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Equality of the energy and group velocities of bulk
acoustic waves 1n piezoelectric media

Vincent Laude, Alexandre Reinhardt, and Abdelkrim Khelif

Abstract— The equality of the energy and group velocities of
bulk acoustic waves in a lossless piezoelectric medium is demon-
strated, with the energy velocity defined from the generalized
energy density and the generalized Poynting vector.

Index Terms— Bulk acoustic waves; Piezoelectric media; En-
ergy velocity; Group velocity.

I. INTRODUCTION

It is well known that the energy and the group velocities
of bulk acoustic waves (BAW) in elastic media are equal [1],
[2]. The energy velocity, v, is defined as the ratio of the
Poynting vector to the energy density, with the help of the
Poynting theorem, while the group velocity, vy, is defined
as the derivative of the phase velocity with respect to the
direction of propagation. The group velocity is thus defined
on a purely geometrical ground and is by construction normal
to the slowness surface. Further properties are the equality of
the BAW Kkinetic and the potential (or strain) energies, and the
orthogonality of the slowness vector to the wavefront surface.

In the case of piezoelectric media, we are not aware of a
general demonstration of equivalent properties, though gener-
alized expressions have long been known for the energy den-
sity and the Poynting vector [1]. Nevertheless, the collinearity
of the generalized Poynting vector and the group velocity is
routinely used to predict the beam-steering angle, or direction
of energy transport. However, Zaitsev and Kuznetsova [3]
recently identified a possible discrepancy that can occur if
the generalized Poynting vector is used to predict the di-
rection of energy transport in strong piezoelectrics such as
lithium niobate. Their argument relies on a dissymmetry of the
mechanoelectrical and electromechanical contributions to the
generalized Poynting vector. Their work has motivated us to
establish the equality of the energy and group velocities of bulk
acoustic waves in an arbitrary lossless piezoelectric medium,
with the energy velocity obtained from the generalized forms
of the Poynting vector and the energy density. This property
settles the apparent discrepancy.

II. BASIC RELATIONS

We summarize in this section some well known energetic
relations for bulk acoustic waves propagating in linear piezo-
electric media. Let us first consider a perturbance of an
arbitrary linear piezoelectric medium, characterized by the
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strain S;;, the stress Tj;, the electric field strength £ and
the electric displacement Dj. These fields are related by the
constitutive relations [1], [4]

Ti; = CijriSw — €rijBg, (D
D; = ejuSu+ ey, (2)

where c¢;jk1, er;; and € are the elastic, piezoelectric and
dielectric tensors, respectively. The repeated summation index
convention is used throughout this letter. The time-averaged
generalized energy density is given by [1]

1 * *
and the time-averaged generalized Poynting vector is
1
pP; = 5Re(le-jv;‘ + (E x HY);), “4)

where v; is the particle velocity, H; is the magnetic field
strength and * denotes complex conjugation.

We then consider specifically a time-harmonic plane wave
with angular frequency w and slowness vector s;. The dis-
placements u; are then of the form

ui(x,t) = u; exp(gw(t — s;5x;)), )

and similar expressions hold for all fields. We specifically de-
mand that the slowness vector be real-valued, i.e. the medium
is lossless and evanescent or inhomogeneous bulk acoustic
waves are not considered.

Considering further the quasi-static approximation [1],
Maxwell’s equations give

E;, = jws;®, (6)
(S X H)j = —Dj7 (7)
Sij = 0, (8)

where @ is the electric potential. The constitutive relations
become

T;; = —jw(cijriseu + erijsp®), &)
D; = —jw(ejrsru — €x5kP). (10)
The generalized energy density simplifies to
1
W = iRe(ijijsju;‘). (11)

It can be seen that the electromagnetic part of the energy
density vanishes. The generalized Poynting vector becomes
1
P = iRe(jw(Tijuf + D;®%)), (12)

where v; = jwu; has been used in Eq. (4).
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III. ENERGY VELOCITY

We now introduce the generalized notation

cijkt 51 =1,2,3

~ €kij 124,i:1,2,3

CRT e i=4,1=1,2,3 (3)
—€5k i,l =4

This notation should not be confused with the piezoelectrically
stiffened elastic constants [4]. With the generalized displace-

ments, u;, and stresses, T;;, defined as

U, = u;,t=1,2,3, (14)
g = 9, (15)
T;; = Tyi,i=1,2,3, (16)
Ty = Dj, a7

the constitutive relations can be written in a compact way as

(18)

Tij = —JwCijriSk Ui,

and the Christoffel equation [1] governing the wave dynamics
assumes the form

CijklSjSkU = pParty, (19)
with
1 0 0 O
01 00
00 00
Contracting the Christoffel Eq. (19) with «] yields the
relation
EijlejSkﬂl’lfL: = Pilalar = pu;kuz 21
Inserting Eq. (9) into Eq. (11) we obtain
2
w
W = 7Re(cijklsjskulu;‘ + erijsjspduy), (22)
or by inspection
w2
W = TRe(Eijklstkﬂla:)' 23)

Using Eq. (21), we observe that this quantity is real and thus
w2 2

w
— J—— *
W = ?cijklsjskului = ?pui U;.

This relation proves the equality of potential and kinetic
energies for bulk acoustic waves as in the case of elastic media
[2].
The expression for the Poynting vector can similarly be
transformed by inserting Eqs. (9-10) into Eq. (12), yielding
2

(24)

w
P; = —Re(cijrispwu; +egi; SpPu; +ejpspu @ —e s, 2P"),

2 25)

or simply )

w — — —x
P, = ?Re(cl-jklskului)‘ (26)
Defining the energy velocity as for bulk acoustic waves in
elastic media by the ratio of the Poynting vector to the energy
density, we obtain at once
Pj . Re(éijkl*skﬂlﬂ;‘). @7
w Ul U

Furthermore, contracting this expression with s;, the following
useful relation is obtained

sj(Ve); =1, (28)

as in the case of elastic media [1], [2].

IV. GROUP VELOCITY

The components of the slowness vector can be written s; =
sn; where the n; are the components of a unit vector, i.e.
n;n; = 1. With this notation, the Christoffel equation (19)
becomes a generalized eigenvalue equation for the square of

the phase velocity, V = 571,

Cijriminity = V2 pyty. (29)
The group velocity is defined as [2]
ov

Vy)i = — 30

( g)] an]a ( )

which implies that the group velocity vector is normal to the
slowness surface by construction. The group velocity vector
can be obtained by differentiating with respect to n; the
identity formed by contracting Eq. (29) with @, or

_ _ 2 o
Cijrnnpmt; = V= pauu;, (€29)

which is merely a restatement of Eq. (21). In this equation, u;
is a function of the unit vector n since it is the eigenvector
associated with the eigenvalue V2 of the Christoffel equation
(29) for a fixed propagation direction. The differentiation of
Eq. (31) with respect to n; results in

26 jn ity + Eigkm,gnk%m + Ciprinan duy
871]’ ¢ 8nj

=2V (Vy)jpututu; + V2pil@*’f + V2 patiy % (3
! anj ’ anj

This equation can be simplified by considering two different
contractions Qlf the Christoffel equation (29). First, the con-

traction by g yields

]
nj
i _om ., _ou
Cigkingni = Vpam . (33)
6’/’Lj 871]'

Second, complex conjugation of Eq. (29) and subsequent

contraction by gg? results in
J
ou; ou;

_ _x 2 _x i
Cipringnr; — = Vipuu; —.
g B lanj lanj

Permutation of indices ¢ and [, and (3 and k, respectively, and
consideration of the symmetries C;gni = Cixg; and py = pi;

(34)

lead to _ _
c g U _ 2 o O (35)
CiBkIM BN EU; = il U; .
87”Lj (971]'
Eventually, Eq. (32) simplifies to
(V) = Cijht Mkl Eijklskﬂlﬂf. (36)

Vpu;uf pUUL

This is identical with the expression (27) for the energy
velocity and incidentally shows that the Re(.) operators in
expressions (26) and (27) can be dropped. We have thus shown
the equality of energy and group velocities for bulk acoustic

waves in a lossless piezoelectric medium.
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V. CONCLUSION

We have demonstrated that the energy and group velocities
for bulk acoustic waves are equal in a lossless piezoelectric
medium. Our derivation closely parallels and generalizes for
piezoelectric media the derivation of Ref. [2], that was limited
to purely elastic media. The possible discrepancy pointed out
in Ref. [3], that the mechanoelectrical and electromechanical
power flows calculated from the generalized form of the Poynt-
ing vector for piezoelectric media do not compensate each
other, has then no significance for the estimation of the power
flow direction. This observation is moreover supported by the
experimental results of Havlice e al. [S], who demonstrated
that the generalized Poynting vector indeed predicts the correct
beam-steering angle of longitudinal waves along the y axis of
lithium niobate. We finally observe that attempting to separate
the generalized energy density or the generalized Poynting
vector into their purely electrical, purely mechanical, mecha-
noelectrical and electromechanical parts can be confusing,
since the wave displacements are obtained as the solution of
an eigenvalue problem involving the mixed elastic, electrical
and piezoelectric properties of the medium.
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