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ABSTRACT

In this article, we propose a finite element discretization of

the Boltzmann-Lorentz operator for which it is possible to define a

grazing collision limit. We illustrate this discretization by considering

the evolution of a system of particles in a slab, subject to collisions

both with the boundaries and with themselves. A comparison is made

with isotropic collisions or with the Laplace-Beltrami operator.

Moreover, in the case of multiplying boundary conditions, it is

proven by numerical simulations the existence of a critical value

for the absorption coefficient, which is independent on the grazing

collision parameter. Finally, the focalization of a beam is studied and

the numerical results are compared with previous simulations.
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1. INTRODUCTION

Kinetic equations, as Boltzmann (or Fokker-Planck) equations,

model the evolution of a system of particles subject to the action of a force

field and to collisions. They are applied for example in semiconductor

physics (see Markowich et al. (1994)), in the modeling of rarefied gases

or plasmas (see Cercignani (1988)), in astrophysics (see Belleni-Morante

and Moro (1996) for problems relative to interstellar clouds) or in bio-

mathematics (see Arlotti et al. (2000) for the study of dynamics of popula-

tions). In the more general frame, the operator describing the scattering

event is nonlinear and due to its complexity, many other models have been

derived. Notably, the Lorentz operators, derived from the Boltzmann one

or from the Fokker-Planck one, model the elastic collisions of particles

against heaviest target ones (see Degond and Lucquin-Desreux (1996) and

Lucquin-Desreux (2000) for the disparate masses particles asymptotics).

In plasma physics for example, the Boltzmann-Lorentz operator repre-

sents (in first approximation with respect to the mass ratio) the effect

of collisions due to neutral particles on the electron distribution function.

On the other hand, the Fokker-Planck-Lorentz operator is the leading

order term (still with respect to the mass ratio) describing the collisions

of electrons against ions.

The Fokker-Planck operator is usually considered as an approxi-

mation of the Boltzmann collision operator when collisions become

grazing, i.e., when the angle of deviation � of a particle during a collision

is very small. This essentially occurs for potentials of long range inter-

action, such as the Coulombian potential in the case of a plasma.

This grazing collision limit of the Boltzmann operator towards the

Fokker-Planck one has been proven in Degond and Lucquin-Desreux

(1992) and Desvillettes (1992). In Desvillettes (1992), the scattering cross

section is smooth; it depends on a small parameter " and it is localized

around the value � ¼ 0 of the scattering angle when " goes to zero. On the

other hand, the Coulomb case is studied in Degond (1992) by means of a

quite different asymptotics: the scattering cross section has a nonintegrable

singularity when the relative velocity of the colliding particles tends to

zero but also when the scattering angle � tends to zero. There is thus a

necessary truncation of this angle around the value zero (��") and the

small parameter " has a precise physical meaning: it is clearly identified as

the plasma parameter. We also refer the reader to the works Goudon

(1997a, 1997b) concerning the grazing collision limit of the Boltzmann

operator when the scattering cross section corresponds to a inverse

power force (i.e., 1=rs, with s>1) and without angular cut-off. More

recently, the convergence of Boltzmann-Lorentz operator towards the
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Fokker-Planck-Lorentz (or Laplace-Beltrami) operator in the so-called

grazing collision limit has been proven in Buet et al. (2001), both for

the asymptotics developed in Degond and Lucquin-Desreux (1992) and

Desvillettes (1992).

In this article, we are concerned with the numerical approximation of

the Boltzmann-Lorentz operator and with its grazing collision limit. Up

to our knowledge, only few recent articless have been devoted to the

study of the grazing collision limit at the discrete level: we can refer

for example to Guérin and Méléard (2002) and Pareschi et al. (2002)

concerning the full nonlinear Boltzmann operator discretized either by

spectral methods (see Pareschi et al. (2002)) or by particle methods (see

Guérin and Méléard (2002)). In our article, the considered scattering

cross section is a simplified version of the one defined in Buet et al.

(2001): it is assumed to be constant on a very small interval depending

on the small parameter " and zero outside this interval. Our goal is to give

a numerical approximation of the Boltzmann-Lorentz operator for graz-

ing collisions for which it is possible to pass to the limit " ! 0. We first

decided to apply a finite element method (FEM) because this method is

particularly well adapted to the limit problem (we refer for example to

Cordier et al. (2000) for 3D computations). Secondly, in the FEM

described below, we decided to do exact computations of the collision

terms (instead of doing quadrature formulas): denoting by h the velocity

step, we can then choose " � h and thus study the limit " ! 0 for a fixed

discretization in velocity variable, i.e., for a fixed h (which would not be

possible when using quadrature formulas).

In order to show the efficiency of the proposed FEM approximation,

we will consider a transport equation in which the collision operator is the

Boltzmann-Lorentz operator for grazing collisions defined on a bounded

region. Thus, we equip the kinetic equation with some kind of boundary

conditions: in a first approach, we only take into account specular reflec-

tion boundary conditions. The numerical results obtained with the pro-

posed FEM approximation are compared with those obtained considering

the Laplace-Beltrami operator (i.e., its limit when " goes to zero), with the

isotropic collisions (i.e., the scattering cross section is constant), and also

with the collisionless case. Successively, we consider multiplying reflection

boundary conditions (see for instance Belleni-Morante and Totaro (1996)

and Mancini and Totaro (1998)): each particle colliding on the boundary

of the considered region is reflected and multiplied by a factor bigger than

one. In this optic, as the region where the evolution of particles takes place

is bounded, it seems physically necessary to consider also an absorption

term in our transport equation. The existence and uniqueness of the

solution of such a problem, with the absorption cross section � bigger
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than a theoretical value �t, has been proven in Belleni-Morante (1996) for

multiplying Maxwell boundary conditions, and in Mancini and Totaro

(1998) in the general case. We will numerically prove the existence of a

critical absorption cross section �n<�t for which the total number of

particles does not sharply increase nor vanishes with time. Moreover, we

also remark that both �n and the equilibrium profile of the particle density

do not depend on the initial data.

The article is organized as follows. In Sec. 2, we present the finite

element approximation for the Boltzmann-Lorentz operator for grazing

collisions and also for isotropic collisions. In Sec. 3, we present the test

problems used to validate our numerical approximation. Section 4 con-

cerns the results of the numerical simulations. Finally, in Sec. 5, we give

some concluding remarks.

2. NUMERICAL SCHEMES

The goal of this article is the numerical approximation of the

Boltzmann-Lorentz operator for grazing collisions. We recall that the

Boltzmann-Lorentz operator models for example the elastic collisions of

a heavy particle against a light one (see Degond and Lucquin-Desreux,

(1996) and Lucquin-Desreux (2000)). Thus, it acts only on the velocity

direction � of the particles, leaving unchanged the velocity modulus jvj

(which we will consider normalized to one). In the bi-dimensional case,

the Boltzmann-Lorentz operator is given by:

Qð f Þð�Þ ¼

Z

S1

Bð� � �
0Þ ð f ð�0Þ � f ð�ÞÞ d�0, ð1Þ

where Bð� � �
0Þ is the scattering cross section which represents the

probability for a particle entering a collision with velocity direction �
0

to out-go the scattering event with a velocity direction �. For instance,

Bð� � �
0Þ may be determined from the interaction force between the

particles (see Degond and Lucquin-Desreux (1992), Desvillettes (1992),

and Goudon (1997b)); in particular, we recall that, in the case of isotropic

collisions, it does not depend on � nor on �
0.

We are interested in grazing collisions, i.e., we want to take into

account also the very small deviations in the trajectories of the particles.

This fact is emphasized by introducing the dependence of the scattering

cross section B on a small parameter ". Recently, Buet, Cordier, and

Lucquin-Desreux (see Buet et al. (2001)) have proven the convergence,

when the small parameter " tends to zero, of the Boltzmann-Lorentz
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operator for grazing collisions towards the Fokker-Planck-Lorentz

operator, which is simply the Laplace-Beltrami operator.

Our goal here is to give a numerical approximation of the

Boltzmann-Lorentz operator for which it is possible to pass to the limit

" ! 0 for a fixed velocity discretization. As shown in the sequel, this is

possible when applying for example a finite element approach, where the

integral terms are all exactly computed. The numerical results we obtain

are then compared with the collisionless case, the case of isotropic

collisions, and those obtained when considering the Laplace-Beltrami

operator.

2.1. An Implicit Finite Element Approximation

We want to approximate by means of a finite element method the

following Cauchy problem:

@f

@t
¼ Qð f Þ,

f ðt ¼ 0Þ ¼ f 0,

8

<

:

ð2Þ

where Qð f Þ is defined by Eq. (1). We note that the dependence of the

density f on the space variable is not underlined in this paragraph

because the position of the particles does not play any role during a

collision. The angle variable � belongs to the unit circle S1, i.e.,

� 2 ½��,�� and the distribution function f satisfies periodic boundary

conditions.

We first consider the following piecewise affine approximation f N� of

the function f :

f ðt, �Þ ’ f N� ðt, �Þ ¼
X

N��1

j¼0

’jð�Þ fjðtÞ,

where ’j , j 2 f0, . . . ,N� � 1g, are the classical ‘‘hat functions’’ of the P1

finite element approximation. More precisely, denoting by �j ¼ ��þ hj,

with h ¼ 2�=N�, we have ’ið�jÞ ¼ 
ij (=1 if i=j and 0 otherwise), so that

fjðtÞ ¼ f N� ðt, �jÞ.

The weak discretized form of Eq. (2) then reads:

X

N��1

j¼0

@fj

@t

Z

S1

’jð�Þ’ið�Þ d�

¼
X

N��1

j¼0

fj

Z

S1

Z

S1

Bð� � �
0Þ½’jð�

0Þ’ið�Þ � ’jð�Þ’ið�Þ� d�
0 d�:
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Setting:

Aij ¼

Z

S1

’ið�Þ’jð�Þ d�,

Qij ¼

Z

S1

Z

S1

Bð� � �
0Þ ½’ið�Þ ’jð�

0Þ � ’ið�Þ ’jð�Þ� d� d�
0,

8

>

>

<

>

>

:

ð3Þ

we write the discretized problem more compactly as follows:

X

N��1

j¼0

@fj

@t
Aij ¼

X

N��1

j¼0

fjQij : ð4Þ

The matrix A with entries Aij is the so called ‘‘mass matrix,’’ while the

matrix Q with entries Qij represents the collision matrix. In the next

paragraph, we give the expression of these two matrices in the context

of grazing collisions; the detailed computations are performed in

the Appendix A1. Before this, let us precise the time discretization of

Eq. (4). In order to avoid a limitation of the time step �t in terms of the

angular step �� ¼ h, we will use a fully implicit scheme. We introduce

some notations. Let us denote by Fn the N� dimensional vector with

entries Fn
j ¼ f ðn�t, �jÞ, for j 2 f0, . . . ,N� � 1g. The implicit finite element

scheme we consider reads:

Fnþ1 ¼ ðA��tQÞ�1AFn, n � 0

F0 ¼ ðF0
i Þ0� j�N��1

,

(

ð5Þ

with F0
j ¼ f 0ð�jÞ.

2.2. Grazing Collisions

In the case of grazing collisions, the scattering cross section B is

localized and depends on a small parameter ". In the nonCoulombian

case, B has the following expression (see Buet et al. (2001) and

Desvillettes (1992)):

B"ðzÞ ¼
1

"3
Bðz="Þ�S1ðz="Þ

where � denotes the characteristic function (i.e., �S1ðzÞ ¼ 1 if z 2 S1 and

0 otherwise). We will here consider a simplified model for which the

scattering cross section is given by:

B"ðzÞ ¼
B0 if jzj < "�,

0 else

n
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with B0 ¼ 1="3. We then have:

Proposition 2.1. Setting  ¼ "�=h and assuming that  � 1, the grazing

collision matrix Q is given by:

Q ¼
�
3

3h

�2þ 3
4
 1� 1

2
 1

8
 0 . . . 0 1

8
 1� 1

2


1� 1
2
 . .

. . .
. . .

. . .
. . .

. . .
.

1
8


1
8
 .

.
. .

.
. .

.
. .

.
. .

.
. .

.
.

0

0 . .
.

. .
.

. .
.

. .
.

. .
.

. .
.

..

.

..

.
. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0

0 .
.

. .
.

. .
.

. .
.

. .
.

. .
.

.
1
8


1
8
 . .

.
. .
.

. .
.

. .
.

. .
.

. .
.

1� 1
2


1� 1
2
 1

8
 0 . . . 0 1

8
 1� 1

2
 �2þ 3

4


0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

ð6Þ

Proof. The proof is detailed in the Appendix A1.

By means of the same arguments applied in order to compute the

matrix Q (see Appendix A1), we have that the mass matrix A reads:

A ¼
h

3

2 1
2

0 . . . 0 1
2

1
2

. .
. . .

. . .
. . .

.
0

0 . .
. . .

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

.
0

0 . .
. . .

. . .
. . .

.
1
2

1
2

0 . . . 0 1
2

2

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

: ð7Þ

We remark that if we let " ! 0 then Qij ! ðh�3Þ=ð3DijÞ, where Dij

is the classical finite difference discretization of the Laplace-Beltrami

operator � f ¼ @�� f :

D ¼
1

h2

�2 1 0 . . . 0 1

1 . .
. . .

. . .
. . .

.
0

0 . .
. . .

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. . .

.
0

0 . .
. . .

. . .
. . .

.
1

1 0 . . . 0 1 �2

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

:

120024765_TT32_03-04_R1_071703

+ [17.7.2003–10:39am] [293–320] [Page No. 299] F:/MDI/Tt/32(3&4)/120024765_TT_032_003-004_R1.3d Transport Theory and Statistical Physics (TT)

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Finite Element Approximation of Grazing Collisions 299



Moreover, the coefficient �3=3 is strictly related to the second order

moment of the scattering cross section, which in our case is equal to �
3
=3

(since B ¼ 1).

2.3. Isotropic Collisions

In the following simulations, in order to compare the evolution of

the system of particles with grazing collisions and with isotropic

collisions, we will not compute the exact solution for the isotropic

Boltzmann-Lorentz operator (although it is possible), but we will approx-

imate the isotropic operator following the same discretization as before.

Recalling that for isotropic collisions the scattering cross section B is

a constant (which we will assume equal to one), we get the following finite

element discretization of the isotropic Lorentz operator. The gain matrix

G is given by: G ¼ ðGijÞ0�i, j�N��1
, with Gij ¼ h2, whereas, the loss matrix

L is such that: L ¼ 2�A. Then we can apply the implicit finite element

scheme (5), where now the matrix Q ¼ G� L represents the P1 finite

element approximation of the isotropic Lorentz operator.

3. THE TEST PROBLEM

We illustrate the finite element approximation for the

Boltzmann-Lorentz operator with grazing collisions on the following

transport equation:

@t f þ cos � @x f þ �f ¼
1

�
Qð f Þ: ð8Þ

This transport type equation describes the evolution of a system of

particles moving between two parallel plates (slab), subject to absorption

by the host medium and to elastic collisions with other particles present in

the slab. We recall that f ¼ f ðx, �, tÞ represents the number of particles

which at time t � 0, are in the position x 2 ½�L, þ L� with velocity

v ¼ ðcos �, sin �Þ, � 2 ½��,��. Moreover, Qð f Þ is the Lorentz collision

operator defined by Eq. (1), � � 0 is the absorption cross section, and

� is the relaxation time; this one is assumed to be equal to one, except in

the last numerical test concerning the defocusing of a beam (see Sec. 4.4

below and Cordier et al. (2000)).

The interactions of the particles with the two plates of the slab may

be described by means of a linear, bounded, and positive operator
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� : �
out ! �

in which relates the incoming and outgoing flux of particles

as follows:

f in ¼ �f out: ð9Þ

In Eq. (9), f in and f out are the traces of the distribution function

respectively to the incoming and outgoing boundary sets:

�
in ¼ fð�L, �Þ, cos � > 0g � fðL, �Þ, cos � < 0g,

�
out ¼ fðL, �Þ, cos � > 0g � fð�L, �Þ, cos � < 0g:

We define the norms on the incoming and outgoing sets as usual:

k f kout ¼

Z

ðx, �Þ2�out

f ðx, �Þj cos �j d� , k f kin ¼

Z

ðx, �Þ2�in

f ðx, �Þj cos �j d� ,

and we consider the norm for the operator � to be given by:

k�k ¼ max
k f outkout¼1

k�f outkin:

We will consider multiplying boundary conditions (see Mancini and

Totaro (1998)), i.e., the operator � is such that k�f outkin � ckf outkout,

with c > 1. In other words, a multiplication of particles takes place on the

boundaries. For instance, the boundary operator � may represent reflec-

tion, or diffusion boundary conditions, as well as a linear combination of

them. In the following simulations, we will consider multiplying reflective

boundary conditions:

f ð�L, �Þ ¼ L f ð�L, �0Þ , for cos � > 0,

f ðL, �Þ ¼ R f ðL, �0Þ , for cos � < 0,

�

ð10Þ

with �
0 ¼ �� �, where L and R respectively denote the reflection coeffi-

cients on the left and right boundaries of the slab (i.e., on x ¼ �L and

x ¼ L respectively). As the region where the evolution takes place is

bounded, it is natural to consider also an absorption term �f in order

to avoid the growth of the number of particles (see the results of Fig. 7

below). Summarizing, the problem which we approximate numerically

reads as follows:

@t f þ cos �@x f þ �f ¼ �
�1Qð f Þ,

f in ¼ �f out,

f ðx, �, 0Þ ¼ f0ðx, �Þ:

8

>

<

>

:

ð11Þ

It is clear that the efficiency of the absorption coefficient � will

depend on the ‘‘power’’ of the multiplication coefficient (i.e., the norm

of the operator �), on the modulus of the particle velocities jvj (here
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equal to 1) and on the dimension of the considered region (here the

distance 2L between the two plates). It has been proven in Mancini

and Totaro (1998), by means of the semi-groups theory and for a fixed

", that if k�k � 1, then problem (11) admits a unique solution whatever is

� � 0; whereas, if k�k > 1, then problem (11) admits a unique solution

provided that:

� >
jvj ln k�k

2L
¼ �t; ð12Þ

�t is called the theoretical critical absorption cross section. In the

particular case of multiplying reflective boundary conditions (10), the

theoretical value for the critical absorption cross section is given by

(see Belleni-Morante and Totaro (1996)):

�t ¼
jvj lnðmaxfL,RgÞ

2L
: ð13Þ

We will numerically compute a critical value �n for the absorption

cross section and we will precise the behavior of the solution of problem

(11) in terms of the absorption coefficient �: we will see that, if �<�n the

particle density significantly grows in a finite time, for �>�n the particle

density rapidly goes to zero in a finite time, and for � ¼ �n it remains

bounded without vanishing (see Sec. 4.3 below). This numerical critical

value �n does not depend on "; moreover, it is smaller than the theoretical

one �t. This fact does not contradict at all the results proven in

Belleni-Morante and Totaro (1996) or Mancini and Totaro (1998); in

fact, it just shows the existence of a solution also for absorption cross

sections � 2��n, �t½ (since �n<�t), which was not possible to prove by

means of the semigroup theory.

4. NUMERICAL SIMULATIONS

In order to simulate the evolution problem (11), we apply a first

order splitting in time method. First, we approximate by means of an

upwind explicit finite difference method the following transport problem

(see paragraph 4.1 below):

@f

@t
þ cos �

@f

@x
þ �f ¼ 0,

f in ¼ �f out,

f ðx, �, 0Þ ¼ f0ðx, �Þ:

8

>

<

>

:

ð14Þ
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Second, we apply the implicit finite element scheme of Sec. 2.1 to the

pure collision problem:

@f

@t
¼ �

�1Qf

f ðx, �, 0Þ ¼ f0ðx, �Þ:

(

ð15Þ

At each iteration, the program solves separately the transport and

collision parts. Our whole numerical scheme is first order in all variables.

We have done this choice in order to simplify the presentation of

the method, but it would be naturally possible to improve the accuracy

of the method by using appropriate second order schemes for each

step (convection, collision) coupled with a second order (of Strang

type) splitting algorithm.

We will here perform essentially three different numerical tests. In the

first two ones, developed in paragraphs 4.2 and 4.3 below, the relaxation

time � is equal to one. In paragraph 4.2, we essentially focalize on the

discrete collision operator itself: the boundary conditions are classical

specular reflection, and there is no absorption; the grazing collision

operator is then compared to the Laplace-Beltrami operator (i.e., to its

limit when " goes to zero), to the isotropic operator and also to the

collisionless case. The dependence of the solution on the grazing

parameter " is also numerically investigated, first for " � h=�, but also

for bigger values of ". The influence of multiplicative boundary condi-

tions is then studied in paragraph 4.3: in particular, the existence of a

numerical critical absorption cross section, which does not depend on "

(for sufficiently small values of ") nor on the initial data is shown.

Moreover, we underline the existence of a unique profile of equilibrium

(independent on " and on the initial data) for the particle density. Finally,

in paragraph 4.4, we study the influence of the time relaxation � for a

photonic type problem already considered in a previous work (see Cordier

et al. (2000)). This last test is further investigated in Cordier et al. (2002).

Let us firstly precise the numerical scheme used to approximate the

convective part of the equation, i.e., problem (14).

4.1. Transport Problem Approximation

We consider Nx(=50 in simulations, unless otherwise specified)

discretization points xi, i 2 f1, . . . ,Nxg, for the space variable

x 2 ½�L,L� (with L =1) and N�(=50 in simulations, unless otherwise

specified) discretization points for the angle variable � 2 S1. We introduce

the following symmetric discretization of the circle S1: �j ¼ ��þ hj with
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h ¼ 2�=N� and j ¼ 0, . . . ,N� � 1. We have that if cos �j is a discretization

point, then also� cos �j is one.Moreover, if j and j0 are such that j0 ¼ sð jÞ,

where sð jÞ ¼ ðN�=2� jÞmodðNÞ (see Fig. 1), then: cos �j0 ¼ � cos �j.

Considering the above discretization, we approximate the transport

problem (14) by means of an upwind explicit finite difference scheme as

follows:

. If cos �j > 0 then,

f nþ11, j ¼ L f
nþ1
1, sð jÞ

and for i ¼ 2 . . .Nx

f nþ1ij ¼ ð1� ð�t=�xÞ cos �j � ��tÞf nij þ ð�t=�xÞ cos �j f
n
i�1, j:

ð16Þ

. If cos �j < 0 then

f nþ1Nx, j
¼ R f nþ1Nx, sð jÞ

and for i ¼ 1 . . .Nx � 1

f nþ1ij ¼ ð1þ ð�t=�xÞ cos �j � ��tÞf nij � ð�t=�xÞ cos �j f
n
iþ1, j:

ð17Þ

We recall that f nij ¼ f ðxi, cos �j, tnÞ is the value of the distribution

function f at the position xi ¼ �Lþ�xði � 1Þ, i ¼ 1 . . .Nx, and

�x ¼ 2L=ðNx � 1Þ, with velocity cos �j , j ¼ 0 . . .N� � 1, and at time

tn ¼ n�t, n ¼ 1 . . .Niter.

Setting � ¼ �t=�x, the CFL condition writes (for any � � 0): � � 1.

In the simulations below, � is taken equal to 0.8 (but � ¼ 1 would give

exactly the same results). Moreover, we choose L ¼ 2R ¼ 4 and

" ¼ 0:001, unless otherwise specified.

j=0

js(j)

Figure 1. Discretization on the sphere.
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4.2. Grazing Collisions and Comparison with

Other Collision Terms

In this section we present numerical results concerning the grazing

collision limit at the discrete level and also a comparison with different

types of collisions. We take into account only specular reflection bound-

ary conditions (i.e., L ¼ R ¼ 1), the absorption cross section is given by

� ¼ 0 (i.e., the number of particles is constant along all the evolution),

and the relaxation time is � ¼ 1. We introduce the density function:

nðx, tÞ ¼

Z

f ðx, �, tÞ d�

and the number of particles inside the slab at time t:

NðtÞ ¼

Z þL

�L

nðx, tÞ dx: ð18Þ

In Fig. 2, we show how the behavior of the density nðx, tÞ changes when

changing the value of the grazing parameter ". We have first considered

values of " such that " � h=�, but also larger values of ": in this last case,

ε

ε

x
π

π

n(x,T)

ε π

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.05

0.10

0.14

0.19

0.23

0.28

0.32

0.37

0.41

0.46

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

+

+

+

+

+

+

+

+

+

+
+

+ + + + +

grazing 0.01 +

Laplace-Beltrami  =2h/

=3h/
 =h/

Figure 2. The density nðx;TÞ, with � ¼ 0, R ¼ L ¼ 1, for different values of ":

" ¼ 10�2; h=�; 2h=�; 3h=� and for the Laplace-Beltrami operator, with initial data

given by a Dirac, t ¼ �tNiter, with Niter ¼ 100, Nx ¼ 50, N� ¼ 10:
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the collision terms have been computed by use of standard first

order quadrature formulas. In particular, we note that for "<10�2 the

difference between the grazing collision case and the Laplace-Beltrami

operator is too small to be observed. In fact, the difference is of order "h,

so that it is rapidly very small for small values of " (and for small h as

well). In order to precise this behavior, we have computed in Fig. 3 the

L1 norm of the relative error between the density n" of the grazing

collision problem and that of the limiting one, denoted by nLB, i.e.,

max
i

n"ði,TÞ � nLBði,TÞ

nLBði,TÞ

� �

,

in terms of " and for different values of h (with T ¼ 50�t). We first

remark that this error is very small for " ¼ 10�3. But as expected, we

observe a difference between the case " ¼ h=� and " ¼ 10�2 for large

values of h (h ¼ �=2), while this difference decreases for smaller values

of h. Figure 2 is related to the ‘‘medium’’ case h ¼ �=5 (i.e., N� ¼ 10).

In Fig. 4, we compare four types of collisions: the collisionless case

(Q ¼ 0), the case of isotropic collisions (with B ¼ 1=4� in order to fit the

first nonzero eigenvalues), the grazing collisions case (with " ¼ 10�3) and

its limit when " ! 0, i.e., the Laplace-Beltrami operator. We trace the

evolution of the density nð�,TÞ for four different times of computation

T ¼ �tNiter, with Niter ¼ 50, 100, 150, 200. We observe that the grazing

collisions case and the Laplace-Beltrami operator give the same results

(up to a difference of order 10�4 which is not noticeable on the figure).

Naturally, in all cases, we have checked numerically that the total

density NðtÞ defined by Eq. (18) was constant with respect to time.

4.3. Absorption Cross Section and Multiplying

Boundary Conditions

Still assuming � ¼ 1, we now take into account multiplying boundary

conditions, in particular L ¼ 2, R ¼ 4. We consider two initial

Figure 3. Influence of parameters " and h.
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Figure 4. The density nð�;TÞ, with � ¼ 0, R ¼ L ¼ 1, for the grazing collisions with " ¼ 0:001,

the Laplace-Beltrami operator, the isotropic collisions case, and the collisionless case, with initial

data given by a Dirac, T ¼ �tNiter, with Niter ¼ 50 (top on the left), 100 (top on the right), 150

(bottom on the left), 200 (bottom on the right).
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data: first, a constant function both in space and velocity; second, a Dirac

mass both in space and velocity.

In Fig. 5, we show the convergence of the sequence of critical absorp-

tion cross sections towards a finite value �n for "¼0:001. The critical

absorption value we compute is independent (for large times) on the

initial data: in fact we observe that both the constant initial data and

the Dirac mass give the same value. Moreover, this value is smaller than

the theoretical one �t given by Eq. (13). The way the computation is

performed is the following one:

. We compute the total densities Nðti, �Þ for ti ¼ ði þ 1Þ50�t, with

i ¼ 0, . . . , 9, and for different values of �.

. We determine the intersection point of two successive curves

Nðti, �Þ and Nðtiþ1, �Þ describing the evolution of the density in

terms of �; the respective value of � for the intersection points

are called critical and denoted by �cðiÞ. In fact, for each �cðiÞ, the

total density is constant for the two successive times of iteration ti
and tiþ1.

1 2 3 4 5 6 7 8 9
0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

constant 

 dirac

Figure 5. The interpolation curve of �cðiÞ. Each point is given by the intersection

of the total density curves for two successive iteration times, i.e. 1 corresponds to

the intersection point of 50 and 100 iteration curves. We increase of 50 iterations

at every ordinate point, finishing by 500 iterations.
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We observe in Fig. 5 that these values of critical absorption cross

sections numerically converge to a finite value �n, which is the searched

value. Moreover, additional numerical simulations show that this value

�n does not depend on " (for sufficiently small values of ").

In Fig. 6, we show the limit profile of the curve nð�, tÞ for the com-

puted critical absorption � ¼ �n ¼ 0:466 and t ¼ 500�t. Again the initial

condition is given by a constant function or a Dirac mass. We underline

the fact that for both initial data, we end up with the same (up to a

normalization) profile which does not depend on ", for " small enough.

In Fig. 7, we show the influence of multiplying reflection boundary

conditions with respect to different values of the absorption cross section.

When time evolves, we clearly see the significant growth of the number

of particles NðtÞ when �<�n, and its fast shoot to zero for �>�n.

For � ¼ �n, this number remains bounded without ‘‘exploding’’ both in

the case of the initial condition given by a constant function or a Dirac

mass. Moreover, it seems to reach an almost constant value. Hence, this

numerical approximation �n of the critical cross-section �c done in Fig. 5

seems to be satisfactory.
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Figure 6. The final profile of nð�; tÞ with initial data a Dirac mass or a constant

function, both in position and velocity; � ¼ 0:466, " ¼ 0:001, R ¼ 2L ¼ 4,

t ¼ 500�t:
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Finally, in Fig. 8, we show the behavior of the density function nð�, tÞ

for three different iteration times. The initial data which we consider is a

Dirac mass both in space and velocity. The absorption cross section � is

the numerical critical coefficient �n ¼ 0:466. It is clearly seen that the

Dirac mass is convected and diffused respectively by means of the trans-

port equation and of the Boltzmann-Lorentz operator for grazing colli-

sions (with " ¼ 0:001). Finally, the density is also multiplied and reflected

at the boundaries, and we can see the beginning of boundary layers.

4.4. Defocusing of a Beam

Following the test performed in Cordier et al. (2000) for a photonic

type model, we now assume that between the two plates there is vacuum.

Moreover, a focussed beam enters in the slab on the left side (i.e., at

x ¼ �L) and scatters. The absorption cross section is fixed to � ¼ 0,

the grazing coefficient to " ¼ 0:001 and the discretization points in x

and � respectively to Nx ¼ 50 and N� ¼ 50. We now consider the influ-

ence of the relaxation time �. The boundary condition corresponding to

0 100 200 300 400 500
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0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

sigma=0.466 sigma=1sigma=0.1

Figure 7. The total density N(t) for different values of the absorption (� > �n,

� < �n, and � ¼ �n ¼ 0:466) with initial data a constant function, " ¼ 0:001 and

t ¼ 500�t:
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the injection of a mono-kinetic beam in the direction perpendicular to the

planes of the slab is given by:

f ð�L, cos � > 0, tÞ ¼ 
,

where 
 denotes the delta measure with respect to the angle variable �; on

the right boundary we have:

f ðL, cos � < 0, tÞ ¼ 0,

which means that the particles leaving the slab on the right side never

return.

In Fig. 9, we draw the focalization coefficient, defined as the ratio

between the particles leaving the slab on the right side with a velocity

perpendicular to the plane, and the injected particles:

Fð�, tÞ ¼ f ðL, � ¼ 0, tÞ:

The computations are done for t sufficiently large (t ¼ 150�t) so that

the density has reached a stationary state.

Finally, in Fig. 10 we show for three values of the relaxation time,

� ¼ 2�5, 1, 25, and for four iteration times Niter ¼ 25, 50, 100, 200 the

particle density nð�, tÞ evolution (with t ¼ �tNiter).

Let us note that the numerical results we have obtained for this

model are in perfect agreementwith those performed inCordier et al. (2000)
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Figure 8. The evolution of nð�; tÞ with initial data a Dirac mass (normalized) in

position and velocity.
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for a 1D in space and 2D in velocity (i.e., R� S2) analogous problem,

where the collision operator involved was the Laplace-Beltrami operator

on the unit sphere.

5. CONCLUDING REMARKS

We have described an implicit finite element approximation for the

grazing collision Boltzmann-Lorentz operator. This approximation

allows to pass to the limit " ! 0 for a fixed discrete scheme (with respect

to the velocity variable). This fact is due essentially to the possibility of

carrying out the exact computations of both the mass matrix and the

collision matrix with no need of quadrature formulas. Other methods

would have been possible: for example, a finite volume method based

on a piecewise parabolic operator or a spectral method (see Buet et al.

(2001), Pareschi et al. (2002)). Our choice of a FEM method has been

essentially motivated by the nature of the limiting problem and also by

previous computations done for the Laplace-Beltrami operator in 3D.

The generalization to the three-dimensional case seems to be possi-

ble: we can in fact compute the matrices A and Q, but the coefficients

we find are much more complicated. According to Buet et al. (2001),

F
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8 6 4 2 0 2 4 6 8 1010

Figure 9. The focalization Fð�; t ¼ 150�tÞ. � ¼ 2k; k ¼ �10; . . . ; 10.
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n(x,T)
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Figure 10. The density nð�;TÞ, � ¼ 2�5 (left),1 (center) , 25 (right), T ¼ Niter�t

with Niter ¼ 25; 50; 100; 200.
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a spectral method should be a good idea for the numerical approximation

of the 3D grazing collision Lorentz operator.

It should be also interesting to generalize the approximation

presented in this article to nonconstant grazing collisions scattering

cross sections and also to the Coulombian case (we refer to Cordier et

al. (2002) for a numerical comparison between the Boltzmann-Lorentz

operator and the Fokker-Planck one in the Coulombian case).

A1. APPENDIX

Here we perform the computation of the coefficients Qij of the graz-

ing collision matrix Q. We first express the hat functions ’i as follows:

’ið�Þ ¼ ’hð� � �iÞ, where:

’hðzÞ ¼
h�1ðh� jzjÞ, if jzj < h,

0 else:

�

Replacing in Eq. (3) � ¼ � � �i and �
0
¼ �

0 � �j yields:

Qij ¼

Z

S1

Z

S1

B"ð� � �
0
þ��Þ ½’hð�Þ ’hð�

0
Þ � ’hð�Þ ’hð� þ��Þ� d� d�

0
,

where we have set �� ¼ �i � �j ¼ ði � jÞh. Introducing the new hat

function

’ðzÞ ¼
ð1� jzjÞ, if jzj < 1,

0 else

n

we have ’hðzÞ ¼ ’ðz=hÞ. Now using the new variables � ¼ �=h and

�
0 ¼ �

0
=h, we can write:

Qij ¼ h2
Z þ1

�1

Z þ1

�1

B"ðh� � h�0 þ��Þ ½’ð�Þ ’ð�0Þ

� ’ð�Þ ’ð� þ ði � jÞÞ� d� d�0

¼ h2
Z þ1

�1

Z þ1

�1

B"ðhð� � �
0 þ ði � jÞÞÞ ½’ð�Þ ’ð�0Þ

� ’ð�Þ ’ð� þ ði � jÞÞ� d� d�0:

Let us set BhðzÞ ¼ BðhzÞ, i.e., (with B0 ¼ 1="3):

BhðzÞ ¼
B0 if jzj <  ¼ "�=h,

0 else;

�
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then the collision coefficient Qij reads:

Qij ¼ h2
Z þ1

�1

Z þ1

�1

Bhð� � �
0 þ ði � jÞÞ ½’ð�Þ ’ð�0Þ

� ’ð�Þ ’ð� þ ði � j ÞÞ� d� d�0

¼ h2B0

Z Z

j���0þði�jÞj<

½’ð�Þ ’ð�0Þ � ’ð�Þ ’ð� þ ði � jÞÞ� d� d�0

with �, �0 2 ½�1, þ 1�. We split Qij into a gain part Gij and a loss part Lij ,

i.e., we set Qij ¼ Gij � Lij, where:

Gij ¼ h2B0

Z Z

j���0þði�jÞj<

’ð�Þ ’ð�0Þ d� d�0,

Lij ¼ h2B0

Z Z

j���0þði�jÞj<

’ð�Þ ’ð� þ ði � jÞÞ d� d�0:

We now have to compute separately these gain and loss terms. For

this, we will assume that  � 1, so that " � h=� ¼ 2=N�: it is thus possible

to pass to the limit first for " ! 0 and then for h ! 0.

Let us first compute the gain coefficients Gij . As the ’ function is null

outside a domain of length 2, it is clear that for ji � jj � 3, Gij ¼ 0 (see

also Fig. 11). Thus, we have to compute Gij for i ¼ j, ji � jj ¼ 1, and

ji � jj ¼ 2. Considering also the symmetry of the collision operator, we

only have to compute the integrals for i � j ¼ �2, i � j ¼ �1, and i ¼ j.

θ θ

θ θ

θ θ

θ

’= − 1

’ = − 2

’ =

−β β

θ’

Figure 11. Set of definition of Bhð� � �
0 þ i � jÞ:
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Looking at Fig. 12, we define the following integrals for a given

� > 0:

Ið��Þ ¼ h2B0

Z 0

��

ð1þ �Þ

Z �þ��1

�1

ð1þ �
0Þ d�0

� �

d�

þ h2B0

Z 1��

0

ð1� �Þ

Z �þ��1

�1

ð1þ �
0Þ d�0

� �

d�

þ h2B0

Z 1

1��

ð1� �Þ

Z 0

�1

ð1þ �
0Þ d�0

� �

d�

þ h2B0

Z 1

1��

ð1� �Þ

Z �þ��1

0

ð1� �
0Þ d�0

� �

d�

¼ h2B0

1

12
�
3ð�� 4Þ þ

1

24
ð1� �Þð1þ �Þð�2 þ 4�þ 1Þ þ

1

4
�
2

� �

¼ h2B0 �
1

8
�
4 þ

1

6
�
3 þ

1

4
�
2 þ

1

6
�þ

1

24

� �

and

Jð�Þ ¼ h2B0

Z 1

�

ð1� �Þ

Z ����1

�1

ð1þ �
0Þ d�0

� �

d�

¼ h2B0

1

24
ð�� 1Þ4

θ

−β

I(−β)

β

β

θ’

J(   )

Figure 12. The integrals Ið��Þ and Jð�Þ.
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In particular, Ið��Þ represents the integral with support on the

bigger triangle and Jð�Þ represents the integral with support on the

small triangle (Fig. 12)

We get:

Gij ¼ Jð1� Þ ¼
1

24
h2B0

4 , for i � j ¼ �2 ð19Þ

Gij ¼ Ið�Þ � JðÞ ¼ h2B0 �
1

6

4 þ

1

3

3 þ

1

3


� �

, for ji � jj ¼ 1

ð20Þ

Gij ¼ h2B0

Z þ1

�1

ð1� j�jÞ d�

� � Z þ1

�1

ð1� j�0jÞ d�0
� �

� 2Ið�1þ Þ

¼ h2B0

1

4

4 �

2

3

3 þ

4

3


� �

, for i ¼ j ð21Þ

We now compute the loss coefficients Lij. As before, we just have to

compute Lij for ji � jj ¼ 2, 1, and 0. We first remark that for ji � jj � 2,

the product ’ð�Þ’ð� þ i � jÞ is null. In fact ’ð�Þ differs from zero on the set

½�1, þ 1� while ’ð� þ i � jÞ differs from zero on the set ½1, 3�. Hence,

Lij ¼ 0 for ji � jj � 2. Moreover, for ji � jj ¼ 1 the product

’ð�Þ’ð� þ i � jÞ is not null only for � 2 ½0, 1�, and the dependence of Lij

on the variable �0 appears only through the kernel Bh which is not null on

a set of amplitude 2. Thus, we have:

Lij ¼ h2B02

Z 1

0

�ð1� �Þ d�

¼ h2B02
1

6
¼
1

3
h2B0 , for ji � jj ¼ 1 ð22Þ

Analogously, for the principal diagonal, we have:

Lii ¼ h2B02

Z þ1

�1

ð1� j�jÞ2d�

¼ h2B02
2

3
¼
4

3
h2B0: ð23Þ

Thus, collecting Eqs. (19)–(23) and recalling that B0 ¼ 1="3 and that

 ¼ "�=h, the computation of the coefficients Qij is completed.
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We finally remark that the computation of the coefficients Aij of the

mass matrix A may be done analogously.
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