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Quasistatic rheology of foams
I. Low strain response

By ALEXANDRE KABLA1
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1 Division of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford
Street, Cambridge, Massachusetts 02138, USA

2Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS - UMR 8550, 24 Rue
Lhomond, 75231 Paris Cedex 05,FRANCE

A quasistatic simulation is used to study the mechanical response of a disordered,
bidimensional aqueous foam submitted to an oscillating shear strain. The application
of shear appears to progressively extend the elastic domain, i.e. the strain range within
which no plastic process occurs. It is associated with the development of an irreversible
normal stress difference, and a decrease in the shear modulus, which both are signatures
of the appearance of anisotropy in the film network. Beyond this mechanical measure-
ment, the evolution of the structural properties of the foam is investigated. We focus
in particular on the structural energy E0 defined as the minimum line-length energy
under zero shear stress. For strain amplitude less than ∼ 0.5, this quantity is found to
decay with the number of applied cycles as a result of the curing of topological defects.
However, for higher strain amplitude, plastic events appear to increase the structural
disorder and tend to gather near the shearing walls. This process is a precursor of the
shear-banding transition observed in fully developed flows, which will be studied in the
companion paper.

The rheology of soft glasses has been the subject of an increasing number of studies
in the last two decades. This class of systems includes macroscopically divided materials
such as foams, concentrated emulsions, colloidal suspension or dense granular packings,
but also multicontact frictional joints (Baumberger (2005)) or dense assemblies of vertices
in class II superconductors (Fisher (1991)). As in a molecular glass below Tg, the thermal
energy in these systems is low compared to the energy barriers for structural relaxation.
In the absence of external stress, the system is thus permanently trapped in a metastable
configuration. This results in the existence of a finite yield stress below which the material
responds elastically. When a larger stress is imposed, it triggers a series of local depinning
processes which release the applied stress, yielding a macroscopic flow.

This particular mode of stress relaxation has numbers of rheological consequence. First,
it allows for the existence of a quasistatic regime of flow when the strain rate is lower
than the depinning rate (Khan (1988), Rouyer (2005)). In this regime, the stress/strain
curve shows an initial quasi-linear regime. The stress then reaches a maximum before
decaying asymptotically to a constant lower value. This strain weakening behaviour is re-
ferred to as localization in the literature since it is usually interpreted as a signature of the
appearance of spatially heterogeneous flow. Beyond this transition, the stress signal, mea-
sured on small systems, is intermittent: it exhibits a series of linear increases interrupted
by rapid drops associated with the successive depinning events. Another characteristic
feature of these systems is the so-called strain-induced aging process: the dynamical
properties continuously vary with the application of a moderate shear (Viasnoff (2002)).
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This indicates that even a low strain can trigger a few depinning events which modify
the mesoscopic structure, that controls, in turn, the macroscopic mechanical response
(Bureau (2002)).

Numerous models have been proposed to interpret this set of observations. Some of
them, inspired or derived from glass theory, introduce a parameter which plays the role
of a temperature in order to recover a thermodynamical description (Sollich (1997), Liu
(1998)). This so-called ”effective temperature” is generally described as a function of the
flow field itself. It results in a shear dependent fluidity which has been directly postulated
in Derec (2001). Although such models may reproduce the phenomenology of the rheol-
ogy, they lack a convincing description of the local mechanisms which would justify the
proposed form for the effective temperature and its coupling with the flow. An alternative
approach, inspired by the pioneering work of Bulatov and Argon (Bulatov (1994)), has
been proposed by Falk and Langer (Falk (1998)). They observe in a numerical simulation
of amorphous and athermal systems of interacting spheres, that plasticity is associated
with discrete and local rearrangements involving a few particles. This observation is at
the base of the STZ (Shear Transformation Zone) model, which links a microscopic de-
scription of the plastic event to the macroscopic rheology. All these models require to
properly relate the local strain rate with the stress tensor and local structural properties
and to characterize spatial interactions between plastic events. Therefore, a system where
one can follow both the structure and the rheology is needed to further test and refine
these different approaches.

Aqueous foams constitute a convenient model system to study plasticity in solid ma-
terials. It allows one to directly monitor the deformation of a crystalline or disordered
structure at the level of its individual components, as was first recognized by Bragg who
used crystalline bubbles rafts as a tool for understanding the dynamics of dislocations
in metals (Bragg (1947)). Foam coarsening - the bubble disproportionation induced by
gas diffusion between neighbouring bubbles - can be viewed as a process analogous to
grain growths in metals (Weaire (1984)). More recently, disordered foams have proven
to be a rich heuristic system for the study of glassy rheology. Along this line, we have
recently developed a quasi-2D foam system which consists of a monolayer of bubbles
confined between two horizontal plates (Debrégeas (2001)). This system exhibits shear-
banding under slow deformation in cylindrical Couette geometry. Using a numerical foam
simulation, a similar flow behaviour was evidenced in plane parallel shear (Kabla (2003)).

In these two articles, we attempt to understand the connection between the mechanical
properties and the structural state of a foam under two types of solicitation. In the present
article, we study numerically the response of a foam to an oscillating strain, using the
code developed in Kabla (2003). In the second companion article, we investigate fully
developed shear flow, experimentally and numerically.

1. Numerical model

The wetness of a bidimensional foam is characterized by the area fraction of gas Φ.
For Φ > 0.86, the foam exhibits a finite yield stress. Here we focus on the limit of dry
foams Φ ∼ 1. In this regime, the foam is composed of polyhedral bubbles separated by
thin liquid films (Weaire (1999)). Three films intersect in regions called vertices, where
most of the water is present (see figure 1(a)). Plasticity in 2D dry foams arises through
rapid local neighbour-switching events called T1 processes, as described on figure 1(a)
and (b).

Several models have been developed to describe the behaviour of 2D dry foams under
finite shear rate (Q-Potts models (Jiang (1999)), Vertex model (Okuzono (1993), Oku-
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Figure 1. (a) and (b): a T1 plastic event observed in a confined 2D foam (Debregeas (2001)).
This elementary plastic process involves a neighbours exchange between 4 bubbles indicated by
the letters in the two successive pictures. (c) The numerical 2D foam used in the present study.
Shearing is obtained by incrementally moving the lower (rigid) boundary as indicated by the
arrow. The foam is periodic along the shear direction. (d) Area distribution of the bubbles.

zono (1995))). To capture static or zero shear rate properties, a precise modelling of the
fast energy dissipation during the T1 process is unnecessary. The quasistatic algorithms
(Weaire (1983), Herdtle (1992), Weaire (1999)), based on the time-scale separation be-
tween the short duration of the plastic events τT1 and the long characteristic time of
shearing, provide a realistic description of the dynamics.

When the time-scale associated with the imposed strain is large compared to the re-
arrangement time, the foam is at any time mechanically equilibrated (except during the
rapid rearrangements). The foam structure minimizes the static free energy of the foam:
for incompressible bubbles†, this energy is proportional to the total film length. Vertices
have a typical size dv related to the amount of water in the foam (figure 1). When the
distance between two vertices is close to dv, the foam becomes unstable and bubbles
rearrange through the T1 (figure 1(a-b)). The quasistatic shear simulation developed
here is based on these arguments, and involves a loop over three main steps: (1) one
first computes the geometrical foam structure for the current bubbles arrangement (the
neighbouring relation between bubbles): the total film length is minimized under pre-
scribed boundary conditions (described later) and keeping constant each bubble volume.
(2) The stability of the resulting structure with respect to topological rearrangements is
then tested: when a film length falls below a threshold value (chosen to correspond to

† The state equation of the gas is a priori necessary. However, for millimetric bubbles and
typical surface tensions, the resulting relative changes in volume are negligible and the bubbles
can be assumed incompressible.
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a gas fraction Φ = 0.99) a topological change occurs. The minimal line-length structure
is then recalculated. Steps (1) and (2) are repeated until the structure is stable with
regards to plastic events. (3) A small increment of deformation is then applied, and the
whole process of relaxation is started again.

The initial foam is created from the Voronoi tessellation of a disordered set of points
(Weaire (1999)), obtained by superimposing a Gaussian random displacement to an
hexagonal lattice. The noise amplitude is used to tune the distribution of the result-
ing bubble areas. In this paper, the dimensions of the foams are Lx×Ly = 1.5×1, the
system is periodic along the x direction and is confined in the y direction by two rigid and
rough walls (see figure 1(c)). Around 400 bubbles are packed between the two parallel
walls. Their area distribution is presented in figure 1(d). In our unit system, the mean
area and the standard deviation are respectively around 4 · 10−3 and 1 · 10−3.

The energy minimization consists in the determination of the vertices positions and
films curvatures which correspond to a minimum of the total line length. To reach
this configuration, we use Surface Evolver (SE) (Brakke (1992)), a minimization soft-
ware which has proved to be reliable for the computation of foam structures (Reinelt
(2000), Kraynik (2003)). The gradient descent algorithm of SE rapidly ensures a locally
equilibrated structure by computing the forces on each vertex and projecting the resulting
trajectories along constraints (constant volume here). However, for extended networks,
a dramatically large number of iterations is needed to relax the soft modes of deforma-
tions associated with large length-scale deformation fields. To bypass this limitation, the
minimization process is separated into two distinct steps: (1) the foam structure is first
reduced to a set of vertices connected by straight lines. The energy landscape associated
with the structure is probed by imposing large length-scale incompressible deformation
fields, such as elementary shear or local rotation. When one of these strain fields decreases
the total line-length energy, the associated displacement of the vertices is implemented.
(2) When this minimization process has converged, the structure is progressively refined
by adding degrees of freedom along the edges (up to eight points per edge). All the dif-
ferent physical quantities studied in this paper are measured on this final structure. This
method proves to significantly enhance the convergence of the minimization, and allows
to study minute global deformation observed in real experiments (Debrégeas (2001)).
The details, tests and justification of this procedure can be found in Kabla (Thesis).
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Figure 2. (a) A foam sample (16x24 bubbles) submitted to an imposed strain of amplitude ǫ.
(b) The oscillating strain sequence imposed to the foam in a typical experiment: t is the number
of cycles and ǫmax is the maximum strain amplitude.

Shearing is imposed by progressively moving the lower wall from left to right, by small
shear strain increments of 0.5%. As expected in quasistatic regime, moving the lower wall
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is strictly equivalent to moving the upper wall in the opposite direction. From this point
forward, lengths are scaled by the width Ly of the shearing gap, so that the displacement
d of the lower wall is also the mean strain ε = d/Ly. It should be noted that ε is the only
control parameter for this study.

2. Quasistatic rheology

The foam is submitted to an average strain oscillating between two symmetrical limits
ǫmax and −ǫmax. As physical time is irrelevant in the quasistatic regime, affine displace-
ments are used and the evolutions of different structural and mechanical parameters are
monitored as a function of the fractional number of applied cycles t (figure 2). †

2.1. Stress-strain relationship

The coarse-grained shear stress over any sub-region S of the sample can be extracted
from the structure of the foam by using the following equation (Kraynik (2003)):

σxy(D) =
γ

A(D)
·
∑

films i

li,x · li,y
li

(2.1)

The sum is performed over all the films laying within the sub-region D of area A(D). li
is the length of the film, li,x and li,y are the projected length over the horizontal and
vertical axis respectively. From this point forward, the line tension γ of the liquid film is
set at 1.

By performing this calculation over the entire sample, the evolution of the total shear
stress σxy exerted by the moving walls can be monitored. This quantity is shown in
Figure 3(a) as a function of the number of cycles t for different values of ǫmax (dotted
lines indicate the imposed strain). These graphs illustrate the elasto-plastic behaviour of
foams under quasistatic shear: under low strain, the stress-strain relationship is linear.
For imposed strain ǫmax ≥ 0.5, the stress reaches a yield value σY . However, careful
examination of the graphs reveals the occurrence of yielding events for stress values lower
than the yield stress, especially during the first elastic charge (inset in Figure 3(a)).

2.2. Transient, limit cycles and hysteresis

Figure 3 shows the evolution of the shear stress with respect to the imposed strain, for
different strain amplitudes. Consistently with the experimental measurements of Rouyer
et al. (Rouyer (2003)), it reveals that the mechanical response of the foam is modified
by the first cycles of deformation (shear aging). After a few oscillations, a limit cycle
is reached beyond which no apparent evolution of those properties can be detected.
For a maximum strain ǫmax < 0.5, no more T1 event occurs after one or two cycles.
For ǫmax ≥ 0.5, some irreversibility persists (figure 3(b)) and the associated dissipated
energy can be measured by computing the area of the hysteresis loops in the limit cycle
(relation 2.2):

∆E∞ = A

∮

limit cycle

σxy(ǫ)dǫ (2.2)

where A = LxLy denotes the total foam area. Figure 3(c) shows the evolution of
this quantity for various strain amplitudes. ∆E∞ is strictly zero for ǫmax < 0.5 then

† Videos of these simulations are available online
(http://tel.ccsd.cnrs.fr/docs/00/04/56/98/HTML/CisAlternFlash.htm).
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Figure 3. (a) imposed strain (dotted lines) and shear stress (solid lines) as a function of t
for different amplitudes strain amplitudes ǫmax (a magnification of 0.1 has been imposed to
the stress measurements for clarity). The inset is a zoom of the first charge for ǫmax = 0.3.
(b) Hysteresis cycles for different amplitudes. When ǫmax < 0.5, the behaviour becomes purely
elastic after a transient of one or two cycles. (c) Energy dissipated per cycle in permanent regime
as a function of the shear strain amplitude.

monotonously increases with ǫmax. In a rough approximation, ∆E∞ can be described in
that regime as a linear function of the imposed strain:

∆E∞ = 4 A σY (ǫmax − ǫY ) (2.3)

This allows one to identify the yield stress σY and the yield strain ǫY as the maximum
stress and strain that the foam can sustain elastically. It should be noted however that
these quantities are not intrinsic to the material: they may depend on the specific struc-
ture (the particular arrangement of the bubbles) of the foam, as well as its dimension.

2.3. Development of normal stress difference

Development of normal stress difference is a characteristic feature of foams rheology
(Reinelt (1996)) which is also observed in other complex systems such as polymers
(Barnes (1989)). In order to investigate this process, we focus on the regime of large
applied strain (ǫmax = 1). Figure 4 shows the first normal stress difference σxx−σyy as a
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function of the number of cycles t and of the shear stress σxy. These graphs illustrate the
strong coupling between these two quantities: the normal stress difference can be empir-
ically described as a quadratic function of σxy with an offset ∆σn,0 being a function of
the number of cycles t:
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Figure 4. First normal stress difference as a function of (a) the number of shear cycles and
(b) the shear stress. The maximum strain amplitude is ǫmax = 1.

σxx − σyy = ∆σn,0(t) + β · σ2

xy (2.4)

The quadratic part results from the elastic deformation of the film network, as will
be detailed in the next section. This behaviour has been evidenced in previous numer-
ical studies (Reinelt (1996), Reinelt (2000)), but the measurements were performed on
crystalline foams which do not show irreversible structural evolution under shear. In con-
trast, our disordered foam undergoes irreversible structural changes during the transient
regime, which result in a permanently imprinted anisotropy of the material. To quantify
this process, the normal stress difference under zero shear stress ∆σn,0 is evaluated by
extrapolating the parabolic sections of the graphs of Figure 4. As shown in figure 5, this
quantity, plotted as a function of the number of applied strain cycles, exhibits (sample
dependent) fluctuations about a slow global increase.

0 0.5 1 1.5 2 2.5 3
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-0.5
t

∆σn,0

Figure 5. Normal stress difference under zero shear stress ∆σn,0 as a function of the number
of cycles t (maximum strain amplitude ǫmax = 1).
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2.4. Energetic approach

In order to investigate the modification of the structural properties of the system under
shear, we consider the evolution of the foam free energy (total line-length) with the
imposed strain ǫ (figure 6). For the lowest strain amplitude ǫmax = 0.1, no rearrangement
occurs during the first cycle of charge and discharge. The strain is reversible and the
stress is a quadratic function of the strain. The following charge in the opposite direction
generates one T1 event, which induce a transition to a different energy basin.

ε ε

ε

E(ε) E(ε)

E(ε)

ε’

E (ε’)

E0

εplast

(a) (b)

(c) (d)

a

b

c

d

e

f

Figure 6. (a,b,c)Free energy of the foam as a function of the imposed strain, for three different
amplitudes ǫmax =0.1, 0.5 and 1.0. The circles indicate the initial state, and the number of
applied cycles is 3. The chronological trajectory in (a) is [a,b,a,c,d,e,d,f,d,e,d,f,...] (d) Quadratic
elastic basin associated with a given structure (see text). Symbols are numerical measurements,
and the curve corresponds to the best parabolic fit.

The evolution of the system under shear can thus be seen as a series of transitions,
induced by discrete plastic events, in a multistable potential landscape. Each configura-
tion is associated with an elastic basin, which properties can be accessed by a quadratic
extrapolation of the local energy versus deformation curve. The extrapolation must be
performed in the elastic domain of response, in which no rearrangement takes place,
and thus becomes increasingly inaccurate when the applied strain approaches the yield
strain limit (figure 6(b) and 6(c)). To bypass this limitation, a specific numerical proce-
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dure is implemented: for every structure successively reached, a complete shear cycle of
amplitude 0.5 is performed in which topological changes are forbidden. This numerical
procedure allows one to produce an extended elastic basin, as shown in figure 6(d), on
which a quadratic fit can be performed:

E(ε′) = E0 +
Aµ

2
(ε′ − εplast)

2 (2.5)

where A the foam area, µ is the shear modulus and E0 is the minimal value of the
energy reached under zero shear stress. These two latter quantities are specific to the
structure and do not depend on the elastically stored shear deformation. It should be
noted that E0 cannot be extracted from mechanical measurements which only depend
on the derivative of the potential. Henceforth, E0 will be referred to as the structural
energy of the foam. The quantity ǫplast corresponds to the applied strain (associated with
a particular position of the lower wall) for which the foam energy is minimum and the
shear stress is 0.
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Figure 7. Evolution of (a) the shear modulus µ and of (b) the structural energy E0 with the
number of applied cycles t for different strain amplitudes (the top graphs show the associated
imposed strain sequence). These quantities are evaluated after each T1 event and plotted at the
instant of the rearrangement. For the lowest strain amplitude, no rearrangement occurs after
the first cycle. Since the calculation time becomes extremely long, the experiment was run for
3 cycles instead of 4 for the largest strain amplitude.

Figure 7 shows the evolution of the shear modulus µ and of the structural energy E0 as
the foam undergoes successive strain oscillations. A systematic decrease of µ is observed
with the number of cycles, this effect being stronger for increasing strain amplitude.
The same behaviour is observed for E0 which indicates the existence of a strain-induced
structural relaxation process. For large shear amplitude however (εmax > 0.7), the value
of the structural energy exhibits oscillations: its value reaches a maximum whenever the
absolute value of the applied strain is maximum. This behaviour is associated with the
development of spatial inhomogeneities of the T1 events positions as will be shown later
in the article.
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3. Interpretation

The structural evolution of the foam under moderate shearing (εmax < 0.7) is as-
sociated with (i) the appearance of normal stress difference, (ii) a structural energy
relaxation, (iii) a decrease of the shear modulus. These evolutions result from the strain-
induced topological rearrangements that irreversibly modify the foam structure. In this
section, we attempt to account for these observations by first examining the effect of
the film network anisotropy on both the normal stress difference and the shear modulus,
using a simplified foam model. We then focus on the evolution of topological disorder to
interpret the decrease in the structural energy.

3.1. Shear modulus and normal stresses

As first recognized by Princen (Princen (1983)), the main characteristics of foam elasticity
can be understood by considering the film elongation induced by the deformation of a
regular network of liquid films. Following Alexander’s foam model (Alexander (1998)),
we consider a square network of films with dimension Lx × Ly, and surface tension γ.
R denotes the distance between adjacent films in the original (undeformed) structure
(figure 8(a)). This simplified model ignores disorder as well as the Plateau’s rule that
imposes films to meet at an angle of 120 degree. When the network is strained along the
horizontal x-direction, the length of the horizontal films remains unchanged, whereas the
length of the vertical films varies with the shear strain ǫxy by a quantity:

δl(x) = Ly ·
√

1 + ǫ2xy − Ly (3.1)

R
Ly

Lx

x

y

Rx

Ry

(a) (b)

Figure 8. Simplified foam models: (a) isotropic: a square films network is sheared along the
x-axis (the dotted grid represents the unsheared configuration), (b) anisotropic: the foam consists
of rectangular cells which deform into parallelograms as the system is sheared .

Assuming that each film acts on the structure with a force of intensity γ, simple
geometry allows one to write the different components of the stress tensor to second
order in the applied deformation ǫxy:

σxy = µ0 · ǫxy (3.2)

σxx =
γ

R
·
(
1 + ǫ2xy

)
= µ0 ·

(
1 + ǫ2xy

)
(3.3)

σyy =
γ

R
·

(

1 −
1

2
ǫ2xy

)

= µ0 ·

(

1 −
1

2
ǫ2xy

)

(3.4)

where µ0 = γ
R

is the shear modulus†. The relationship between the shear stress and
the normal stress difference immediately follows:

† A better estimate is obtained with an hexagonal network that takes into account the local
equilibrium rule of the liquid films (Princen (1983))
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σxx − σyy =
3

2

γ

R
· ǫ2xy =

3

2

R

γ
· σ2

xy (3.5)

This rough model provides a quadratic relationship between shear stress and normal
stress difference, as observed numerically. It should be noticed that a similar relationship
is observed in polymers (Barnes (1989)) though the underlying mechanisms differ: in
polymer solutions, shearing induces a deformation of the entangled chain network but
the average orientation results from a competition between the imposed shear and the
thermal relaxation of the polymer chains. Thus, the shear stress and normal stresses are
controlled by the shear rate and not by the applied strain, as in the present situation.

A = Lx · Ly being the area of the foam, the total film-length or free energy of the
system can also be written to second order in ǫxy as:

E(ǫxy) = E0 +
1

2
· A ·

γ

R
· ǫ2xy (3.6)

with E0 =
Lx

R
· γLy +

Ly

R
· γLx =

2γA

R
(3.7)

We observed in the preceding section the appearance of a finite normal stress differ-
ence under zero shear stress. This indicates that an oscillating strain induces a relative
increase of the average density of films in the shear direction in comparison to the normal
direction. In order to illustrate this effect, we introduce anisotropy in the previous model
(Figure 8(b)) by considering a film network composed of parallelograms of size Rx ×Ry.
The equivalent cell size is defined as R =

√
Rx × Ry and the structure anisotropy is

characterized by two parameters:
{

εxx = Rx/R − 1
εyy = Ry/R − 1

(3.8)

Using an approach similar to the one used for the square lattice, the line-length energy
now reads:

E(εxy) = E0 +
1

2
· A ·

γ

R
· (1 − εxx) · ǫ2xy (3.9)

with: E0 =
2γA

R
·

(

1 +
1

2
ε2

xx +
1

2
ε2

yy

)

(3.10)

The shear modulus thus writes:

µ =
1

2A
·

∂E

∂ǫxy

=
γ

R
· (1 − εxx) (3.11)

The previous relations show that the anisotropy affects both the structural energy E0

and the shear modulus. This simple model provides a prediction for the normal stress
components as a function of the shear strain ǫxy and the anisotropy parameters εxx and
εxx:

σxx =
γ

R
· (1 − εyy) +

γ

R
· (1 − εxx) · ǫ2xy (3.12)

σyy =
γ

R
· (1 − εxx) −

γ

2R
· (1 − εxx) · ǫ2xy (3.13)
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To first order in εxx, the volume conservation (RxRy = R2) imposes that εxx + εyy = 0,
so that the normal stress difference under zero shear stress reads:

σxx − σyy =
γ

R
· (2εxx)

︸ ︷︷ ︸

∆σn,0

+
3

2

γ

R
· (1 − εxx) · ǫ2xy (3.14)

By confronting this expression to the relation (3.11), one can derive a relationship
between the normal stress difference under zero shear stress ∆σn,0 and the shear modulus:

µ = µ0 −
1

2
∆σn,0 (3.15)

where µ0 = γ
R

is the shear modulus of the equivalent isotropic foam.
This relation suggests to test the correlation between these two quantities measured

in the numerical simulation. The expected proportionality is observed in spite of the
fluctuations of these two parameters, as evidenced in figure 9. It should be noted however
that the ratio (µ0 − µ)/∆σn,0 is of the order of 0.8 in the numerical system instead of
the expected 0.5 predicted by this model. This discrepancy can be accounted for by the
simplicity of the model, which does not take into account neither the Plateau’s rule nor
the polydispersity of the foam. Nevertheless, it illustrates the fact that both quantities
reflect the distribution of the films orientation with regards to the shearing direction.
The strain-induced T1 processes tend to orientate the films in the direction of the shear
thus driving the structure into an anisotropic state.

εmax=1.0

0

0.5

1

1.5

2

2.5

3

-0.5

∆σn,0

0 0.5 1 1.5 2 2.5 3

t

µ0-µ

Figure 9. Normal stress difference under zero stress ∆σn,0 (black) and variation of the shear
modulus µ0 − µ (gray) as a function of the number of cycles t, extracted from the numerical
simulation with a strain amplitude ǫmax = 1. The shear modulus variations have been multiplied
by 1.25 to underline the similar evolution of both quantities.

3.2. Relaxation of the disorder and transition to the plastic flow

The anisotropic model presented above yields an expression of E0 as a function of the
anisotropy parameters (relation 3.10). Based on this expression, one would expect E0 to
increase with the imposed maximum strain, in contradiction with our observations. This
model however ignores the foam disorder, and the possible evolution of this property
with shearing, which one expects to modify E0.

One standard way to evaluate topological disorder in dry foams consists in measuring
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the second momentum µ2 of the distribution P (n) of the number of films per bubble
(Weaire (1999)). In 2D dry foams, the average number of films per bubble is exactly 6,
which yields the following expression for µ2:

µ2 =
∑

n

(n − 6)2 · P (n) (3.16)

In agreement with previous experimental (Abd el Kader (1999)) and numerical (Kraynik
(2003)) studies, moderate shearing is observed to produce a partial relaxation of the topo-
logical disorder (figure 10). By curing topological defects originally present in the foam,
the initial shearing extends the elastic domain. This shear-strengthening process has its
counterpart in other systems such as dense colloidal glasses or friction joints (Viasnoff
(2002), Bureau (2002), Baumberger (2005)). Although the decrease of E0 under low
strain can be accounted for by this topological relaxation, the oscillations of E0 at larger
deformation still remain unexplained. Neither the anisotropy (measured by the normal
stresses difference at zero shear stress) nor the topological disorder (measured by µ2)
exhibit a similar behaviour.

εmax=0.7

εmax=0.5

εmax=1.0

0

t

µ2

µ2

µ2

1 1.5 2 2.5 3 3.50.5 4

0.4

0.6

0.8

1.0

0.4

0.6

0.8

0.4

0.6

0.8

Figure 10. Evolution of the topological disorder. The second momentum µ2 of the distribution
of the number of films per bubble is plotted as a function of the number of applied cycle t for
different strain amplitudes ǫmax. The top graph shows the associated imposed strain sequence.

To understand this process, one needs to look into more details at the effect of T1 events
on the energy basin of the foam. When a rearrangement T1 occurs during the shearing, a
certain amount of energy δE is relaxed (figure 6). δE is found to be systematically of order
−γD, where D is the mean bubble diameter. This energy release may be decomposed
into two terms, as sketched in figure 11:

δE = δE0 − A σxy δǫplast (3.17)

The first term is associated with a relaxation of the structural energy E0. The second
one corresponds to a partial relaxation of the applied shear stress σxy, which induces a
lateral shift in the position of the minimum of the energy basin. The relative value of the
structural and shear stress relaxation strongly depends on the system preparation. Fig-
ures 6 and 7(b) show that, under low deformation, T1 events mainly relax the structure.
In contrast, under high deformation, the main effect of the rearrangements is a relaxation
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of the applied shear stress. When the shear stress becomes high, δE0 (equation 3.17) can
be positive, leading to the increase of E0 observed in figure figure 7(b): the stress release
occurs at the expense of the structure relaxation. The oscillations of the structural energy
may therefore be understood as a series of shear stress relaxations (which increase the
structural heterogeneities) and disorder relaxations when the shear stress is reversed.

stress release

structural relaxation

ε

E

δεplast

δE0

transient regime

permanent flow

(a)

(b)

δE

Figure 11. Shift of the elastic basin following a T1 event. Two main mechanisms can be
distinguished: (a) relaxation of the structural disorder (mostly during transient regime), and (b)
relaxation of the imposed shear stress.

The transition to plastic flow can also be studied by looking at the spatial distribution
of the rearrangements during shearing (Figure 12). For low strain amplitude ǫmax ≤ 0.5,
T1 events are uniformly distributed inside the foam. For higher amplitude in contrast,
they occur preferentially in the vicinity of the walls. These observations are consistent
with the appearance of a shear-band observed under continuous slow shear in a similar
geometry (Kabla (2003)). Because the random initial foam is homogeneously disordered,
the first structural relaxation (the transient regime) produces rearrangements uniformly
distributed inside the sample. Beyond the transient, the rheological response becomes
sensitive to the constraint imposed by the rigid walls, which then induces the observed
inhomogeneities in the spatial distribution of rearrangements.

Discussion and Conclusion

The response of a 2D foam to an oscillating quasistatic shear exhibits a transient
regime, which corresponds to the first few cycles, during which different mechanical
properties evolve with time. The elastic domain (the strain range within which no plastic
process occurs) is enlarged and the shear modulus decreases as the topological disorder is
reduced. The shear-induced plastic events tend to orientate the film preferentially along
the shear direction, which results in a decrease of the shear modulus and the development
of normal stress difference. For a moderate amplitude of strain (ǫmax ≤ 0.5) the plastic
events are homogeneously distributed. Beyond this limit, they tend to preferentially occur
along the rigid walls and this transition is associated with a sudden increase of the free
energy of the system. This corresponds to the entrance into the large strain regime which
will be studied in the companion paper.

In the permanent regime, the foam exhibits a highly non-linear rheological response:
it behaves elastically up to a yield stress (or strain), beyond which it flows under a
well defined shear stress (Khan (1988)). In standard rheological measurements, this non-
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εmax=0.7

εmax=0.5

εmax=1.0

0

t1 1.5 2 2.5 3 3.50.5 4

Figure 12. Positions of the T1 rearrangements across the gap during the shearing, for different
amplitude εmax. For each T1 event, occurring at the instant t, a cross is placed which ordinate
corresponds to its distance to the lower wall.

linearity is expected to show up as a dependence of the complex shear modulus G =
G′+iG′′ with the strain amplitude at vanishingly small shear rates, as recently evidenced
by Rouyer et al. (Rouyer (2005) and references therein). Considering that the energy
dissipated per cycle can be written as ∆E ≈ G′′ε2

max, one expects the loss modulus to
depend on the strain amplitude as:

G′′ ∝ σY

εmax − εY

ε2
max

(3.1)

for strain amplitudes larger than the yield strain εY ; G′′ should be null otherwise. This
relation appears to be in good agreement with the recent measurements of Rouyer et al.
(Rouyer (2005)) for imposed shear strain larger than the yield strain. The behaviour at
low deformation is however more puzzling: although a linear regime seems to exist for low
enough strain amplitude, G′′ is found to exhibit non-zero limit as the shear amplitude is
decreased. This behaviour cannot be explained in the scope of the present model, but it
might indicate that the threshold for plasticity strongly depends on the dimensionality
and volume of the foam sample (Kraynik (2003)). This discrepancy could also results
from the existence of processes associated with long time-scales, such as coarsening or
drainage (Hohler (2005) and references therein), which are not included in this numerical
model.
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