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Abstract

In this paper, we present a numerical scheme for a non linear Fokker-
Planck equation of one-dimensional granular medium. We consider a
kinetic description of a system of particles undergoing nearly elastic
particles and interacting with a thermal bath. We construct a numer-
ical method which preserve all the properties of the continuous model,
conservation laws and decay of the entropy. Moreover the discretization
is such that, on a fixed grid, we deal with arbitrary small temperatures
for the bath. Explicit and implicit time discretization are analyzed
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1 Introduction

The model we consider has been proposed by Mac Namara and Young [23],
and has been studied from mathematical point of view ([5], [4], [3]). We also
refer to ([1, 17]) for kinetic modelisations of inelastic collisions. The model is
derived from a system of particles moving in one dimension and that undergo
inelastic collision. The unknown of the kinetic model is the distribution func-
tion that represents the number of particles with velocity v ∈ R, at time t.
The collisions are modeled by a Boltzmann type collision operator, for inelastic
collision with an hard sphere cross section. The collisions being inelastic, they
lead to a decay of energy and the distribution function concentrates for large
time on zero velocity. When there is a lot (N � 1) of such collision, weakly
inelastic, the Boltzmann equation reduces to a Fokker-Planck type equation,
[24, 25].

In this work, we consider such a system of particles immersed in a thermal
bath at constant temperature σ, which counterbalances the loss of energy due
to inelastic collisions. When σ = 0, the distribution function converges to a
Dirac mass at origin in the sense of weak convergence of measure [3]. In the
case σ > 0, the equilibrium states behave like exp(−|v|3) for large velocities,
[4]: the equilibrium state are not Maxwellian.

Let us also mention that some works has been devoted to the hydrodynami-
cal limit of this system: one obtains a system of 2 conservation laws for the
density ρ and the momentum ρu, that can be written as the Euler system for
isotropic gases, with a pressure law P (ρ) = ργ, γ = 1/3 (the exponent 1/3
yields to mathematical difficulties since the obtained system lies in between
classical gas dynamics, γ > 1, and pressure less gas, γ = 0, that have very
different behavior).

The aim of this paper is to present a deterministic discretization that is com-
patible with the known properties of the operator. Moreover, the method is
such that we can treat any temperature of the bath with the same grid, in
other words, as σ = 0 goes to zero the scheme degenerate to a conservative
and entropy discretization of the pure granular case. The method is close to
the one developed for the Fokker-Planck-Landau equation or the Kompaneets
equation (Cf. Buet and al, [7, 9, 10]). For generalized discrete models of ki-
netic equations, we refer to ([20]). Let us emphasize that the proposed method
has a linear computational cost. Explicit and Implicit time discretization are
detailed. Implicit schemes appear to be more efficient.
Some numerical results are presented. In particular, the non-Maxwellian equi-
librium states are obtained.

2 The one dimensional model of granular me-

dia

We consider a simplified 1D model of granular media described by example in
[4]. The particles are described by their distribution function f(v, t) of velocity
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v and time t. This function obeys

∂tf = ∂v(Ff + σ∂vf), (2.1)

where Ff is the pure granular term,

F (v) =

∫
R
|v − v′| (v − v′)f(v′)dv′, (2.2)

and, σ is an arbitrary positive constant related to the temperature of the
bath. All the more, σ∂2

vf represents the thermal reservoir, where σ is linked
to the temperature. Let us define ρ and uf as the mass and the mean velocity
respectively

ρ =

∫
R

f(v′)dv′, uf = 1/ρ

∫
R

f(v′)v′dv′. (2.3)

2.1 Properties of the continuous model

The properties of this model are the conservation of mass and momentum, the
decay of the energy for (σ = 0) and of the entropy:

Definition 2.1 Let us define the temperature and the entropy by respectively

T (f) =

∫
v′
|v − uf |2f(v)dv, (2.4)

E =

∫
σ[ln(f(v))]f(v)dv +

1

6

∫
v

∫
v′
|v − v′|3f(v′)f(v)dv′dv, (2.5)

and let be Eα(f) and Hα(v), defined by

Eα(f) =

∫ ∫
|v − v′|αf(v′)f(v)dv′dv, (2.6)

Hf,α(v) =

∫
v′
|v − v′|αf(v′)dv′. (2.7)

We shall omit the dependency of H with respect to f when there are no
ambiguity.

Properties 2.1.1 Then, we get

∂fE3(f) = 2

∫
H3(f, v)dv, (2.8)

∂vF = 2

∫
|v − v′|f(v′)dv′ = 2H1(v), (2.9)

3∂vH3 = F. (2.10)
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These properties can be easily checked, by splitting the integrals into v′ > v
and v > v′.

The existence and uniqueness of an equilibrium state are given in [4]. The
strict convexity of E , follows from the following result that will be also useful
to prove the entropy decay for an implicit scheme:

Lemme 2.2 For any function f in

℘̃ = {f : (1 + |v|4)f ∈ L1(R),

∫
f = 0 and

∫
vf(v)dv = 0},

E3(f) ≥ 0.

Proof. Let f ∈ C∞0 , and integrable. We have:

H3(f, v) =

∫
f(v′)|v − v′|3dv′ = −

∫
f(v − v′)|v′|3dv′,

and, differentiating with respect to v

∂vH3(f, v) = 3

∫
f(v′)|v − v′|(v − v′)dv′ = −

∫
∂vf(v − v′)|v′|3dv′,

which gives the following identity

∂2
vH3(f, v) = 6H3(f, v) = −H3(∂

2
vf, v),

Then,

E1(f) =

∫
f(v)H1(f, v)dv =

1

6

∫
f(v)∂2

vH3(f, v)dv

= −1

6

∫
∂vf(v)∂vH3(h, v)dv′ = −1

6
E3(∂vf(v)).

Moreover ∂2
vH1(f, v) = 2f(v), E1(∂vf) = −

∫
f 2dv < 0, and then

E1(∂vf) = −1

6

∫
∂2

vfH3(∂
2
vf)dv = −1

6
E3(∂

2
vf),

so we have E3(∂
2
vf) =

∫
f 2(v)dv > 0, and ∂2

vf ∈ ℘.

Since for any g ∈ C∞, with compact support and such that
∫

g = 0 and∫
vg(v)dv = 0, we can find a function f ∈ C∞, integrable and such that g = ∂2

vf
thus, E3(g) = 6

∫
f 2(v)dv. By density, the result hold for any function of ℘̃.

For sake of simplicity, we omit the index and set E = E3 and H = H3 in the
reminder.
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2.2 Pure Granular

We suppose σ = 0 in (2.1), and let f = f(t, v) be a function so that:

∂tf = ∂v(Ff). (2.11)

By the definition of F we have ∫
v

Ffdv = 0. (2.12)

We can write the weak formulation:

Proposition 2.3 Let f be a solution of (2.11). Then, f satisfies for all test
functions φ:∫

∂tfφ = −
∫

∂vφFf = −
∫ ∫

∂vφ|v − v′|(v − v′)f(v)f(v′)dvdv′

= −1

2

∫ ∫
(∂vφ− ∂v′φ

′)|v − v′|(v − v′)f(v)f(v′)dvdv′ (2.13)

by symmetry of v and v′. We can obtain also the weak form∫
∂tfφ = − 1

2ρ

∫
(∂v(φ)− ∂v′(φ

′)) (F − F ′)ff ′dvdv′ (2.14)

These equations verify mass and momentum conservation, and entropy decay.

Proof. Taking respectively φ = 1, v, v2 in (2.13), we get respectively mass and
momentum conservation, and the temperature decay. For φ = v2 and ρ = 1

∂t

∫
fφ = −1

2

∫ ∫
(2v − 2v′)|v − v′|(v − v′)f(v)f(v′)dvdv′

= −
∫ ∫

|v − v′|(v − v′)2f(v)f(v′)dvdv′ = −E(f).

So dt

∫
v2f ≤ 0 implies the temperature decay, and the equilibrium corre-

sponds to E = 0.

Moreover, using 3∂vH = F , and dfE = 2
∫

H we obtain for φ = 3H(v):

dtE = 3

∫
∂tfH = −(1/2)

∫ ∫
(F (v)− F (v′))|v − v′|(v − v′)f(v)f(v′)dvdv′.

(2.15)
Note that F is strictly increasing:

∂vF =

∫
2|v − v′|f(v′)dv′ > 0.

Therefore (F (v)− F (v′))(v − v′) ≥ 0, and dtE ≤ 0. Thus we prove the decay
of entropy). If we suppose that there is conservation, i.e. dtE = 0, as F is
strictly increasing, we get f(v) = 0 and by the conservation of mass, f(v) is
of the form ρ · δ(v − u).
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2.3 Case of the granular immersed in a thermal bath

Let us now consider the case σ 6= 0 in the equation (2.1). Let M define as
follows

∂vM =
−F

σ
M, (2.16)

i.e.

M(v) = C exp(
−1

3σ
H(v)). (2.17)

We rewrite the equation (2.1)

∂tf = ∂v(σM∂v(f/M)) =
σ

ρ
∂v

(∫
v′

fM∂v(f/M)− fM ′∂v′(f/M)′dv′
)

,

where ρ =
∫

f(v)dv denotes the mass and because the second term is zero by
integrating by part and using 2.16 and 2.12:∫

M ′∂v′(f/M)′dv′ = −
∫

∂v′M
′(f/M)′dv′ = − 1

6σ

∫
F (v′)f(v′)dv′ = 0

Then, we can write the following weak symmetrized form of (2.1):

∂t

∫
fφdv =

−σ

2ρ

∫ ∫
(∂vφ− ∂v′φ

′) ff ′ (∂v log(f/M)− ∂v′ log(f/M)′) dvdv′.

(2.18)
The mass and momentum conservation, as the decay of entropy, are obvious,
by choosing φ = 1, v, log(f/M), respectively.

Note that the above formulation has a structure close to the Fokker-Planck-
Landau one’s, in the so called log form, that has been studied by the authors
[7, 2]. The only terms in the above expression that can be modified without
changing the properties of the operator (conservation of mass, momentum and
the decay of entropy) is the product ff ′.

3 Discretization

In this section, we introduce a discrete version of the equation (2.1), that de-
generates correctly to the pure granular equation, when σ → 0, i.e. ”an asymp-
totic preserving scheme”. Moreover, this scheme must conserve the properties
of conservation of the mass, and momentum, as the decay of entropy.
We first deal with the pure granular case, which brings up the following prob-
lem: find a scheme that preserve the decay of entropy.
Initially designed for the Fokker-Planck linear equations, the method of Chang-
Cooper (cf. [16]) allowed us to build such a discretization.
For all the different schemes, we consider an uniform grid in velocity:

vi = i∆v,
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for i = 1, N . The macroscopic quantities are defined using standard quadrature
formula: for the mass

ρ =
∑

i

fi∆v,

the momentum
ρuf =

∑
i

fivi∆v,

and the temperature

T =
∑

i

fi(v − uf )
2∆v.

3.1 Case of pure granular: σ = 0

This section is devoted to the limiting case σ = 0. We present two different
methods.

3.1.1 First method

Let us first consider the more natural discretized version of the granular equa-
tion (2.11). The term F is discretized using a standard quadrature formula

Fi =
∑

j

|vi − vj|(vi − vj)f(vj)∆v. (3.1)

This satisfies ∑
i

Fifi = 0, (3.2)

by symmetry and Fi+1−Fi ≥ (∆v)2ρ and thus it is strictly increasing. Indeed,
as the grid is uniform, one gets:

vi+1 − vi = ∆v, |vi+1 − vj| > |vi − vj| −∆v,

thus

Fi+1 − Fi ≥ ∆v(
∑

j

|vi+1 − vj|fj∆v)−∆v
∑

j

(vi − vj)fj∆v

≥ ∆v
∑

j

(|vi+1 − vj| − (vi − vj))fj∆v = ∆v
∑

j

Ki,jfj∆v

1. if vi+1 > vj then Ki,j = ∆v > 0,

2. if vi+1 < vj then Ki,j = 2vj − vi+1 − vi = 2(vj − vi+1) + ∆v > ∆v.
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So we get the inequality Fi+1 − Fi ≥ (∆v)2ρ.

We consider the following upwind scheme for this transport equation (in the
velocity variable):

∂t

∑
i

fiφi = − 1

∆v

∑
i

((φi+1 − φi)F
−
i + (φi − φi−1)F

+
i )fi. (3.3)

Let us mention that the N terms Fi can be computed in O(N) operations using
a splitting of the sum into the j before and after vi that reduce the complexity
of their evaluation. Note also that there exists some index i0 such that Fi < 0
for all i < i0 and Fi > 0 for all i > i0 (this index can move in time). Moreover,
we have F1 < 0 and FN > 0 and thus, no boundary condition are needed: we
don’t have to prescribe the value of f0 of fN+1.

The mass and momentum are conserved taking φi = 1, vi in (3.3) and using
the condition (3.2). The evolution of the temperature is

dT

dt
= −6E − (∆v)

∑
i

(F−
i − F+

i )fi.

The second term of the right hand side is positive and one cannot conclude
about the decay of the temperature. For the discrete entropy, E, the same
conclusion holds.

However, discrete steady state for this scheme exists: consider state such that
i0 with fi = 0 for all i > i0+1 or i < i0. The values of the distribution function
on the two non vanishing points and the value of i0 are determined from mass
and momentum conservation:

fi0+1 + fi0 = ρ, vi0+1fi0+1 + vi0fi0 = ρuf . (3.4)

3.1.2 Second method

We define the discrete analog of H(v) and the entropy E (2.5) by

Hi =
1

3

∑
j

|vi − vj|3fj∆v,

and

E =
1

2

∑
i

Hifi∆v.

A second discretization can be obtained in the pure granular equation. By
integration by parts, we get:∫

φ∂v(Ff)dv = −
∫ ∫

∂vφ(v)|v − v′|(v − v′)f(v)f(v′)dv′dv.
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The analogous discrete weak formulation is

∂t

∑
i

fiφi∆v = −(∆v)2
∑
i,j

Dφj
ififj|vi − vj|(vi − vj), (3.5)

where the finite difference operator at point i is uncentered in a direction
depending on the point j as

Dφj
i =

φi+1 − φi

∆v
1i<j +

φi − φi−1

∆v
1i>j. (3.6)

This particular choice can be physically interpreted going back to a Boltzmann
quasi-elastic monodimensionnal model.
First, a symmetry can be output of (3.5), to obtain

∂t

∑
i

fiφi∆v = −1

2
(∆v)2

∑
i,j

(
Dφj

i −Dφi
j

)
fifj|vi − vj|(vi − vj). (3.7)

Let us consider two particles with velocity vi and vj (with i < j for example).
The only elastic collision between these 2 particles consist in swapping the
both, but this does not change the distribution function. If one allows slightly
non elastic collisions but preserving the momentum, i.e. the postcollisional
velocities have the same average (the particle have the same mass) as before
the collision. Therefore, the less inelastic post-collisional velocities are (vi+1,
vj−1) and (vi−1, vj+1).
To decrease the energy of the system is equivalent to decrease the relative
velocity, so the velocities must get closer. The latter corresponds to a increasing
of energy and is not physically relevant. The choice which corresponds to a
minimal decrease of energy, is thus (vi, vj) 7→ (vi+1, vj−1) (for i < j).

Proposition 3.1 The scheme (3.6)-(3.5) preserves mass, and momentum,
and the decay of energy and of entropy E = 1

2

∑
i Hifidv with Hi = 1

3

∑
j |vi −

vj|3fj∆v.

Proof. Standing (φ = 1) in (3.6), one gets mass conservation.
For momentum, let (φi = vi), (3.6) write as 1i<j + 1i>j, and (3.5) is null.
Using (3.7) with (φi = v2

i ) one gives:

2
dT

dt
= −(∆v)2

∑
i<j

(v2
i+1 + v2

j−1 − v2
i − v2

j )fifj|vi − vj|(vi − vj) (3.8)

+(∆v)2
∑
i>j

(v2
i−1 + v2

j+1 − v2
i − v2

j )fifj|vi − vj|(vi − vj) ≤ 0.

For the entropy, one obtains:

2
d

dt
E = −(∆v)2

∑
i<j

(Hi+1 −Hi − (Hj −Hj−1))fifj|vi − vj|(vi − vj)

+(∆v)2
∑
i>j

(Hi−1 + Hj+1 −Hi −Hj)fifj|vi − vj|(vi − vj).
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Using the convexity of w → |w − a|3, one find that the sequence Hi+1 −Hi is
increasing in i or equivalently in vi and then

d

dt
E ≤ 0.

Lemme 3.2 The system (3.5) has a global positive solution, for any positive
initial data (f 0

i > 0, for all i).

Proof. The existence of a solution for this semi-discretized system can be easily
obtained using a Cauchy-Lipschitz theorem for small time. This solution is
global in time using a minoration of the solution by retaining only the loss
term and the mass conservation (that provides an upperbound). Indeed, if f
is solution, the corresponding discrete velocities system for each i is

∂tfi = (∆v)[fi−1

∑
i<j fj(vi−1 − vj)

2 + fi+1

∑
i>j fj(vi+1 − vj)

2]

−(∆v)fi

∑
j fj(vi − vj)

2.

Moreover,

(∆v)
∑

j

fj(vi − vj)
2 < K,

where K is a constant which depends of the length of the domain, and of the
conserved quantities (mass and momentum). Thus, with

∑
i fi = ρ =constant,

we get
ρ ≥ fi(t) ≥ f 0

i exp(−Kt).

Therefore, the maximal solution is global in time.

Equilibrium state for this scheme:

Lemme 3.3 dT
dt

= 0 if and only if fi = 0 for i < i0 and i > i0 + 1, i0 and
fi0 , fi0+1 are determined using mass and momentum conservation.

Proof. We start from (3.8). The converse is obviously true. For the direct
implication, let f be such that the right hand side of (3.8) is null, but with a
fixed mass and momentum. Since the mass is not null, they necessary exist an
index i0 such that fi0 > 0. Since in the r.h.s. of (3.8), all the terms in factor
of fifj are non positive except for j = i − 1 orj = i + 1, this leads to fi = 0
for i < i0 − 1 and i > i0 + 1. Now, since the term in factor of fi0−1fi0+1 is also
negative thus one of fi0−1 and fi0+1 is null. Equation (3.4) determines i0 and
the value of fi0 fi0+1.

If one compares the two schemes proposed here, the first one is uncentered at
a ”macroscopic level” that depends only on the integrated value of F whereas,
the second consists in a ”microscopic” uncentered scheme where only the phys-
ically relevant collision are allowed.
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3.2 Chang-Cooper method for a Fokker-Planck linear
equation

Before using the Chang-Cooper method for the granular media, we briefly
recall this method on a more simple linear Fokker-Planck equation:
set F = v in (2.1),

∂tf = ∂v(vf + σ∂vf), (3.9)

that can be put under the form

∂tf = σ∂v(M∂v(f/M)),

where M is a Maxwellian, and M(v) = exp(−|v|2/2σ).

Originally, the method of Chang-Cooper was designed to preserve equilibrium
state of Fokker-Planck equation. Another interesting feature of this method
is its ability to degenerate correctly to an upwind scheme, for the equation of
convection, when σ → 0, with velocity grid fixed. Moreover, it’s an entropy
decaying method and not just an equilibrium state preserving method.
We set Mi = M(vi). This method can be written as

∂tfi =
Fi+1/2 − Fi−1/2

∆v
,

with Fi+1/2 = σ
∆v

M̃i+1/2(
fi+1

Mi+1
− fi

Mi
), where

M̃i+1/2 =
MiMi+1

Mi+1 −Mi

(ln Mi+1 − ln Mi),

thus

Fi+1/2 =
σ

∆v
(fi+1 − fi) +

σ

∆v
(−1 +

M̃i+1/2

Mi+1

)fi+1 +
σ

∆v
(1−

M̃i+1/2

Mi

)fi.

Analyze each term:

σ
∆v

(1− M̃i+1/2

Mi
) = σ

∆v
(1− Mi+1

Mi+1−Mi
(ln Mi+1 − ln Mi))

= σ
∆v

ln Mi+1

Mi
( 1

ln Mi+1−ln Mi
− Mi+1

Mi+1−Mi
)

= − σ
∆v

ln Mi+1

Mi
( 1

ln
Mi

Mi+1

− 1
Mi

Mi+1
−1

).

Setting w = ln(Mi/Mi+1), then we get:

σ

∆v
(1−

M̃i+1/2

Mi

) =
σ

∆v
w(

1

w
− 1

exp w − 1
)

=
σ

∆v
wh(w) =

σ

∆v
wθ,
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where θ = h(w) and h is the function

h(x) =
1

x
− 1

ex − 1
.

Now, h is positive on R, decreasing and varies between 0 and 1.
Similarly, the second term reads:

σ

∆v
(−1 +

M̃i+1/2

Mi+1

) =
σ

∆v
wh(−w),

and h(−w) = −h(w) + 1, thus

σ

∆v
(−1 +

M̃i+1/2

Mi+1

) = − σ

∆v
w(θ − 1).

Then

Fi+1/2 =
σ

∆v
(fi+1 − fi) +

σ

∆v
(−w(θ − 1))fi+1 +

σ

∆v
(wθ)fi

=
σ

∆v
(fi+1 − fi) +

σw

∆v
(θfi + (1− θ)fi+1).

We get an ”upwind” scheme, mixed with a ”θ-scheme”: this is the Chang-
Cooper method.

It is easy to verify that this discretization correspond to the discretization of
the weak formulation of the FPL equation

∂tfiφi =
∑

i

σ(Dφ)i+1/2(Mi+1/2D(f/M)i+1/2), (3.10)

where Dg stands for the centered finite difference i.e. D(g)i+1/2 = (gi+1 −
gi)/∆v and the coefficients Mi+1/2 is an average of the value between Mi and
Mi+1 to be defined. Such type of scheme is by construction entropy decaying
and provide the good equilibrium state, see [2]. By taking Mi+1/2 as

Mi+1/2 =
MiMi+1

Mi+1 −Mi

log(Mi+1/Mi), (3.11)

this gives the Chang-Cooper scheme.
This scheme degenerates toward an upwind scheme for ∂tf = ∂v(vf) when
σ → 0. Indeed, the scheme (3.10) with the choice (3.11) reads:∑

i

∂tfiφi =
∑

i

2σ(D∗φ)i+1/2
log(Mi+1/Mi)

Mi+1 −Mi

(fi+1Mi −Mi+1fi),

using

σ log(Mi+1/Mi) =
−v2

i+1 + v2
i

2
= −∆vvi+1/2,
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with vi+1/2 = (vi+1 + vi)/2. Moreover, for i such that vi > 0

Mi

Mi+1 −Mi

→ −1,

as σ → 0 whereas it tends to 0 if vi < 0. Thus the limit of the scheme as
σ → 0 is

∂tfi = v+
i+1/2(fi+1 − fi) + v−i−1/2(fi − fi−1)

∂tfi = 2vi+1/2(fi+1 − fi)1vi>0 + 2vi−1/2(fi − fi−1)1vi−1<0

denotes the positive/negative part of x i.e. x± = (x± |x|)/2.

3.3 Discretization with σ 6= 0

Taking the granular equation (2.1), we look for a discretization similar to the
FPl one’s, based on the Chang-Cooper method. Moreover, this scheme must
preserve the properties of conservation and of decay, and degenerate to the
equation of pure granular, when σ → 0.

3.3.1 A discretization based on the symmetric form

We define the discrete analog of H(v) and the entropy E (2.5) by

Hi =
1

3

∑
j

|vi − vj|3fj∆v,

and

E = σ
∑

i

fi ln(fi)dv +
1

2

∑
i

Hifi∆v.

We define also a discrete version of (2.17) by

Mi = exp

(
−Hi

σ

)
.

From the Hi’s we define discrete of F by

Fi+1/2 =
Hi+1 −Hi

∆v
,

and using the convexity of the function w → |w−a|3 one can verify easily that
Fi+1/2 ≥ Fi−1/2 thus the sequence Fi+1/2 is increasing in i.
One can remark that by splitting the sum in two parts

∑
j≥i and

∑
j≤i than

the Hi’s can be evaluated in O(n) operations as explained by the authors in
([11, 12]) for a similar equation, the isotropic Fokker-Planck-Landau equation.

13



In order to preserve mass momentum and the decay of the entropy we discretize
the weak-symmetrized form (2.18),

∂t

∫
fφdv =

−σ

2ρ

∫ ∫
(∂vφ− ∂v′φ

′) ff ′ (∂v log(f/M)− ∂v′ log(f/M)′) dvdv′,

as follows

−σ

2ρ

∑
i

∑
j

(Dφi+1/2 −Dφj+1/2)fi+1/2fj+1/2 (3.12)

·(D log(f/M)i+1/2 −D log(f/M)j+1/2)

where Dgi+1/2 = (gi+1 − gi)/∆v and the averaged value of the product
fi+1/2fj+1/2 has to be defined.

On this form conservation of mass and mean velocity and the decay of the
discrete entropy E are easily verified choosing φ = 1, v, H respectively.
We shall now define the product fi+1/2fj+1/2 in such a way that, we will have
the much simplest scheme as possible, that degenerate correctly when σ go
to 0, and for which the collision term can be evaluated at the lower cost as
possible, that is in O(n). Moreover, approximating fi+1/2fj+1/2 by any positive
formulae allows to insure conservation of the mass, the mean velocity and the
decaying of the entropy. The first idea is to use the so called entropic average,
see ([8]), that permits to get rid of the log term

fi+1/2fj+1/2 =

(
(f/M)jD(f/M)i+1/2 − (f/M)iD(f/M)j+1/2

D log(f/M)i+1/2 −D log(f/M)j+1/2

)
Mi+1/2Mj+1/2

(3.13)
Using this choice, one get

−σ

2ρ

∑
i

∑
j

(Dφi+1/2 −Dφj+1/2)Mi+1/2Mj+1/2

·((f/M)jD(f/M)i+1/2 − (f/M)iD(f/M)j+1/2), (3.14)

that can be related to the non-log form of the Fokker-Planck equation:

(f/M)jD(f/M)i+1/2 − (f/M)iD(f/M)j+1/2

= (f/M)j(f/M)i+1 − (f/M)i(f/M)j+1.

We define the product Mi+1/2Mj+1/2 in such way that the scheme reduces to
a ”good” scheme when σ → 0, and using the analysis done for the linear
Fokker-Planck equation, we choose

Cij = Mi+1/2Mj+1/2 =
Mi+1MjMiMj+1

Mi+1Mj −MiMj+1

log(Mi+1Mj/MiMj+1). (3.15)
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The ODE system has the following structure

∂tfi = σ
∑

j

Cij

(
fi+1fj

Mi+1Mj

− fj+1fi

Mj+1Mi

)
+ Ci−1,j

(
fi−1fj

Mi−1Mj

− fj+1fi

Mj+1Mi

)
(3.16)

with Cij given by (3.15).
On this form, the cost to evaluate the coefficients of the differential system is
quadratic.
In order to recover a linear cost, let us simplify the expression (3.15) for
Mi+1Mj > Mj+1Mi i.e. with zj = Hj+1 − Hj + Hi − Hi+1 > 0. One ap-
proximates

1

Mj+1Mi −Mi+1Mj

=
1

Mj+1Mi(1− exp(−zj/σ))
≈ 1

Mj+1Mi

(zj/σ).

Then,

Cij ≈ MjMi+1(1 +
σ

zj

)
zj

σ
, (3.17)

and doing the same type of approximation for j ≤ i one obtain the discrete
weak formulation

n∑
i=0

∂tfiφi = − 1

2ρ∆v

n−1∑
i,j=0

(Dφi+1/2 −Dφj+1/2)(
fi+1fj

Mi+1Mj

− fj+1fi

Mj+1Mi

)

·(Mj+1Mi(σ + zj) · 1{j>i} + Mi+1Mj(σ − zj) · 1{j<i}), (3.18)

and as Fj+1/2 − Fi+1/2 :=
Hj+1−Hj

∆v
− Hi+1−Hi

∆v
=

zj

∆v
, we deduce

n∑
i=0

∂tfiφi = − σ

ρ∆v

n−1∑
i,j=0

Dφi+1/2(Mj+1Mi · 1{j>i} + Mi+1Mj · 1{j<i})

·( fi+1fj

Mi+1Mj

− fj+1fi

Mj+1Mi

)− 1

ρ

n−1∑
i,j=0

Dφi+1/2(Fj+1/2 − Fi+1/2)

·(Mj+1Mi · 1{j>i} −Mi+1Mj · 1{j<i})(
fi+1fj

Mi+1Mj

− fj+1fi

Mj+1Mi

).

(3.19)
Using the choice (3.17) for the coefficients Cij, one gets a tridiagonal matrix:
for i = 1, ..., n− 1

∂tfi = ai+1fi+1 − (ai + bi)fi + bi−1fi−1, (3.20)

and the boundary terms are,

∂tf0 = a1f1 − b0f0 (3.21)

∂tfn = −anfn + bn−1fn−1, (3.22)

15



where the coefficients ai, and bi are all positives and defined by the following
relations, with, for i = 1, ..., n:

ai =
1

ρ∆v
[

Mi−1

Mi

(
σ

∆v
− Fi−1/2)

n−1∑
j=i−1

Mj+1

Mj

fj + (Fi−1/2 +
σ

∆v
)

i−1∑
j=0

fj

+
Mi−1

Mi

n−1∑
j=i−1

Mj+1

Mj

fjFj+1/2 −
i−1∑
j=0

fjFj+1/2], (3.23)

and for i = 0, ..., n− 1:

bi =
1

ρ∆v
[(

σ

∆v
− Fi+1/2)

n−1∑
j=i

fj+1 +
Mi+1

Mi

(Fi+1/2 +
σ

∆v
)

i∑
j=0

Mj

Mj+1

fj+1

+
n−1∑
j=i

fj+1Fj+1/2 −
Mi+1

Mi

i∑
j=0

Mj

Mj+1

fj+1Fj+1/2]. (3.24)

Note that the coefficients ai and bi can be evaluated in O(n) steps.
From the equation (3.20)-(3.22), we note that the system can be written as a
difference of flows:

∂tfi = Gi+1/2 −Gi−1/2,

where Gi+1/2 = ai+1fi+1 − bifi, the conservation of the mass is obvious.

Properties 3.3.2 This scheme conserves mass and momentum (φi = vi) for
the system (3.19), and decays of the discrete entropy E.

Proof. By construction the approximation of fi+1/2fj+1/2 is positive. Thus
starting from (3.12) if we set φi = 1 and vi respectively we obtain the conser-
vation of the mass ρ and the mean velocity u.
For the entropy, as for the continuous model we have

d

dt
E =

∑
i

dfi

dt

(
ln fi +

Hi

σ

)
=
∑

i

dfi

dt
ln

(
fi

Mi

)
.

Thus by taken φi = ln
(

fi

Mi

)
in (3.12) we have evidently d

dt
E ≤ 0.

If f is such that fi = Mi thus we have d
dt
E = 0. For the existence of such

equilibrium, we refer to [4], their proof remains valid if we have a discrete
measure instead of the Lebesgue measure.
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3.3.3 Limit when σ → 0: a third discretization

If one considers the limit σ → 0 in the scheme (3.20-3.24), one gets the form
based on the weak formulation ff ′(F ′ − F ) instead of |v − v′|(v − v′).
This scheme degenerates correctly when σ → 0, indeed, zj is positive, defined
by

exp
−zj

σ
=

Mj+1Mi

MjMi+1

.

So, when σ → 0, exp
−zj

σ
→ 0 and the scheme becomes

n∑
i=0

∂tfiφi∆v = − 1

2ρ
.

n−1∑
i,j=0

(
Dφi+1/2 −Dφj+1/2

)
·(Fi+1/2 − Fj+1/2)(fj+1fi.1{j>i} + fi+1fj.1{j<i})(∆v)2, (3.25)

which is a discrete form of the weak symmetrized form (2.14) of the pure
granular operator.

Properties 3.3.4 The system limit conserves mass and momentum, and we
have the decay of energy and of the discrete entropy. Equilibrium states are
such that fi = 0 for i < i0 and i > i0 +1, and i0, fi0 , fi0+1 are determined from
mass and momentum, see 3.4.

Proof. By taking φ = 1, v in (3.25), mass and momentum conservation are
obtained. The sequence Fi+1/2 is increasing in i and taking φ = v2 we have
the decay of the temperature

∂tT = − ∆v

ρ
.
n−1∑
i,j=0

(
vi+1/2 − vj+1/2

)
·
(
Fi+1/2 − Fj+1/2

)
(fj+1fi.1{j>i} + fi+1fj.1{j<i})(∆v)2, (3.26)

where vi+1/2 = vi+vi+1

2
. The sequence vi+1/2 is also increasing in i and then all

the terms
(
vi+1/2 − vj+1/2

) (
Fi+1/2 − Fj+1/2

)
are non negative, which gives the

result.
For the entropy we have

∂tE = −1

ρ
.
n−1∑
i,j=0

(
Fi+1/2 − Fj+1/2

)2
(fj+1fi.1{j>i} + fi+1fj.1{j<i})(∆v)2. (3.27)

Concerning the equilibrium, we start from the entropy production term (3.27).
First let us verify that the sequence Fi+1/2 is a strictly increasing sequence in
i. By the definition of Fi+1/2 we have

Fi+1/2 − Fi−1/2 =
1

∆v
(Hi+1 + Hi−1 − 2Hi) ,

=
1

∆v

∑
j

fj

(
|vi+1 − vj|3 + |vi−1 − vj|3 − 2|vi − vj|3

)
.

17



On can verify easily that we have the lowerbound(
|vi+1 − vj|3 + |vi−1 − vj|3 − 2|vi − vj|3

)
≥ (∆v)2

so that
Fi+1/2 − Fi−1/2 ≥ (∆v)2ρ. (3.28)

Consider f such that the right hand side of (3.27) is null. Since the mass ρ of
f is not null there exist i0 such that fi0 > 0. All the terms involving in the
right hand side of (3.27) are null since they have all the same sign. Using then
(3.28) we obtain that fj = 0 for j > i0 + 1 and j < i0 − 1. And i = i0 − 1
and j = i0 gives fi0+1fi0−1 = 0. In other words, one of the both terms is null.
That shows that f is as we have claimed it: the values of i0, fi0 and fi0+1 are
uniquely determined by the values of the mass and the momentum.

3.4 Time discretization

We shall present the time discretization of system in the form (3.20)-(3.22).

3.4.1 Explicit scheme

In the explicit case, the system can be written:

fn+1
i − fn

i = ∆t
(
an

i+1f
n
i+1 − cn

i f
n
i + bn

i−1f
n
i−1

)
fn+1

i − fn
i = ∆tQnfn

i

i.e.

fn+1 =


Id + ∆t



−cn
0 an

1 0 . . . . . . 0
bn
0 −cn

1 an
2 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 bn

n−2 −cn
n−1 an

n

0 . . . . . . 0 bn
n−1 −cn

n




fn,

where cn
i = an

i + bn
i .

A sufficient condition to have a positive matrix is to take ∆t satisfying
1− ci∆t > 0 for all i. Therefore, we choose ∆tmax = (sup ci)

−1.

Notice that ∆tmax behave like O
(

∆v2

σ+(∆v)supi|Fi+1/2|

)
.

The properties of conservation of mass and momentum, of the system can be
checked easily (φi = 1, vi).
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3.4.2 Implicit scheme

The implicit scheme reads:

fn+1
i − fn

i = ∆tan+1
i+1 fn+1

i+1 −∆tcn+1
i fn+1

i + ∆tbn+1
i−1 fn+1

i−1 ,

i.e.
fn = (Id−∆tQ(fn+1))fn+1,

where Q(fn+1) is the previous matrix, at range n + 1, instead of n. We use an
iterative method:

fn = (Id−∆tQ(fn))fn+1

and we define the process as:

(Id−∆tQ(gp))gp+1 = fn

g0 = fn

to resolve it, where gp is the pieme iterate.
At each iteration, mass and positivity are preserved. The conservation of mass
follows from structure of the matrix Q, which corresponds to a conservative
scheme. The last point follow from a classical algebra result [6]:
Let N be a matrix∈ Rn × Rn, tridiagonal, whose diagonal coefficients are
positives, the others negatives. Then N−1 is positive, if and only if, there
exists a diagonal positive matrix D, such that D−1ND is diagonal dominant.
N = (Id−∆tQ(gp)), take G ∈ Ker(Q) positive which is always possible, then

NG̃ = G̃, where G̃ is the diagonal positive matrix formed with the coefficients

of G. Thus G̃−1NG̃ = Id which is a diagonal dominant matrix. This concludes
the proof.
One can also notice that if fn is an equilibrium then gp = fn.

Lemme 3.4 For the implicit scheme the entropy is decaying.

Proof. The entropy E can be written as:

E(f) = σ

∫
(f ln f +

1

6

∫
|v − v′|3f(v)f(v′)dv′)dv = σ

∫
(ln f − ln N)fdv,

where N(v) = exp(− 1
6σ

∫
|v − v′|f(v′)dv′) = exp(−3H(v)/2σ). We get

En+1 − En = σ
(∫

fn+1 ln( f
N

)n+1dv −
∫

fn ln( f
N

)ndv
)

= σ
(∫

fn(ln( f
N

)n+1 − ln( f
N

)n)dv + ∆t
∫

Qn+1fn+1 ln( f
N

)n+1dv
)
,

with Qn+1 = Q(fn+1),

En+1−En ≤ σ

(∫
fn ln(

fn+1

fn
)−

∫
fn ln(

Nn+1

Nn
)dv + ∆t

∫
Qn+1fn+1 ln(N)n+1dv

)
.
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Using the entropy decay on the weak form (2.18) with φ = ln(f/M) (M = N2),
one gets

En+1 − En ≤ σ
(∫

v
fn ln(N)ndv +

∫
v
fn+1 ln(N)n+1dv − 2

∫
v
fn ln(N)n+1dv

)
≤ σ

(∫
v
fn(ln(N)n − ln(N)n+1)dv +

∫
v
(fn+1 − fn) ln(N)n+1dv

)
.

By definition of N , we’ve:

En+1 − En ≤ 1
2

∫
v

∫
v′
|v − v′|3[fn(f ′n+1 − f ′n)− f ′n+1(fn+1 − fn)]dvdv′,

≤ −1
2

∫
v

∫
v′
|v − v′|3[(f ′n+1 − f ′n)(fn+1 − fn)]dvdv′.

Since from lemma (2.2) the application

g →
∫ ∫

g(v)g(v′)|v − v′|3dvdv′

is positive for functions g such that
∫

g =
∫

vg = 0, we have the decay of
entropy.
The proof for the discrete formulation follow the same lines:

En+1−En ≤ σ

(∑
i

fn
i (ln(Ni)

n − ln(Ni)
n+1)∆v +

∑
i

(fn+1
i − fn

i ) ln(Ni)
n+1∆v

)
.

The definition of N gives:

En+1 − En ≤ −1

2

∑
i

∑
j

|vi − vj|3[(fn+1
j − fn

j )(fn+1
i − fn

i )](∆v)2. (3.29)

By a discrete version of the lemma (2.2), which can be obtained by regularizing
the sum of Dirac mass, we conclude to the decay of entropy.

4 Numerical results

We illustrate the method on two tests, a Dirac and a Gaussian for initial data.
For the two tests the velocity domains is [0, 12.5], the total mass is one and
the two initial data are centered at v = 4. For the gaussian the variance is 1.
For all, the run of the time step is taken equals to 0.1. We use two uniform
grids of 50 and 200 points. For the explicit scheme, we use sub cycling technic
to respect the CFL constraint that guarantee positivity of the scheme. For the
implicit scheme the iterative process is stopped when the error on the relative
velocity is smaller than 10−12.
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4.1 Computational cost

Let us first compare the computational cost between explicit and implicit. The
costs correspond to σ = 1.

For the implicit scheme the number of iterates varies from 12, at the first time
step, to 1 after few time steps when starting from the gaussian, and from 5
to 1 when starting from the Dirac, and this with the two grids. The number
of iterates seems to does not depend of the number of points. For the explicit
scheme, the number of sub cycles is nearly constant during the computation.
Starting from the gaussian or the Dirac we need 60 subcycles with 50 points
and 283 subcycles with 200 points. The cost of the iterations is the same for
the implicit and the explicit.

More the grid is fine, larger is the cost ratio explicit/implicit. For very coarse
grid (ten points) the cost of the explicit scheme when starting from the gaus-
sian is smaller than the cost of the implicit but only for the first time steps of
the relaxation.

One interesting feature of the implicit scheme concerns it’s ability to reach an
equilibrium state, despite the fact that the iterative process is stopped, when
the error on the relative velocity is smaller than O(10−n). This implementation
of the implicit scheme, strictly speaking, is not conservative for the mean
velocity, but we observe that for any value of the allowed error, in long time,
the scheme converge toward an equilibrium state for which, the mean velocity
is nearly those of the initial condition up to an error of O(10−n). We plot the
difference between the average velocity after total relaxation and the initial
one, in function of the error, for the two types of initial condition, a Dirac
mass and a Gaussian, see Figure (1).

Figure 1: Gaussian and Dirac initial condition: difference between the average
velocity after total relaxation and the initial one in function of the error, in
log scale
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4.2 Graphics

Figure (2) shows the evolution in time of the temperature starting from the
Dirac mass, with 50 meshes, σ = 1 and explicit and implicit scheme.

Figure (3) shows the evolution of the temperature starting from the Gaussian,
with 50 and 200 grid points and again with σ = 1 and using explicit and im-
plicit version of the scheme.

Starting from the Gaussian, we can compare for σ = 1 and σ = 0.00001 the
evolution of the distribution function on the figure (4) and the relaxation of
the temperature (6). Implicit scheme is used with 50 grid points.

We can also show on figure (5), the relaxation of the temperature for the two
initial condition when σ = 1, using 50 grid points and implicit scheme.

Figure 2: Initial condition: Dirac mass. Evolution of the temperature and the
entropy, 50 points, σ = 1.

Figure 3: Initial condition: Gaussian. Evolution of the temperature and the
entropy, 50 and 200 points, σ = 1.

To finish let us show the behavior of the equilibrium state f∞:
we compare the gaussian exp(−v2/2) with the equilibrium state obtained with
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Figure 4: Initial condition: Gaussian. Evolution of the distribution function,
50 points, σ = 1 and σ = 10−5.

Figure 5: Evolution of the temperature starting from Dirac mass and Gaussian,
σ = 1, 50 points.

this initial data and corresponding to σ = 1 and which behave for large |v| as
exp(−a|v|3). We plot − log f in function of v, in logarithmic scale, see Figure
7. It is is easily seen on Figure (7 that for large velocity, the distribution
function has the expected behavior, the slope of − log f(v) tends to 3 for the
steady states of granular media, and to to for maxwellian.

5 Conclusion

In 1D, without friction term, the Chang-Cooper method allows us to construct
a discretization for the granular equation.

Moreover, the discretization is performed at a linear cost in the number of grid
points. An implicit scheme has been used. It converges in large time to the
equilibrium state described in [4], and it preserves the properties of the equa-
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Figure 6: Evolution of the temperature starting from Gaussian with different
values of the temperature of the thermal bath, σ = 1 and σ = 10−5, 50 points.

Figure 7: The distribution function in log scale for a gaussian and the equilib-
rium state associated for σ = 1.

tion. Moreover, the cost of such implicit scheme is less than the explicit one.
This implicit method could also be used for the numerical methods described
in ([11, 12]) for the isotropic Fokker-Planck-Landau equation.

In this study, the friction term was ignored. Since the discretization’s process
is applied to a symmetric form of the equation, the friction term cannot be
included within the presented framework.

However, it should be possible to take it into account using splitting technics.
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