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Quasistatic rheology of foams
II. Continuous shear flow

By ALEXANDRE KABLA1, JULIEN SCHEIBERT2
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Street, Cambridge, Massachusetts 02138, USA

2Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS - UMR 8550, 24 Rue
Lhomond, 75231 Paris Cedex 05,FRANCE

The evolution of a bidimensional foam submitted to continuous quasistatic shearing
is investigated both experimentally and numerically. We extract, from the images of
the sheared foam, the plastic flow profiles and the modifications of the stress field. As
the imposed strain becomes larger than the yield strain, a shear-banding transition is
observed leading to a spatially confined flow profile. This process is associated with a
sudden increase in the temporal and spatial correlations of the plastic events. The spa-
tial fluctuations of the static stress field is measured in different regions of the sample:
the shear-band region is found to exhibit larger stress heterogeneities than the rest of
the sample. This property can be associated with a decrease in the effective yield stress
so that the shear-banding process can be understood as a strain-weakening instability.
Furthermore, we investigate the stress fluctuations associated with the plastic rearrange-
ments in the permanent regime of flow.

As in most non-thermal disordered systems, foams mechanical properties are history
dependent: they vary with the shear sequence which has been previously applied to the
sample. In the companion paper (Kabla (2006)), this behaviour was evidenced using a
numerical quasistatic model of a 2D foam submitted to an oscillating strain of moderate
amplitude. A fresh (unsheared) foam was found to exhibit a continuous change in its
elastic modulus, normal stress difference and yield stress, as the number of applied shear
cycles was increased. This evolution of the mechanical response was associated with a
measurable modification of the foam structural properties: low-amplitude shearing relaxes
the foam structure and produces anisotropy in the film network.

Here this effect is studied for fully developed shear flows in quasistatic regime. The
numerical model described in Kabla (2006) is used and complemented by an experiment
on a real, bidimensionnally confined aqueous foam in Couette geometry. We have shown,
in two previous articles, that beyond a given applied strain, plastic flow localizes in a
limited region of the material called shear-band (Debrégeas (2001), Kabla (2003)). In the
present study, we investigate the elastic coupling between the discrete plastic events and
the stress field.

In part 1, a detailed description of the experimental and numerical systems is pro-
vided. Different tests are performed to establish the existence of a quasistatic regime in
the experiment, which allows for comparison with the numerical system. In part 2, the
evolution of different quantities (shear stress, free energy, flow profiles) is studied during
the elastic to plastic transition. In order to understand the shear-banding instability, we
analyze in part 3 the mechanical effect of T1 events (the elementary plastic processes in
2D foams, figure 1 (a)) on the stress field. Based on these results, a qualitative model is
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proposed that captures both the flow instability and the observed heterogeneous modifi-
cation of the sample structural properties (part 4). In part 5, we investigate the dynamics
of internal stress fluctuations induced by T1 events which take place in the shear-band.
A statistical mechanical model is proposed that accounts for most characteristics of the
stress dynamics.

1. Experiments and simulations

1.1. Bidimensional confined foams

3D foams are highly diffusive to light and thus hardly accessible to bulk imaging (Durian
(1991), Hohler (1997)). This is why most available data on foam rheology at the bubble
scale come from 2D systems. Three main experimental systems have been used: (i) Lang-
muir foams are formed by depositing a mono-molecular layer of amphiphilic molecules on
the surface of water. The monolayer exhibits a phase transition between a dense liquid
phase and a dilute gas phase (Dennin (1997), Courty (2003)). In the coexistence domain
of the phase diagram, the dense and dilute regions spontaneously organize into a foam
structure whose cell size is of the order of 10 microns. (ii) Rafts are made of a monolayer
of soap bubbles floating at the surface of a liquid bath (Bragg (1947), Lauridsen (2002)).
The raft is sometimes covered with a transparent glass plate to facilitate its observation
(Abd el Kader (1999), Dollet (2005), Wang (2006)). (iii) Confined 2D foams consist of
an individual layer of bubbles squeezed between two flat plates (Debrégeas (2001), Asi-
pauskas (2003), Cantat (2004)). The bubbles diameter is adjusted so as to be larger than
the distance between the plates.

In the present study, the latter configuration is used. Details of the set-up can be
found in Debrégeas (2001): it is composed of an inner shearing wheel and an outer ring
(of respective radius r0 = 71mm and r1 = 122mm) confined between two transparent
plates separated by a 2mm gap. Disordered foams are obtained by bubbling nitrogen
from two hoses in a controlled amount of soap solution. Here, we focus on the limit of
dry (polygonal) foams with a liquid volume fraction of 1%. The mean diameter of the
bubbles is of the order of 2.2mm (Fig. 1). Shearing is produced by rotating the wheel
with a stepper motor while the outer ring is kept fixed. Both the wheel and the ring are
tooth-shaped to avoid bubble slippage. A CCD camera, positioned above the cell allows
one to monitor the foam during the experiment. The network of films is then extracted
by image analysis using IDL.

This confined system has several advantages in comparison to the two other systems.
First, confinement walls reduce gas diffusion between neighbouring bubbles which allows
one to run experiments for about two hours without significant change in the bubbles
volume. Second, this configuration prevents the dynamic coupling that occurs between
the sub-phase and the foam under shear. More importantly, the confined geometry allows
one to access the stress field in the material through a simple observation of the films
structure. Since the area of the gas/liquid interface is fixed in the horizontal plane, the
free energy F of any sub-volume D of the foam is given, to a constant, by the total area
of the films that separates neighbouring bubbles. In the limit of an infinitely dry foam,
the free energy reads:

F (D) = 2Γh
∑

{films inside D}

li (1.1)

where Γ is the surface tension at the air-water interface and h the separation between
the glass plates. The sum is performed over all the films inside the sub-volume D, and li
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Figure 1. (a) Example of a T1 event in a 2D confined foam. This elementary plastic process
results from the exchange of neighbours between four adjacent bubbles (noted a, b, c, and d in
the pictures). (b) Two pictures of the confined 2D foam: (left) initial (unsheared) foam (right)
foam under strain. (c) Definition of the different geometrical and kinetic parameters.

are the horizontal lengths of the films. From this expression, we introduce the line tension
γ defined as: γ = 2Γh. Consistently, the internal capillary stress in the confinement plane
can also be extracted from the projected film network (Kraynik (2003)):

σxy(D) =
γ

A(D)
·

∑

{films inside D}

li,x · li,y
li

(1.2)

It should be noted that these two relationships are not valid for rafts in which bubbles
can deform in the vertical direction to accommodate horizontal stresses.

1.2. The quasistatic regime of flow

The main limitation of this experimental system is due to the viscous stress exerted by
the confining walls on the foam upon shearing. The motion of the soap films induces
liquid flows in the plateau borders that connect the films to the plates. This yields a net
viscous force than can overcome the internal friction between bubbles (Cantat (2004)). As
a model of foam bulk rheology, this system is thus only valuable in the limit of quasistatic
flow. This regime is expected when the shearing time-scale τshear = ε̇−1 is shorter than
the time-scale for stress relaxation τrelax associated with a plastic event†. The flow then
consists of a series of elastic charges interrupted by stress drops associated with the
(rapid) plastic yieldings (Pratt (2003)). During the charge periods, the foam is in static
equilibrium whereas all dissipative processes take place during the fast rearrangement
events.

Measuring the time τrelax is not straightforward. The duration of the local film swap-
ping process itself can be evaluated to τT1 ∼ 0.1s by direct visualization. In a 3D foam,
the resulting deformation of the material propagates outwards via rapid elastic waves, so
that τrelax is in the same range. In a confined foam system, however, the elastic waves
are overdamped by the friction with the confining walls so that the equilibration time
following a T1 event grows linearly with the system size. In the present case, this yields

† In order to be consistent with the companion paper, and to avoid any confusion with the
notation γ for the surface tension, the shear strain will be systematically noted ǫ.
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an estimation of the relaxation time τrelax ∼ 10 · τT1 ∼ 1s. It should be noticed that, due
to shear-banding, the maximal local shear rate ε̇max is much larger than the mean shear
rate controlled by the wheel rotation rate.

In order to determine the limiting rotation rate Ω for which the flow is quasistatic,
several tests are carried out. For different value of Ω, we monitor the bubbles displace-
ments during the time period τ0 = D/(r0Ω) needed for the wheel edge to move over one
mean bubble diameter D. These kinematic measurements are performed in the perma-
nent regime of flow which is found to be reached after the wheel has been rotated one full
turn. Averages are calculated over the time and the angular coordinate. We thus extract
the average displacement u‖(y) in the direction of the flow and the standard deviation of

the radial displacement
√

〈u⊥(y)2〉 as a function of the distance y from the edge. Both
quantities are scaled by the bubble diameter D.

Figure 2(a) shows the resulting profiles for two different rotation rates Ω = 2.9 · 10−3

and 5.8 · 10−3rad · s−1. The plastic flow is mostly confined in a small region - the so-
called shear-band - in the vicinity of the wheel edge. The average flow profile u‖(y)
exhibits an exponential decay from the wheel edge toward the outer ring. The decay
length is approximately one bubble diameter (Debrégeas (2001)) so that the maximum
local shear-rate is of the order of ε̇max ∼ Ωr0/D.

Although the mean displacement in the shear direction is barely measurable beyond
the fifth row of bubbles, the standard deviation of the transverse displacements remains
large all across the gap. These latter are a signature of the long-range elastic deforma-
tions induced by plastic events in the shear bands (see part 5). The similarity of the
curves for the two different rotation rates establishes that the dynamic is quasistatic. In
this regime, the only relevant parameter is the total imposed strain and not the shear
rate. From this point forward, all the experiments are performed at the same rotation
rate which is set at Ω = 2.9 · 10−3rad · s−1, corresponding to ε̇max = 0.1s−1 †.

Further proof of the quasistaticity of the flow at this shear-rate is obtained through a
mechanical approach. In order to demonstrate that the viscous stress due to the confining
wall is negligible, as expected in quasistatic flow, we check that the only contribution
to the internal stress is due to surface tension. Using equation 1.2, the average shear
stress profile along the radial direction is measured (Figure 2(b)). It appears to follow
the expected decay for a cylindrical Couette geometry:

σxy(y) = σxy(y = 0) ·

(
r0

r0 + y

)2

(1.3)

This result confirms that the foam is, at any time, in static mechanical equilibrium‡.

† It should be noted that, for larger rotation rates, a rapid decrease in the amplitude of the
transverse fluctuations is observed, although the shear profile remains mainly unchanged. This
indicates that the independence of the average shear profile with the imposed shear rate is not
a sufficient criterium to establish the quasistaticity of the flow.

‡ At this point, we wish to comment on a recent result of Wang et al. (Wang (2006)) who
showed that different quasistatic flow profiles could be obtained with bubbles rafts depending
on the presence or absence of a covering plate. The authors claim that this result establishes
that the viscous friction with the confining plate is involved in the shear-banding process. This
explanation seems improper: if the flows are indeed quasistatic, viscous stresses are, by definition,
irrelevant.
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Figure 2. (a) Shear velocity profiles u‖(y) and transverse fluctuations profiles
√

〈u⊥(y)2〉 for

different rotation rates Ω = 2.9 · 10−3rad · s−1 (solid line) and Ω = 5.8 · 10−3rad · s−1 (dashed
line) (data from the experiment). These measurements are obtained by averaging displacements
over the time and the angular coordinate. The radial displacements are obtained by tracking
the bubbles over a time τ0 corresponding to a displacement of the inner wheel equal to a bubble
diameter D. (b) Shear stress profile as a function of the distance from the inner wall. The inset
demonstrates that this profile is consistent with the expected stress decay in Couette geometry
(equation 1.3).

1.3. Numerical model

From equation 1.1, it appears that the static equilibrium configuration of the foam cor-
responds to a minimum of the total length of the (projected) 2D film network, with the
constraint of fixed bubbles volume. This is precisely the basis of the quasistatic simula-
tion, described in the companion paper, which therefore provides a realistic numerical
counterpart to this set-up.

In Kabla (2003), we showed that the numerical foam exhibits a shear-banding insta-
bility whose characteristics are similar to those observed in the experimental system
(Debrégeas (2001)). The comparison of these two results demonstrates that the shear-
banding process is not a mere consequence of the mean shear stress decay associated with
the Couette geometry (see formula 1.3). Indeed, the numerical simulations are performed
in plane parallel geometry for which the shear stress is homogeneous across the gap.

In the present article, we combine the two systems to study in detail the transition
to shear-banding as well as the dynamics of local stress fluctuations in the permanent
regime of flow. The numerical procedure for the evolution of the foam under shear, and
the definition of the different quantities monitored, are similar to those described in the
companion paper (Kabla (2006)). The dimension of the numerical foam in the shear
direction is increased in order to limit non-physical correlations induced by periodic
symmetry. The numerical foam dimension is thus 40x16 bubbles. When possible, results
from both the experiment and the simulation are presented. However, due to the limited
resolution of the experiment, some measurements can only be obtained with the numerical
system.

2. Transition to shear banding

To examine the transition to shear-banding, an experiment is performed in which
the wheel is first rotated counter-clockwise one full turn. The evolution of the foam
is then monitored as the wheel is rotated backwards. Figure 3 shows the modification
of the displacement profiles in the shear direction u‖(y) as the imposed deformation is
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increased from 0 to 2, as well as the corresponding profile in the permanent regime. All
distances are scaled with the displacement u0 of the wheel edge during the same period.
For small imposed strain (ǫ ∼ 0.25), the foam deforms almost elastically (very few T1
events occur). The corresponding profile is consistent with what is expected for a linear
elastic deformation in Couette geometry:

u‖(y) = u0 ·
(y + r0)/r1 − r1/(y + r0)

r0/r1 − r1/r0

(2.1)

where r0 and r1 are respectively the inner and outer diameters. Beyond ǫ ∼ 0.25, strain
begins to localize in a shear-band. For ǫ ≥ 1, The flow has reached its permanent regime
and the flow profile exhibits an exponential decay: u‖(y) = u0 exp(−y/λ), with λ ∼ 1.2.

Distance y from the inner cylinder (in bubble size)

u
  (

y
)/

u
0

(a)
(b)

(c)

(d)

(e)

(f)

Figure 3. Transition from the purely elastic response to localized flow (experiment). The av-
eraged displacement profile is plotted for different imposed deformations: (a) 0 < ε < 0.125,
(b) 0 < ε < 0.25, (c) 0 < ε < 0.5, (d) 0 < ε < 1, (e) 0 < ε < 0.2, (f) 2 < ε < 8. The curves
(a) and (b), which almost overlap, correspond to the expected response of an elastic material
(dashed line u‖(y) = u0((y + r0)/r2 − r2/(y + r0))/(r1/r2 − r2/r1) with r2/r=1.5). The profile
in permanent regime (f) is fitted by an exponential: u(y) = u0 exp(−y/1.2).

In the experiment, the introduction of the foam in the gap involves the shearing of the
material in a poorly controlled way. The numerical simulation is therefore more adequate
to probe the transient regime of shear which strongly depends on the shear history of
the sample. Figure 4 shows, as a function of the wall displacement noted d, the evolution
of the mean shear stress, the energy of the foam (total film length), and the position
of the T1 events across the gap. The line tension is set at 1, and the foam dimensions
are set at LxxLy = 2.5x1; the parameter d is thus numerically equivalent to the total
applied strain ε = d/Ly. For ε < 1, an elastic deformation of the material is observed,
interrupted by a small number of T1 events uniformly distributed across the gap. For
ε ∼ 1, shear-banding occurs: most of the T1 events gather in a narrow region close to
one of the confining walls. The sharp transition is associated with an overshoot of the
shear stress and the appearance of large avalanches of rearrangements, as evidenced by
the increase of the drops amplitude in the shear stress and energy curves (figure 4(a) and
4(b)).

As the foam is sheared, it experiences a series of plastic events that modify its topo-
logical structure. Each metastable configuration is entirely characterized by the relative
positions of the bubbles. We showed in the companion paper that this trajectory in the



Quasistatic rheology of foams II. Continuous shear flow 7

σxy

0 0.5 1 1.5 2 2.5 3

−1

0

1

2

3

4

5

Energy

P
o
si

ti
o
n
 o

f 
th

e 
T

1
s

76.0

75.5

75.0

74.5

74.0

73.5

ε

ε

ε

(a)

(b)

(c)

Figure 4. Evolutions of (a) the shear stress, (b) the free (line-length) energy and (c) the
positions of the T1 events within the gap as a function of the applied strain ǫ (data from the
simulation).

configuration space can be associated with a path in an energy landscape. After each
T1 event, the system falls into a new energy basin which is defined as the energy versus
strain relation of the given structure.

For each value of the total imposed strain ε, this quadratic function can be numerically
obtained the following the method detailed in Kabla (2006): after an imposed strain ε,
the possibility for T1 events to occur is forbidden in the simulation so that only the
elastic response of the structure is probed. The line-length energy of the foam E(ε′) is
then monitored as a function of the strain ε′ and the resulting curve is fitted using the
following relation:

Eelast(ε
′) = E0(ε) +

Aµ(ε)

2
(ε′ − εplast(ε))

2 (2.2)

where A is the total area of the foam. This allows one to extract, for each configuration
reached after an imposed strain ε, several parameters that define the energy basin: E0 is
the minimum energy of the structure, µ is the shear modulus and ǫplast is the value of
the shear strain (or equivalently the position of the wall) for which the foam energy is
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Figure 5. Evolutions of (a) the structural energy E0, (b) the shear modulus, and (c) the
plastically relaxed and elastically stored strain components as a function of the imposed strain
(data from the simulation). In graph (c), the dotted line is the sum of the two components of
strain which, by definition, is equal to the imposed strain.

minimum. The latter can be viewed as the amount of strain that has been irreversibly
released through the successive plastic events that have occurred since the shear started.
The imposed strain can thus be decomposed into an irreversible (plastic) and a stored
(elastic) component: ε = εelast + εplast.

Figure 5 shows the evolution of these different parameters as a function of the imposed
strain ε. In agreement with the findings of the companion paper, E0 and µ are found
to decrease with the strain for ε < 0.5. In this transient regime, εplast remains almost
constant which indicates that the initial T1 events relax the structure but do not signif-
icantly release the shear strain. As the system enters the localized regime, a significant
increase of E0 is observed whereas µ remains unchanged. The plastic component of the
strain εplast becomes greater whereas the elastic part reaches a constant value. In the
permanent regime, the T1 events mainly release the imposed strain.

2.1. Discussion

In the numerical simulation, although the imposed stress is uniform, the flow is highly
asymmetrical. As already pointed out by previous studies (Varnik (2003), Kabla (2003)),
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this observation hampers the possibility to describe the foam mechanical response using
a rheological equation such as σ = f(ǫ̇). In particular, the Hershel-Buckley model, σ =
σ0 + µǫ̇n, which is commonly used for aqueous foams, is expected to fail in the limit of
ǫ̇ = 0. This has been recently established by Rodts et al. using MRI imaging of 3D foams
sheared in a Couette cell (Rodts (2005)). The authors observe a discontinuous drop of
the shear-rate measured across the gap, from ǫ̇c = 10s−1 to 0. The width of the transition
zone, which is below the MRI resolution, is believed to be of the order of a few bubble
diameters.

This observation can be understood by noting that ǫ̇−1
c = 0.1s is of the order of the

duration of a T1 event. When the average strain rate falls below this critical value, the flow
becomes intermittent: the local instantaneous strain rate is either 0 in the absence of T1
process, or ǫ̇c = 1/τT1 when a T1 occurs. In this regime, the long-range elastic stress that
couples the different regions of the material becomes dominant over local viscous stress
and allows for spatially heterogeneous flow to develop. In the case of Rodts’ experiment,
as well as in our system, this leads to an abrupt decay of the plastic strain rate over a
distance of a few bubble diameters.

In order to understand the spatial and temporal statistics of the plastic processes in
the intermittent regime, one needs to probe the elastic effect of the plastic events on
the entire material. This is done in the next chapter using the results of the numerical
simulation which, in contrast to the experiment, provides a sufficient resolution for such
a study.

3. The short-time scale: T1 and avalanche

3.1. Elastic effect of a T1

The stress field in the foam can be evaluated by extrapolating the expression 1.2 to small
sub-regions (in practice down to the bubble size). By comparing the equilibrated struc-
tures of the foam before and after a rearrangement, one can extract the local displacement
and shear stress variation induced by the event on each bubble. Figure 6 displays the
resulting fields for a T1 event located either in the middle of the foam or close to one of
the walls. In order to improve the spatial resolution of the measurements, the data are
averaged over one hundred T1 events located at the same distance from the wall.

We first focus on the line-averaged (along the shear direction x) characteristics of the
propagator. The average shear stress relaxation is found to be identical for each line as
imposed by the constraint of mechanical equilibrium. The graphs 7 (a) and (b) show the
displacement profiles: to first order, a T1 event is equivalent to a shift running along the
line of the T1 event. The upper part of the material ”slides” with respect to the lower
part over a length δdT1. In each sliding block, the displacement profile is linear and the
slope defines a shear strain δεT1 = δdT1

Ly
where Ly is the gap width.

Due to the foam polydispersity, a 30% dispersion in the these quantities is observed.
However, a scaling of the mean length δdT1 can be estimated by considering that the
bubbles involved in the T1 move by a distance of order D, whereas the Lx/D bubbles in
the rest of the line do not rearrange (Lx is the size of the foam in the x direction). Thus
the average sliding distance δdT1 is expected to write:

δdT1 ≃ D ·
D

Lx

(3.1)
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respectively located close to the wall and in the middle of the gap. These simulation data have
been obtained by averaging 100 different T1 events located at the same distance from the wall. In
figure (a) and (b), the blue colour corresponds to a stress decrease (with respect to the imposed
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Figure 7. (a) and (b): the deformation profiles (x-averaged displacement) induced by a T1
event located (a) near the wall and (b) in the middle of the gap. δdT1 is the mean sliding
distance, and δεT1 the corresponding elementary strain release induced by the T1 event. Due to
the foam polydispersity, a 30% dispersion in the these quantities is observed.(c): dependence of
δεT1 with the system size (D is the mean bubble diameter and A is the foam area). Each data
point corresponds to an average over 100 T1 events.

The elastic deformation released by the T1 event thus writes:

δǫT1 =
δdT1

Ly

=
D2

A
(3.2)

where A is the total area of the foam. These two relations are successfully confirmed by
varying the system size (figure 7(c)). Recent analytical results of Picard et al. (Picard
(2004)) show that this propagator corresponds to the response of a 2D elastic material to
an elementary force quadrupole. It should be stressed, however, that the T1 propagator
is slightly asymmetrical: this might be due to the elastic anisotropy of the foam induced
by the shearing.

Having identified the result of a single T1 event, the cumulative effect of a series of these
plastic events on the evolution of the stress field can now be examined. As previously,
we consider a system of size (Lx,Ly), sheared along the x direction, with an imposed
shear rate ε̇ in quasistatic regime. We denote u‖(y, t) the displacement in the x direction
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at a distance y from the wall, averaged over the shear direction. The associated strain
ε(y, t) = du‖/dy is decomposed into a (stored) elastic term εelast(y, t) and a plastic term
εplast(y, t):

ε(y, t) = εelast(y, t) + εplast(y, t) (3.3)

The function ω(y, t) is defined as the density function of T1 events occurring at a time
t and a height y in the foam:

ω(y, t) =
∑

T1 i

δ(y − yi) · δ(t − ti) (3.4)

When a rearrangement occurs at a location yT1, it increases the plastic strain by a
quantity δdT1 at y = yT1, and elastically relaxes the entire system by a strain amplitude
δǫT1 = δdT1

Ly
. One can thus write:

∂ εelast(y, t)

∂t
= ε̇ − δεT1 ·

∫

y

ω(y′, t)dy′ (3.5)

∂ εplast(y, t)

∂t
= ω(y, t) · δdT1 (3.6)

The integral in Equation 3.5 is a direct consequence of the long range elastic effect of T1
events. The strain evolution at any location in the foam depends on all the rearrangements
occurring in the system. Moreover, εelast(y, t) does not depend on y; as the local shear
stress is uniform in all the lines, the elastically stored deformation also remains uniform.
These equations yield a relationship between the statistics of the plastic events and the
flow profile v(y) = du‖/dt in permanent regime:

dv(y)

dy
=

〈
∂ ε(y, t)

∂t

〉

t

=

〈
∂ εelast(y, t)

∂t

〉

t
︸ ︷︷ ︸

= 0

+

〈
∂ εplast(y, t)

∂t

〉

t

(3.7)

⇒
dv(y)

dy
= 〈ω(y, t)〉t · δdT1 (3.8)

This relationship is demonstrated on figure 8 which displays both the gradient of
the flow profile and the histogram of the T1 event locations in permanent regime. The
elastic behavior of the foam therefore couples local plastic events and global shear stress
relaxation, allowing for the existence of heterogeneous flow profiles. This approach shows
that any flow profile is consistent with the mechanical equilibrium condition, as each T1
event produces the same stress relaxation in each line, regardless of its location in the
gap. Therefore, this line-averaged description appears inadequate to address the question
of the shear-banding instability and further examination into the origins of the spatial
correlations between T1 events is needed.

3.2. From a T1 event to the avalanche

When a T1 event occurs, it generally triggers an avalanche of events that take place in the
neighbouring region. Figure 9 (a) shows the distribution of avalanche sizes measured in
numbers of T1 events. A power-law decay of the avalanche size distribution is observed,
with an exponent −1.5 consistent with numerical studies on elastic disordered systems
(Chen (1991), Okuzono (1995)). As shown in figure 9(b), the energy released during the
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Figure 8. Gradient of the flow profile and frequency of the T1 events for each line
(simulation). The coordinate y is expressed in bubble diameter D.
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Figure 9. (a) Distribution of the elastic energy released by the avalanches of plastic events (b)
Released energy as a function of the number of T1 events involved. These results come from the
simulation data in permanent regime.

avalanche is a linear function of the avalanche size: each rearrangement releases a given
amount of energy (or shear stress) which numerically coincides with A · δǫT1

· σxy.
The avalanches appear to develop preferentially along shear lines, as illustrated in fig-

ure 10. This trend can be understood from the observation of the pattern displayed in
figure 6, which shows that the shear stress variation field induced by a T1 event is highly
anisotropic. Although the shear stress is globally relaxed, it is increased in some regions,
in particular in the line where the T1 event occurred. This increase is likely to trigger
further T1 events in the same line and can lead cumulatively to a complete ”unzipping”
of the line as illustrated in figure 10.

Due to the disordered nature of the foam, the collective reorganization of the bubbles
in the shear-band is very different from the standard dislocation motion that controls
plasticity in crystalline 2D foams (Bragg (1947)). Figure 10(c) shows the location along
the shear band of the successive rearrangements during the two avalanches. Although
consecutive T1 events are often nearby, after 3 to 4 rearrangements, the location of the
plastic events typically moves to another part of the shear band.

We quantitatively analyse this process during the permanent regime by measuring the
spatial correlations of the rearrangements along the flow direction. Figure 11(a) shows
the coordinate xi of the ith T1 event as a function of i. The shear-band develops af-
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Figure 10. (a-b) Description of two successive avalanches in permanent regime (numerical sim-
ulation). For each one, the displacement and stress fields, resulting from the T1 cascade, are dis-
played. The circles corresponds to the location of the T1 events that constitute the avalanche. (c)
x coordinate (along the shear-band) of the T1 events in chronological order for the 2 avalanches
described on the left. The dotted line indicates the limit between the two avalanches. This graph
illustrates that the second avalanche involves T1 events preferentially in the region that have
not plastically yielded previously. An animation showing the complete sequence of these two
avalanches is available online: http://tel.ccsd.cnrs.fr/docs/00/04/56/98/HTML/Ava97.gif
& http://tel.ccsd.cnrs.fr/docs/00/04/56/98/HTML/Ava98.gif

ter 300 rearrangements (dashed-line). From this point forward, the probability function

Pk(∆x) =
∑N

i=1
δ (xi+k − xi − ∆x) /N is computed (Pk represents the probability for

two rearrangements separated by k−1 events in the sequence to be located at a distance
∆x from each other). The two large peaks of P1 at ∆x = ±D in Figure 11(b) demon-
strates the existence of strong spatial correlations between successive rearrangements.
However, this correlation vanishes after about 3 rearrangements as indicated by figure
11(c) which shows the decay of the spatial correlation as a function of the difference in
the indexes of the two T1 events.
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Figure 11. (a) Position xi of the rearrangements along the shear direction, as a function of
the index i of the rearrangement in the sequence (i is the total number of rearrangements
that have occurred since the beginning of the simulation). (b) Probability function Pk(∆x) (see
text) for different values of k: 1 (red), 2 (green), 3 (yellow), 4 (violet), 5 (blue). The black
curve corresponds to

∑

20≤k<30
Pk(∆x)/10. At long time scale Pk(∆x) is constant, with a value

P∞ = 1/Ly. (c) Deviation from the uncorrelated statistics, as a function of the difference k in
the indexes of the two T1 events.

4. The shear-banding instability

The previous section showed that the peculiar form of the stress propagator associated
with a T1 event can account for the appearance of fracture-like processes orientated along
the shear direction. This is a first step toward the understanding of the shear-banding
instability. However, it does not explain why successive avalanches take place in the same
region of the foam so that the shear-band is stable in the long run. In the experiment, this
could be due to the decay of the mean shear stress across the gap inherent to the Couette
geometry, which would maintain the shear band in the region of higher stress near the
inner cylinder. However, the numerical study establishes that the same process occurs
in plane-parallel shearing geometry in which the shear stress is homogeneous across the
gap.

The stability of the shear band over time suggests that the shear-banding process is
associated with the development of structural heterogeneities which remain permanently
imprinted in the foam. To test this hypothesis, we attempt to identify local quantities
that may differ in the shear-band as compared with the rest of the material. In contrast
with many studies based on topological measurements (the so called µ2 parameter for
instance, Weaire (1983), Weaire (1997), Abd el Kader (1999)), here we focus on energetic
and mechanical parameters. This approach aims at offering a more generic framework
which may be extended to other disordered systems.

4.1. Spatial fluctuations of the static stress field

The disordered nature of the foam structure results in spatial heterogeneities of the static
stress field. To characterize these fluctuations, we evaluate, for each bubble of index i at
time t, the quantity:
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Figure 12. Distribution of the bubble shear stress δsσ(i) for the experiment (a and b) and the
simulation (c and d), in permanent regime. Two different regions are analysed: the shear band,
and a region located 10 bubble diameters away from the shear band. The regions correspond to
strips of width one bubble diameter in the experiment, and 2 bubble diameters in the simulation.
In order to compare numerical and experimental data, shear stress values have been scaled by
the mean shear stress in the permanent regime.

δsσi(t) = σi(t) − σ(y, t) (4.1)

where σi(t) is the bubble shear stress and σ(y, t) is the mean shear stress in the
corresponding line†. Figure 12 shows the statistical distributions of δsσ(i) (noted SSD
for Static Stress Distribution), normalized by σ(y, t), in both the experiment and the
numerical simulation. These graphs, obtained from two distinct regions of the foam,
show that the SSD’s are wider at the location of the shear-band than in distant regions.
To quantitatively probe the evolution of this characteristics of the stress field, we monitor,
for different regions of the sample, the variance of the SSD noted ∆sσ

2 which is defined
as:

∆sσ
2(t) =

∑

i ai δsσ
2
i (t)

∑

i ai

(4.2)

where ai is the area of the bubble i. Figure 13(a) shows, in the case of the simulation,
the evolution of ∆sσ

2 in three non-overlapping regions of the sample. A similar decrease
of the three SSD’s width is first observed for an imposed strain lower than 0.5. At the
onset of shear-banding, the variance of the SSD significantly increases in the shear-band
region (square symbols), whereas it remains constant in the rest of the material.

† the index xy are ignored in the notation of the shear stresses, but only this component is
considered. The index s stands for static stress fluctuations, as opposed to the dynamic stress
fluctuations studied in the next section.
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Figure 13. Evolution of (a) the variance ∆sσ
2 of the shear stress distribution (SSD) and (b) the

structural energy E0 for three different layers of the foam (simulation). The layers correspond
to strips of width five bubble diameters. The squares correspond to the shear-band region, the
diamonds to the neighbourhood of the opposite wall, and the cross to the middle of the foam.

Another characteristic of the foam was previously introduced, the so-called structural
energy E0, defined as the total film-length measured under zero shear stress (it is also the
minimum energy of the foam for a given topology and boundary conditions). It is found
to rapidly increase at the entrance of the localized regime (figure 5). Figure 13(b) shows
the evolution of E0 obtained from the three sub-regions described before. E0 exhibits a
behaviour qualitatively similar to that observed for the SSD variance.

A simple picture can clarify the physical link between these two quantities: consider
a macroscopic region of the material submitted to an average shear stress σ. Assuming
that all bubbles have the same typical area a and a shear modulus µ, the energy E(σ)
of the region can be written as:

E(σ) =
∑

i

(

e0 + a ·
σ2

i

2 µ

)

(4.3)

with N being the total number of bubbles, and A = Na the region area. E(σ) can also
be rewritten as:

E(σ) = Ne0 + A
〈δsσ

2
i 〉i

2 µ
+ A

σ2

2 µ
(4.4)

Therefore, the structural energy E0 = E(σ = 0) writes, as a function of the variance of
the SSD:

E0 = Ne0 + A
∆sσ

2

2 µ
(4.5)

From figure 13(a), it appears that the maximum amplitudes of variation of ∆sσ
2 and E0,

obtained numerically during a shear experiment, are respectively of the order of 10 and
0.4, with a subregion area A = 0.75. From equation 4.5, this yields an expected value for
µ of the order of 10, in good agreement with the numerical measurements.

4.2. A simple scenario for the shear-banding instability

It has been shown that the transition to shear-banding is associated with the develop-
ment of stress heterogeneities in the shear band, which can be estimated by measuring
either E0 or ∆σ2. As the stress distribution widens, the probability to find clusters of
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Figure 14. Scenario for the shear-banding instability. Figures (a), (b), and (c) show the stress
distributions in two distinct regions of the foam, at three different times: (a) beginning of the
experiment: the ”‘fresh”’ foam stress field is homogeneous, (b) at the onset of shear-banding:
a T1 event which triggers an avalanche of rearrangements and enlarges the stress distribution,
(c) in the permanent regime: the region where the stress distribution is wider has a lower yield
stress. It experiences most of the T1 events. Figure (d) displays the typical evolution of σ, and
of ∆σ2 in the two regions. As the shear-band develops, the yield stress decreases which results
in the observed overshoot of the stress versus strain curve.

bubbles submitted to a much larger stress than the average is increased. These sites are
more likely to plastically yield in response to a stress increment. It is therefore reasonable
to associate the widening of the stress distribution with a decrease in the local yield stress†

Under this hypothesis, a qualitative scenario for the shear-banding instability can be
proposed, based on the evolution of the local stress distributions as illustrated in Figure
14. Let us consider two distinct regions of the foam whose stress distributions are initially
assumed to be similar (fig 14(a)). The initial shearing anneals a few structural defects as
described in Kabla (2006). The mean shear stress increases until a large fraction of the
foam is at the threshold of plastic yielding (fig 14(b)). In this critical state, a T1 event
may trigger an avalanche which breaks the symmetry of the system by locally enlarging
the static stress distribution, as illustrated in figure 10(a). A limited region of the foam
now has a lower yield stress and is therefore more likely to experience further plastic
events. This description is in many regards similar to the approach proposed by Bulatov
et al. (Bulatov (1994)) in their pioneering work on disordered systems at low temperature.
Interestingly, it offers a simple way to understand the overshoot of the stress versus strain
relationship, observed in a wide range of systems (Khan (1988), Losert (2000)).

† Beyond this qualitative description, there is no obvious way to define a local threshold for
plasticity in foams.
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5. Dynamic stress fluctuations

The scenario previously described is based on the observation that plastic events induce
both homogeneous stress relaxation and local stress heterogeneities. This distinction
should however be refined: T1 events also produce stress heterogeneities far from their
location, as depicted on figures 3 and 6. In this section, we describe in more details the
dynamical properties of the stress fluctuations in the continuous flow regime induced by
the successive T1 events.

5.1. Dynamics of stress fluctuations

We evaluate, for each bubble i, time t and time-interval ∆t, the dynamic stress fluctuation
(see equation 4.1):

δdσi(t,∆t) = δsσi(t + ∆t) − δsσi(t) (5.1)

Figure 15 shows the resulting dynamic stress fluctuations distributions (DSFD) along
with the static stress distributions (SSD), obtained from the experiment for increasing
distances from the inner edge. The DSFD has been evaluated for a time interval ∆t = τ0

corresponding to a wall displacement of one bubble diameter. Two situations can be
distinguished. In the first three layers of bubbles, the SSD and the DSFD are almost
identical and exhibit a remarkable gaussian shape. This similarity indicates that the static
stress field is entirely renewed within a time interval smaller than τ0. To use an analogy,
the system is thermalized within this period of time. For increasing distances from the
wheel edge, the width of the DSFD monotonically decreases and becomes significantly
smaller than the width of the SSD. In these lines distant from the shear band, the stress
fluctuations are insufficient to renew the frozen stress field and the system is mechanically
quenched.

To get a more quantitative insight in the DSFD properties, its variance is measured
for all time-lapses ∆t and lines y:

∆dσ
2(y,∆t) =

〈
δdσ

2
i (t,∆t)

〉

bubbles within {y±δy},t
(5.2)

Figure 16(a) shows the evolution of ∆dσ
2(y,∆t) with increasing time intervals ∆t,

obtained from the experiment. It exhibits a quasi-diffusive behaviour (with an exponent
of the order of 0.8 for the first few lines) for ∆t < τ0, and reaches a plateau at longer
time. The transition time between these two regimes is an increasing function of the
distance to the shearing edge. As shown in figure 16(b), the short time-scale diffusion
constant decays exponentially with y in the vicinity of the shear band, whereas at larger
distances, it exhibits a much slower decay.

5.2. Stochastic model

In order to understand these observations, a semi-quantitative stochastic model is de-
veloped in this section which aims to relate the T1 events statistical properties to the
dynamics of stress fluctuations. For simplicity, all T1 events are assumed to produce
the same stress relaxation (we thus ignore statistical deviations induced by the foam
polydispersity which are found to be of the order of 30% in the simulation). We use the
analytical results of Picard et al. (Picard (2004)) who calculated the elastic propagator
associated with a discrete plastic event in a 2D elastic system, to describe the elastic
perturbation induced by each T1 event. Ignoring the effect of boundaries on the stress
fluctuations, the elastic propagator associated with a T1 event located at the origin thus
writes, in polar coordinates (r, θ):
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are obtained from the experiment during the permanent regime.
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Figure 16. Variance of the dynamic stress fluctuations distribution (DSFD) (a) as a function
of ∆t for increasing distances y from the inner wheel (each curve corresponds to a line of width
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G(r, θ) = µδǫT1 + G0(r, θ) with G0(r, θ) = δσ0D
2 ·

2 cos(4θ)

πr2
(5.3)

The first term in G corresponds to the homogeneous strain relaxation induced by the
plastic event, whose maximum amplitude ǫT1 depends on the system size (see formula
(3.2)). In the fluctuation term G0, δσ0 is the stress variation associated with the lo-
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cal plastic strain ǫlocal
T1

∼ 1, so that δσ0 ∼ µ. The functional form of G0 exhibits the
quadrupolar symmetry observed in the simulation with a 1/r2 decay.

5.2.1. T1 Statistics

In order to characterize the spatio-temporal statistics of the T1 events, we introduce
the density function f(x, y, t) defined as:

f(x, y, t) =
∑

i

δ(x − xi)δ(y − yi)δ(t − ti) (5.4)

where (xi, yi, ti) are the coordinates in space and time of the T1 events (from this point
forward, all spatial coordinates are expressed in units of bubble diameter D). It has been
shown in section 3.2 that spatial correlations between rearrangements vanish after two to
three T1 events. We therefore assume that T1 events appear randomly along the shear
direction, which results in the following property for the T1 events density function†:

〈f(x, y, t)f(x + ∆x, y, t′)〉x,t = τ−1(y) · δ(∆x) · δ(t − t′) (5.5)

where τ−1(y) = 〈f(x, y, t)〉x,t = ∂v(y)/∂y is both the line-averaged T1 frequency and
the local strain-rate (formula 3.8).

The time-integrated density function ρ(x, y, t,∆t) =
∫ t+∆t

t′=t
f(x, y, t′)dt′ is further in-

troduced. This function, which measures the number of T1 events that occur between t
and t + ∆t at location (x, y), may be decomposed into a mean and a fluctuating term:

ρ(x, y, t,∆t) = τ−1(y) · ∆t + δρ(x, y, t,∆t) (5.6)

A uniform distribution of (identical) T1 events has no effect on the shear stress fluctu-
ations, and only leads to an homogeneous relaxation of the mean shear stress. Therefore,
the stress fluctuations are controlled by the statistical properties of δρ, which, by inte-
gration of equation 5.5 over a time ∆t, is found to obey:

〈δρ(x, y, t,∆t)δρ(x + ∆x, y, t,∆t)〉x,t = τ−1(y) · ∆t · δ(∆x) (5.7)

In order to test the validity of this relation, the function ρ is evaluated in the simulation
by monitoring, at each site (x,y) the T1 events located within a distance D/2. Figure
17(a) shows, for a line of width one bubble diameter in the shear-band, the evolution
of the mean number of T1 events per site 〈ρ(x, y, t,∆t)〉x,t (dashed line), and the mean

square deviation
〈
δρ2(x, y, t,∆t)

〉

x,t
(solid line) as a function of ∆t. On short time-scales,

〈
δρ2

〉

x,t
and 〈ρ〉x,t exhibit a similar linear increase with ∆t in agreement with formula

(5.7). For ∆t ≥ τ(y) however,
〈
δρ2(∆t)

〉

x,t
becomes significantly smaller than 〈ρ〉x,t.

This second regime indicates that the hypothesis of a markovian statistics for the T1
events sequence is incorrect for integration times ∆t larger than τ(y): the locations of

† This approach is formally analogous to standard stochastic descriptions of surface growth
by molecules adsorption (Barabási (1995)) which allows one to describe the evolution of inter-
face roughness as a function of the number of adsorbed molecules. Here we seek to relate the
”roughness” of f , i.e. the evolution of the spatial heterogeneities in the number of T1 events per
site.
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the T1 events that occur between t and t+∆t depend on the sequence of T1 events that
occurred previously in a way which limit the amplitudes of variation of δρ.
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calculated from the T1 events located within a one bubble diameter wide strip in the shear
band, in permanent regime (simulation).

This effect is directly visible on figure 10(c) which shows that, in a sequence of two
successive avalanches, the second one involves T1 events preferentially in the regions that
have not plastically yielded during the first one. This long time-scale statistical bias can
be qualitatively understood through a simple argument. If the sequence of T1 events was
completely stochastic, this would lead to stress fluctuations of infinite amplitude which is
incompatible with the existence of a finite yield stress. Conversely, a constraint of finite
stress fluctuations would impose a bound on δρ2 if all rearrangements were producing
the exact same stress perturbation. However, any dispersion in the values of the stress
δσ0, released by the T1 events, allows for a slow diffusive increase of δρ2 as observed in
figure 17 at large ∆t.

In our attempt to modelize the stress dynamics, we assumed that all the events produce
a similar effect (δσ0 is single valued). Consistently,

〈
δρ2

〉
owes to be bounded. We thus

explicitely impose a maximum deviation in the total number of T1 events per site equal
to 1 reached after a time τ(y) and modify the equation (5.7) accordingly:

〈δρ(x, y, t,∆t)δρ(x + ∆x, y, t,∆t)〉x,t =

(

1 − exp

(

−
∆t

τ(yp)

))

· δ(∆x) (5.8)

5.2.2. Shear stress fluctuations

Having described the statistics of the T1 events, we now seek at evaluating the stress
fluctuations that they induce on a given line y. Based on equations 5.3 and 5.8, the
variance of the DSFD of line y originating from T1 events taking place in line yp can be
written as:

∆dσ
2
yp→y(∆t) =

〈(∫

x′

ρ(x′, y, t,∆t) · G0(x − x′, y − yp)dx′

)2
〉

x,t

=

∫

X′

∫

X′′

G0(X
′, y − yp)G0(X

′′, y − yp)

〈ρ(x − X ′, y, t,∆t)ρ(x − X ′′, y, t,∆t)〉x,t dX ′dX ′′



22 A. Kabla, J. Scheibert and G. Debrégeas

=

∫

X′

∫

X′′

G0(X
′, y − yp)G0(X

′′, y − yp)

〈δρ(x − X ′, y, t,∆t)δρ(x − X ′′, y, t,∆t)〉x,t dX ′dX ′′

∆dσ
2
yp→y(∆t) =

δσ2
0

π · |y − yp|
3
·

(

1 − exp

(

−
∆t

τ(yp)

))

(5.9)

This relationship is only valid for y 6= yp. The exact calculation for y ∼ yp would
require a detailed description of the plastic process at the bubble scale, which is beyond
the scope of the present paper. Instead, we set the value of the elastic cut-off length at
1 (i.e. the bubble diameter) and assume that, for r < 1, the stress fluctuation amplitude
is uniform and equal to δσ0. Under this assumption, the previous developments lead to:

∆dσ
2
yp∼y(∆t) = δσ2

0 ·

(

1 − exp

(

−
∆t

τ(yp)

))

(5.10)

Assuming these different sources of fluctuations to be uncorrelated, the variance of
the dynamic stress fluctuation distribution at a given line y can then be obtained by
integrating equations 5.9 and 5.10 over yp:

∆dσ
2(y,∆t) =

∫

yp

∆dσ
2
yp→y(y,∆t) dyp (5.11)

5.2.3. Numerical solutions

This calculation yields a prediction of the statistics of the stress fluctuations in the
sheared foam from the knowledge of the strain-rate profile τ(y)−1. In order to test this
model against the experiment, we extract τ(y) from the measured plastic flow profile
(figure 2). Since the latter decays exponentially with the distance from the inner wall,
with a decay length of the order of one bubble diameter, τ(y) can be estimated as:

τ(y) = τ0 · exp(y) (5.12)

Figure 18 shows the characteristics of ∆dσ
2(y,∆t) numerically calculated for a discrete

system composed of 20 lines of bubbles (δσ0 is set at 1). This model accounts for several
features of its experimental counterpart (figure 16), namely (i) a diffusive regime for
∆t < τ0, (ii) a saturation occurring after a time of order τ(y), (iii) a transition from an
exponential decay in the shear-band to a power-law decay at larger distance. These two
regimes can be associated with two distinct processes. Local plasticity is the main source
of stress fluctuations in the layers of bubbles where a large number of T1 events occur,
and the resulting stress dynamics is directly connected to the plastic frequency τ−1(y)
of the given line. In contrast, long-range elastic stress fluctuations induced by distant T1
events are dominant for lines with negligible plasticity†. The resulting stress fluctuations
amplitude decays as a power-law with the distance to the shear-band.

5.3. Discussion

One of the important results of this section is that the stress fluctuations are not diffusive
on long time-scales: the cumulative effect of T1 events in a given line can only produce a
finite deformation of the structure in a distant line. As a result, beyond the shear-band
where a large number of rearrangements are observed, these fluctuations are insufficiently
intense to renew the structure (figure 15): their amplitude remains small in comparison

† This interpretation is confirmed by the experimental observation that these fluctuations
exhibit large length-scale spatial correlations in distant lines, as reported in Debrégeas (2001).
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Figure 18. Predicted evolution of the variance of the dynamical stress fluctuations distribution
(see text for details of the model). The different values for the time intervals ∆t and distances y
from the shearing wall, are similar to the one used in figure 16 to allow for a direct comparison
with the experiment.

to the width of the static stress distribution. The latter, which is mostly set during foam
preparation, thus plays a prominent role in fixing the local frequency of T1 events.

Several mean-field models of soft glasses rheology are based on empirical equations that
relate the stress fluctuations amplitude to the plastic events frequency (Sollich (1997),
Falk (1998)). They capture many of the features observed in foams at finite shear rate in
which fluctuations originating from nearby T1 events are expected to be dominant. As
mean field models, these approaches are inadequate to correctly describe the creep flow
behaviour for which long-range elastic coupling becomes important. This is done in two
recent numerical models which exhibit shear-banding (Baret (2002), Picard (2005)).

6. Conclusion

We showed in the companion paper that when a foam is submitted to an oscillating
shear of low amplitude, the strain reduces the structural disorder by curing topological
defects thus extending the elastic domain of the material. In this regime, T1 events are
uncorrelated in space and time. In contrast, for large amplitude of strain, T1 events occur
in the form of fracture-like processes which yield local heterogeneities in the stress field
and a reduction of the yield stress. This mechanism is at the base of the shear-banding
instability observed in both the simulation and the experiment.

In permanent regime, large stress fluctuations are observed even in the region where
very few plastic events occur. These fluctuations are associated with the long range elastic
relaxation induced by the T1 events. A simple statistical model allows one to predict the
time evolution of these fluctuations from the knowledge of the time-averaged flow profile.
Although the dynamic fluctuations can be estimated independently of the structure, the
local T1 events frequency can not be extracted from the knowledge of the fluctuations
alone. Indeed, the probability for a plastic event to occur depends on both the structural
state of the system (which yields an effective yield stress), and the fluctuations that allow
to reach this threshold.

Most of these results should remain valid for disordered systems at low temperature
provided the existence of (1) an elastic response at low strain (2) a typical duration
of plastic relaxation much shorter than the imposed shearing time-scale. The elastic
propagator associated with a local plastic event will exhibit the same generic pattern,
regardless of the underlying structure (Eshelby (1957), Picard (2004)), whose anisotropy
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is at the origin of the fracture-like processes (see, for Lennard-Jones glasses for instance,
(Maloney (2004), Shi (2005)).

The long-range elastic coupling opens the possibility for heterogeneous flows. However,
the evolution toward a localized flow profile might depend on many specific character-
istics of the system. Although it seems to be a robust feature in Hele-Shaw confined
or 3D foams (Debrégeas (2001), Rodts (2005)), it appears to depend on preparation
and geometry in granular systems for instance (Howell (1999), Mueth (2000), Fenistein
(2003)). First, this effect is expected to depend on the geometrical constraints which
control the way elastic stress is transmitted throughout the sample. In this respect, the
dimensionality, the presence of confining walls or the shear geometry can determine the
existence and stability of shear-bands. Moreover, shear-banding requires a broad enough
range of disorder accessible to the system in order to allow large variations in the local
yield stress. In the case of foam, this property is related, in a non-trivial way, to the
foam polydispersity (Cox (2004), Wang (2006)). The precise conditions that leads to the
shear-banding transition still remains to be determined.

Jean-Marc di Meglio initiated the experiments on confined foams. We wish to thank
Guillemette Picard, Christiane Caroli, Olivier Pouliquen and Jean Rajchenbach for fruit-
ful discussions. We are especially grateful to Christiane Caroli for her careful reading of
the companion paper.
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