends on the deviation angle 6, and on a
small parameter €, when taking into account also small deviation. For exam-
ple in the Coulomb interaction case B = B¢ is defined by:

. 1 )
B = 0'((9) (log sin(s/2)> [sin(9/2)]4 Xle,n] (0)7

When ¢ — 0, collisions become grazing, i.e. the scattering cross section
concentrates at § = 0, and the Boltzmann operator converges to the
nonlinear partial integro-differential Fokker-Planck-Landau operator (see
[22, 25, 26, 34]):

Qpp(f,f,)w):vv-[/ B —v)(Vof fu = Vo fu Pdvs] . (3)

Vs

where &(2) = ||z||7(||z]|>Id — z ® z), and 7 is related to the interaction po-
tential. The more relevant case (from a physical point of view) corresponds
to v = —3, which is the Coulomb case.

2.3 Lorentz models

We now introduce the simplified versions of the Boltzmann and Fokker-
Planck-Landau operators, known also as the Lorentz models, see [38]. Let us
consider two species of particles of masses m, and mg such that: m, < mg,
for instance they can be electrons and atoms. Then, the distribution function
of the light particles f* must satisfy the following kinetic equation:
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aef* +v0f* = Q(f, f*) + Q(F*, )

Developing in terms of m,/mg the collision operator Q(f¢, f?), and passing
to the limit mqy/mg — 0, one gets that, at the leading order, the collision op-
erator is independent with respect to the modulo |v|, see [24]. More precisely,
|v| appears in the first term of the above expansion only as a parameter, and
the only variable changed by the scattering event is the velocity direction w.
This fact, is translated in the physical property that collisions are elastic (or
equivalently that the target particles are immobile), and it holds both for the
Boltzmann and the FPL operators. Their respective limits are the so called
Boltzmann-Lorentz operator

@BL(f)(w) = / B(lw — ') (f(w) = f(w)) dw', (4)
SZ
and the Fokker-Planck-Lorentz operator
Qre(f) = Auf(w), (5)

also known as the Laplace-Beltrami operator. A numerical validation and a
mathematical justification of this asymptotic may be found in [13, 20, 39].
2.4 BGK and linearized operator

Other simplified models are widely used, for example the BGK model. It
consists in a simple relaxation of the distribution f toward the local thermo-
dynamic equilibrium or the Maxwellian M

an =0 -1af, M) =5 Lones (-EE) @
’ (27T)3/2 2T ’
where p, u, T are the density, mean velocity and temperature of the gas. We
refer to [1, 27, 42] for more details.
Other simplified models are the linearized Boltzmann equation which are
used in semiconductor modeling. In such models the target particles are re-
placed by a Maxwellian. See [41] for more details about such models.

2.5 Properties of the collision operators

During the evolution process, the collision operators (Boltzmann, FPL and
BGK) preserve mass, momentum and energy:

1
|, et newav=o. o =

’1)2

and they satisfy the H-theorem, which express the entropy decay:
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m=[ fosna, G = [ QU.posi <o
RS RS

The H-theorem implies that any equilibrium distribution function, i.e. any
function f for which Q(f, f) = 0, has the form of a local Maxwellian distri-
bution M.

We remark that, as the relaxation time 7 — 0 in (1), the distribution
function f approaches the local Maxwellian M defined by (6) and its moments
(p,u,T) solve the Euler equations of gas dynamics, see [16].

3 Numerical methods

The main numerical methods usually applied in kinetic theory are: the dis-
crete velocity method (DVM), the spectral method (SP) and the Monte Carlo
method (MC). These methods correspond to different ways of representing
the distribution function f.

3.1 Discrete velocity method

In the DVM the distribution function f is discretized and known on a fixed
Cartesian mesh: f;(v,t) = f(v;,t) for i € Z3 The approximation of the
Boltzmann equation by means of such methods begins with the works [8, 55].
The difficulty with this method is that quadrature formulae of the collision
sphere are not well adapted with Cartesian grids. In fact, the consistency of
these methods relies on the uniformity of repartition of Cartesian grid points
on a sphere that can be related to problems in number theory. The discretized
operator can be written as a sum of systems that involve admissible (i.e.
cospherical) quadruples of velocities:
di _ > BHE(fufi— fifi),

dt (i,4,k,1)EA

where A is the set of (triple)indexes of cospherical velocities and ij’ are ap-
proximated values of the scattering cross sections. Once this system is splitted
(known as 4-velocities or Broadwell models), it can be solved analytically. The
main advantage in these methods is that each of this 4-velocities model can
be interpreted as a model of admissible microscopic collision. Therefore, by
construction, it is conservative and entropy decaying.

A series of paper have been written to obtain such numerical discretization
for the FPL equation [11, 9, 10, 23, 37, 52], for BGK models [42] and for
Lorentz models [20, 39].

Let us emphasize that these methods permit to obtain conservative and
entropy schemes, i.e. the properties which insures the large time behaviour of
the approximated solution as explained later on. Finally, we suggest a forth-
coming book [3] which presents the state of the art in DVM approximations.
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3.2 Spectral methods

The SP method has been recently proposed in order to approximate Boltz-
mann [49] and Fokker-Planck-Landau [50] operators. We briefly describe the
idea of the method and refer to previous references for more details. Consider
the FPL operator defined in (3). For simplicity, we assume that the support
of the distribution function is included in the ball B(0, R/2), R > 0. Next we
approximate the distribution by a partial sum of a Fourier series,

Intoy=" > ful)e 'R,
ke[_n7“7n]3

where k=(ki, ks, k3), n the number of half modes in each direction, and fj,
is the k—th Fourier mode, see [12]. Considering the approximation fn(t,v),
the collision part of (1), with collision operator (3), reduces to a differential
system the form:

dd_f;k _ [%]7% Z . [B(l,m)_B(m,m) ,

l,me(-n,..,n]®
I+m=k

where B(I,m) is computed once for all using a recursive quadrature formula.
In other words, SP method amounts to approximate the Fourier coefficient
B(l,m) and to compute several sums of discrete convolutions. This can be
done using a n®logn algorithm based on a Fast Fourier Transform.

The SP approximation preserves mass, whereas variations of momentum
and energy are controlled by the spectral accuracy. On the other hand, no
information is available on the equilibrium states, the entropy decay and
the positivity. One of the main advantage of the SP methods relies on the
fact that both Boltzmann and FPL equation can be treated within the same
framework (or numerical codes). The only difference being in the evaluation
of the coefficient, since the structure of the differential system is unchanged.

3.3 Monte Carlo method

The most commonly used method is probably the MC method. It is based on a
particle description of the distribution function, see [46], f = >~ 0(s—z:)@(v—v;)>
and on stochastic methods to evaluate the collision integral. We note that in
this case, the transport part is solved exactly by moving the particle according
to their velocity, see [29].

Pioneers of these methods are the direct simulation Monte Carlo method
(DSMCQ), see [4, 5] and later the modified DSMC method, see [45]. Also, some
convergence results are available in [2]. Finally, we refer to [47] for a recent
presentation of these methods.

The common feature of these methods is to perform collisions between
randomly chosen particles. These methods are not suitable for highly collision
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regions since DSMC methods require a huge number of collision (i.e. they are
too expensive).

Recently a different approach is proposed, with the goal of constructing
simple and efficient numerical methods for the solution of the Boltzmann
equation in regions with a large variation in the collision time 7, [15, 32, 48,
51]. These algorithms, called time relaxed Monte Carlo (TRMC) methods
consists in projecting the solution towards the local Maxwellian for 7 < 1.

4 Asymptotic preserving schemes

As announced, a relevant situation where all the above methods lose their
effectiveness is when considering flows where the collision time 7 (equiva-
lently the mean free path or the Knudsen number) varies over several orders
of magnitude. In this situation there exists some highly collisional regions
and others which are almost free-transport regions. Domain decomposition
methods have been proposed for this problem. In these methods the compu-
tational domain is divided into a fluid region in which the system is treated
by hydrodynamic equations as the Euler system, and a kinetic region, where
the Boltzmann equation is used. Suitable matching conditions are then used
to couple the two regions [7, 21, 40]. The main difficulties of this approach is
the detection of the two regions and the description of boundary conditions
at their interfaces.

Another alternative to deal with this difficulty is to use the “Asymptotic
preserving schemes” (APS), i.e. compatible approximations with the large
time behaviour. There are a lot of work that attend this difficulty. Let us
mention, for instance, neutron transport or radiative transfer in the so called
optically thick limit [36], Lorentz type operators [14] or the semi-conductors
modeling [31, 35]. Let us also quote related papers for hyperbolic system
with stiff source terms [18, 30, 33, 44]. Indeed, once discretized in velocities
(using DVM), the kinetic models can be seen as a linear system of transport
equations. This also is linked to the works on kinetic schemes for hyperbolic
systems [54]: one replace the hydrodynamic system of interest by a kinetic
formulation (usually of BGK type) in the 7 < 1 limit, i.e. the collision step
reduces to the projection on the Maxwellian with the same moments. APS can
be interpreted as a sort of kinetic scheme for the underlying Euler equations
of gas dynamics [21].

5 Numerical test and conclusion
We refer to [12] for a comparison of the computational efficiency of DVM

and SP methods. The proposed bench marks are homogeneous (exact so-
lution, isotropic case, relaxation of temperature) and in non homogeneous
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(Riemann problem with a finite Knudsen number or two interacting streams
of particles).

The coupling with the transport part, to treat non-homogeneous situation,
creates oscillations or discontinuities in velocity space and the treatment of
the collision operator by fast algorithms becomes more complex, then it is
necessary to use a robust method to obtain an accurate description of the
distribution function. In [12], the Vlasov equation is solved by a high order
semi-Lagrangian scheme preserving mass, impulsion, energy and positiveness
(see also [29] for a review of the numerical treatment of the transport part).
See also [28] for a comparison between MC and spectral method for the
Boltzmann operator.

Let us also mention the focalization test [19] that can serve to determine
whether or not a given collision operator have smoothing properties (like the
FPL operator) or not (like the propagation of singularities with the Boltz-
mann equation as proved in [6])

A more complete description of the various models (Section 2), the various
numerical methods (Section 3) and the numerical test (either in the homoge-
neous or the non-homogeneous cases) is needed to compare the approaches
from the point of view of computational efficiency or large time behaviour
(based on the preserved physical properties which ensure the trend to ther-
modynamic equilibrium). The brifly presented APS are a very promising
direction of research (see Section 4) for treating more realistic situations.
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