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Abstract : A theoretical description of ideal and viscous fluid media is proposed to address 

the problem of modelling damping effects of Surface Acoustic Waves (SAW) and more 

generally of any guided elastic waves at the interface between viscous fluids and solids. It is 

based on the Fahmy-Adler eigenvalue representation of the elastic propagation problem, 

extended to provide the Green’s function of the considered media. It takes advantage of 

previous efforts developed to numerically stabilize the Green’s function computation process. 

This function is used to compute an harmonic admittance according to the Blötekjaër 

approach. The influence of acoustic radiation and viscosity effects on different kind of waves 

excited on various substrates is reported and discussed. 

 

I. Introduction 

 

Surface Acoustic Waves (SAW) can be excited at the surface of any solid material. These 

waves may exhibit elliptic as well as pure shear polarisation (case of isotropic media), but the 

practical case of wave propagation at the surface of anisotropic material generally yields any 

combination of wave polarisation, except along given crystal or symmetry axes [1]. True 

SAW are assumed to propagate without any losses along the guiding surface, providing a nice 

opportunity to manufacture low loss devices such as filters and resonators. However, it is also 

known that best quality factors and/or smallest insertion losses of SAW devices are obtained 

using package closed under vacuum to avoid leakage due to acoustic radiation in air. The use 

of SAW devices for the development of sensors immersed in fluid media also has been widely 

investigated. For instance, Rayleigh waves are known to be dramatically damped by water but 

pure shear waves are often considered capable to exist even when their propagation substrate 

is loaded by a liquid. Theoretical analysis of SAW excitation and propagation under such 

working conditions requires the adaptation of existing simulation tools to provide a reliable 

description of the induced effects by the nature of the surrounding medium on the SAW 

device response. 



In the proposed paper, the way the Green’s function analysis and the harmonic admittance can 

be used in that matter is described. The mathematical developments required to develop a 

computation tool based on such concepts are exposed. The case of viscous fluids (in the limit 

of the Newtonian fluid assumption [2]) has been particularly investigated, since it also allows 

to simulate ideal fluids simply by setting the viscosity coefficient to zero. Many cases then are 

considered to illustrate the interest of the proposed approach, for instance the attenuation of 

Rayleigh waves due to water damping, the sensitivity of Leaky waves to viscosity or the 

behaviour of plate modes loaded on one side by viscous water. The theoretical results are then 

discussed. The specific situation of pure shear waves as used in surface transverse waves 

(STW) is particularly regarded. These waves are generally assumed poorly affected by water 

and other weakly viscous fluids. The limit of this hypothesis is examined theoretically.  

 

II. Theoretical fundaments 

 

II.1 Modelling the acoustic behaviour of ideal and viscous fluids 

The theoretical representation of acoustic waves in fluids is usually performed using a 

pressure formulation. Nevertheless, in order to easily derive the corresponding Green’s 

function, a displacement formulation can be constructed as well. For any fluid, the 

independent elastic constants required for such a formulation reduce to one, i.e. C11 which is 

also equal to C12, yielding C66=0 consequently. According to [2], a shear effect in a fluid 

between a moving solid and a reference solid results in a linear stress proportional to the 

velocity gradient via a coefficient written  called shear viscosity or absolute viscosity of the 

fluid. In an isotropic homogeneous uncompressible Newtonian fluid, the stress is proportional 

to the linear strain ; this is called the Stokes low. In a very general approach [3], one should 

also consider a compressive viscosity factor written . The pressure in the fluid P is 

proportional to the displacement divergence via the fluid compressibility as :  
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In the proposed developments, we assume no relaxation phenomena (no specific time 

dependence) within the considered fluids. The stress then can be written considering those 

different elements, yielding the following expression : 
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where Tij and Sij respectively correspond to the stress and strain tensors, and  is the angular 

frequency. One can remark that for ==0 (no viscosity effects in the fluid), eq.(2) reduces to 

the classical pressure equilibrium with no shear effects (Tij=0 for ij). According to the 

literature [4,5], the compressive viscosity may be responsible for important effects and hence 

should absolutely not be neglected. For instance, in the case of water, the absolute viscosity 

equals 0.8 centiPoise (cP) but the compressive viscosity is about 2.8 times larger [5]. These 

two parameters are then consider in the numerical applications of section III without any 

restriction and their respective influence on wave damping is evaluated. 

 

II.2 Fahmy-Adler formulation for viscous fluids 

It is now explain how one can represent the propagation of acoustic waves in viscous fluids as 

an eigenvector problem conformably to the general description of Fahmy-Adler [6] for solids. 

Without any loss of generality, one considers the propagation in the plane (x1,x3) and the 

dependence along x2 is given by the system to solve, as shown further. We assume an 

harmonic dependence along time, omitting to report the implicit term e
jt

. We define the 

following state vector, mixing displacement and stress components in the propagation plane : 
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In a very general approach, one should add the electrical potential and the electrical 

displacement vector component along x2, enabling one to represent dielectric viscous fluids. 

For the sake of simplicity, we only focus on the acoustic contribution. The propagation 

equations provide the first derivatives of the in-plane stresses versus x2 as follows, using the 

notation ij=Tij/j  : 
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We now need three more equation to establish the first derivatives of the displacement versus 

x2. This is performed by developing (2) as follows : 
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where the matrices [Aij] depends on the viscosity factors, the compressibility factor and the 

frequency (see Appendix A). From the 2
nd

 line of (5), one deduces the derivatives of the 

displacement versus x2 : 
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Inserting (6) in (5) yields the following expressions of 1j et 3j : 
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The above system is related to the state vector h as follows : 
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Inserting (8) in (4), and combining the result with (6), we obtain the eigenvalue formulation 

we are looking for. Assuming an harmonic dependence of the fields versus x1 and x3, 

replacing the corresponding gradients by js1 and js3 (with si the slowness along xi) yields : 
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The main difficulty introduced by the proposed development consists in the frequency 

dependence of the matrices [Aij], requiring their computation for each frequency point.  

 

II.3 Green’s function of viscous fluids 

The way these relations can be used to compute the Green’s function of the medium are 

detailed in [7, 8]. Only a brief description of its derivation is reported here. Conformably to 

the Fahmy-Adler approach [6], one consider the above-defined state vector h to describe the 

acoustic properties of a semi-infinite or finite thickness medium potentially inserted in a stack 

of layer assuming flat interfaces. For a slowness set (s1,s3), h can be represented as the 

product of matrix F composed of the 8 eigenvectors of the considered medium with a 

diagonal matrix (x2) of rank 88, which describes the dependence of the acoustic field 

versus x2 via the eigenvalues s2, and with a vector a corresponding to the amplitudes of the 

partial modes : 
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For viscous fluids, the matrices F and a depend on frequency (contrarily to ideal fluids and 

classical solids). As in [7, 8, 9], we introduce the variable g
(m)

 split in two parts to identify 

incident (g
(m-)

) and reflected (g
(m+)

) modes defined as follows : 
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where m is the number of the considered layer in the stack (m=1 for semi-infinite media) and 

R
(m)

 is a reflection matrix relating incident and reflected partial modes. The reflection 



matrices of each interface of the stack are then recursively deduced from the reflection matrix 

at the first interface [8, 9]. This is achieved by introducing 2 sub-matrices K et L respectively 

associated to reflected and incident partial modes : 
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with tm the thickness of the mth layer of the stack. These matrices then are used to compute 

the reflection matrix of the (m+1) layer : 1)1( 
 LKR

m . This recursive scheme is repeated until 

reaching the top layer of the stack (numbered M) at which we intend to compute the Green’s 

function. The state vector h then reads : 
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In (13), we have defined two sub-matrices N et P respectively associated to the displacement 

field and to the stresses. The Green’s function which relates ui to T2j then is directly given by 

the product 1
 NPG . As in ref [10], we intend to compute the Green’s function at the 

interface between two media. Since G can be computed following the above procedure at any 

surface or interface of a given material stack (still assuming flat parallel interfaces), it can be 

derived for any configurations (semi-infinite piezoelectric solids, plates, layered wave-guide 

in contact with viscous fluids in our case). In the case of a semi-infinite substrate in contact 

with a semi-infinite viscous fluid, G at the interface between the two media depends on 

frequency in a complicated way (due to viscosity effects). It is then computed for each 

frequency point as in the case of dispersive wave-guides. Note that in the spectral domain, the 

Green’s function relates the generalized displacements ui [7, 8, 9] (including the potential  as 

u4) and the generalized surface stresses T2j (where T24=D2 the electrical displacement normal 

to the surface) as ui=GijT2j. 

 

II.4 Blötekjaër’s harmonic admittance  

This Green’s function can be used for computing the actual response of infinitely periodic 

guided elastic wave devices using different approaches [9, 10, 11]. In this work, we derive the 

celebrated effective permittivity [12] from the Green’s function as follows : 
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yielding a frequency dependent effective permittivity. In (14), the expression of EFF is 

restricted to the saggital plane in which the waves is excited, assuming an infinite aperture of 

the transducer along x3 (s3 then is set to zero). It is then used to compute an harmonic 

admittance [12], neglecting the mechanical contribution of the electrodes. This approach first 

used in [11] for interface wave computations enables one to simulate the excitation of 

acoustic waves by non-massive infinite periodic transducers (inter-digital transducers – IDT – 

for instance) at any interface of any layered structure. In this section, we just point out the 

way the above effective permittivity is introduced in the calculation. The potential  and 

electrical charge Q are developed as Bloch-Floquet series to meet the periodic condition (see 

fig.1 for axis definition) as follows : 
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where sn is the equivalent slowness of the nth term of the series, equal to s1+2n/(p). The 

relation between the weights of  and Q is established in the spectral domain conformably to 

the effective permittivity definition [12] as follows : 

nnnn
sq 

~~   with  
nEFFn

s      (16) 

The boundary conditions of the addressed problem consists in the absence of charge between 

the electrodes and the nullity of the electrical field parallel to the excitation surface under the 

electrodes. The corresponding equations are solved thanks to a Legendre polynomial 

development of the unknown fields [12]. The weights of this development are related to the 

potential and charge coefficients as follows : 
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where Pn is the nth Legendre polynomial, a is the width of the electrode and p the grating 

period. The weights of the Legendre developments m and m then becomes the actual 

unknown of the problem. M1 and M2 are the bounds of the discrete summation of (17), 



theoretically equal to – and + infinity. Practically, infinite sums cannot be handled for 

computation and the summation of (15) and (17) have to be truncated (N1 and N2 represent the 

finite bounds of the sum in (15)). For a given value of , the effective permittivity is known 

to tend toward an asymptotic value written . This is correct for usual materials, but a 

particular care must be attached to the case of viscous fluids, for which the frequency is 

intricately related to the intermediate matrix [Aij] used to derive the Green’s function. 

However, for usual frequencies (smaller than 10 GHz), it is possible to find a slowness large 

enough to allow for a satisfying definition of  (i.e. for which the latter value of is 

moderately affected by the frequency). By properly choosing the values of (M1, M2) and (N1, 

N2) [12], one can establish the following relation between m and m : 
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Combining (17) and (18) yields the following homogeneous algebraic system which must be 

solved in our case for each frequency point of the development : 
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Once the coefficients derived from (19), the computation of the harmonic potential Vharm and 

current Iharm is performed as described in [12], yielding the definition of the harmonic 

admittance as the ratio of Iharm over Vharm. The computation of this value allows for the 

identification of coupled acoustic waves generated by non-massive IDTs and their 

characterization (phase velocity, coupling strength, propagation loss, reflection coefficient). In 

the next paragraph, we report numerous examples for which the influence of viscous fluids on 

different wave-guide is analysed. 

 

III. Computation results 

Calculations have been performed for different kind of wave polarisation on the most used 

piezoelectric substrates, i.e. quartz, lithium tantalate and lithium niobate, assuming a semi-

infinite dielectric fluid domain (water) adjacent to the solid substrate. An isotropic dielectric 

constant equal to 10 pF/m was arbitrarily set for the fluid. This explains the change in static 

capacitance when passing from vacuum to the fluid load on the following admittance plots. 



The absolute viscosity of water (close to 1 cP [8]) was changed from 1 cP. to 10 cP. and 100 

cP. to check its influence on the wave characteristics. For all the tested materials, Rayleigh as 

well as leaky SAW have been considered. For quartz, surface transverse waves also have been 

taken into account. Finally, the influence of water load on acoustic plate modes (APM) on 

(YXl)/36° cut of quartz has been  simulated for both viscous and non viscous water. Note that 

all the admittance results are given for a unit width aperture. 

 

Figure 1 shows the general geometry of the problem. For the sake of consistence, a metal ratio 

equal to 0.5 was considered for all computations, and the period fixed to 5µm (acoustic 

wavelength forced to 10µm). Figure 2 and 3 show the results obtained for the (YXl)/36°cut of 

quartz, expended in 3 sections to magnify the different contributions to the harmonic 

admittance. 

 

The damping of Rayleigh wave by water load is clearly shown in fig.2. Also an influence is 

pointed out on the surface skimming bulk wave (SSBW) close to the Rayleigh wave and 

radiated from the surface, mainly due to the damped Rayleigh wave conductance. The very 

small influence of viscosity on the Rayleigh wave signature yields almost no difference 

between viscous and non viscous water loaded admittance. 

 

Figure 3(a&b) show the influence of water load on the two leaky modes (fast shear and 

longitudinal) on (YXl)/36° cut of quartz, which is clearly less dramatic than in the case of the 

Rayleigh wave. These two modes partially guided by the surface exhibit almost pure 

polarisation and then a negligible component normal to the surface. This means that they 

radiate almost no energy in the fluid. However, they are affected by viscosity effects, yielding 

a significant increase of losses due to viscous shearing within the fluid. This is particularly 

emphasized for the fast shear leaky wave which is almost not affected by the presence of ideal 

water. In contact with viscous water, the conductance of this mode is reduced by more than a 

factor of two and the quality factor of the mode changes from 8300 to 3200 (this value is  

derived from the conductance peak relative to the mode as the ratio of its central frequency 

divided by its width at half height). In that particular case, the impact of rather small viscosity 

properties at usual frequencies cannot be neglected. One can note that the central frequency 

also is slightly shifted down. A more surprising result is the robustness of the longitudinal 

mode in contact with water. In that case, the mode guiding even seems improved according to 

the slight increase of the corresponding conductance peak. However, viscosity effects also 



dramatically reduce its excitation efficiency. Again in that case, they induce a slight frequency 

decrease of the mode. The values of the quality factor for the different analysed working 

conditions are respectively 2650 (vacuum), 3000 (ideal water) and 1850 (viscous water). 

 

Figure 4 shows the same computations performed for STW on the (YXlt)/36°/90° quartz cut. 

The curves relative to vacuum and to non viscous water as adjacent media are superimposed, 

since no shear displacement can develop in perfect fluids. As soon as viscosity is introduced, 

the STW is dramatically damped, yielding a quality factor of 12400 which rapidly falls down 

when increasing the viscosity, as shown in fig.5. A quality factor of 2000 is predicted for a 

viscosity equal to 10 cP and it passes under 500 when increasing the viscosity to 100 cP. This 

is an important issue to consider when expecting using the STW for immersed biomedical 

purpose, since liquids used for such application may exhibit rather large viscosity values. 

 

The case of Love waves is also investigated to check whether the elimination of propagation 

loss associated to the STW allows for improving the device operation. In that purpose, we 

assume a fused silica overlay atop the quartz substrate to guide the pure shear wave. The 

electric excitation is assumed at the interface between the quartz substrate and the silica 

overlay. The thickness of the SiO2 layer was arbitrarily set to 500 nm, yielding a Love wave 

propagating with a phase velocity close to 5010 m.s-1 with a coupling coefficient (the usual 

Ks
2
 [1]) equal to 2.1‰. As previously, a water load does not significantly change the 

harmonic admittance of the corresponding structure. However, viscosity effects again yield a 

dramatic reduction of the wave conductance, which then presents a finite quality factor. Note 

that for a 0.1 cP viscosity, this factor equals 2100 but it falls down to 660 for 1 cP (standard 

water). We also point out a frequency shift of about 250 kHz between these two operating 

conditions. Love waves on quartz consequently are very sensitive to viscosity and seem 

hardly capable to operate with highly viscous fluids (viscosity larger than 50 cP) as loading 

medium. 

 

Regarding these results, it then sounds interesting to analyse the robustness of longitudinally 

polarized waves in presence of fluids exhibiting such viscosities. In that matter, we have 

considered the case of (YZ) cut of lithium niobate, on which a well coupled Rayleigh wave 

can propagate but also a high velocity longitudinal wave may be trapped under thick 

electrodes. Even if we cannot simulate such an electrode configuration, we can point out the 

longitudinal wave signature on the harmonic admittance and then predict the influence of 



viscous fluids on this kind of wave. Figure 7 shows the influence of ideal and viscous water 

loads on the harmonic admittance signatures of the Rayleigh and longitudinal waves on (YZ) 

LiNbO3 cut. We also have reported the evolution of these responses for various values of 

viscosity in fig.8, which shows that the longitudinal wave is clearly less affected by viscosity 

than shear waves on quartz are. One could also argue that the Rayleigh wave signature dose 

not change when increasing the viscosity, but it should be kept in mind that this wave almost 

vanishes when loaded by water, whereas the amplitude of the longitudinal wave almost 

remain unchanged for the different considered operating conditions.  

 

However, such longitudinal wave cannot be considered as a relevant demonstration of their 

interest for immersed applications since its signature on the harmonic admittance remains 

weak compared to a real surface-guided mode. We then investigate the operation of Lamb 

waves loaded by fluids. This is a very interesting configuration in which very thin plates 

simultaneously can support waves not damped by the water load because of their very small 

phase velocity (lower than 1500 m.s
-1

) and also high velocity waves that almost behave like 

pure longitudinal modes. Figure 9 shows the dispersion curves of Lamb waves on a (YZ) 

LiNbO3 cut plate. For thickness-frequency products smaller than 220 m.s
-1

, the first anti-

symmetric mode A0 exhibits a phase velocity smaller than the one of water and also one can 

remark that the first symmetric mode (S0) velocity is almost constant and close to the 

longitudinal bulk wave velocity (about 7000 m.s
-1

). Note that for the considered wavelength, 

the polarisation of this mode principally lie along the x axis (the elliptic polarisation actually 

is very weak in that case).  

 

We check the behaviour of such a device for two plate thickness, i.e. 1.4 and 5 µm. We then 

report the previous dispersion curve considering these fixed thickness in fig.10 (a&b). Since 

the wavelength is the inverse of the wave number plotted in fig.10, we directly deduce the 

operating frequencies of the different mode corresponding to a wave number equal to 100 km
-

1
. In the first case, the A0 mode is close to the velocity threshold at which the mode radiates 

its energy in water. However, due to the water mass loading, its contribution to the harmonic 

admittance is shifted down, yielding no leakage due to radiation in water (see fig.11(a)). Its 

electromechanical coupling is very weak but one should note that such a structure (a single 

crystal plate, symmetric around its neutral line) is poorly adapted to excite anti-symmetric 

waves. On the other hand, a coupling factor of more than 4% is obtained for the S0 mode. 



Figure 11(a) shows the degradation of the A0 mode amplitude when increasing the viscosity. 

An identical behaviour is pointed out for the S0 mode which is damped by water but still 

exhibit a well defined response (fig.11(b)). The mode amplitude dramatically falls down for 

values of viscosity larger or equal to 10 cP, but the A0 mode actually exhibits a sharper peak 

than the S0 does under these operating conditions. In that case, one can point out that the main 

issue is to efficiently excite the A0 mode for any exploitation of its properties. A bimorph 

structure (naturally non symmetric) would certainly help in that purpose. 

 

For the 5µm thick plate, the situation is quite different, since the A0 mode is largely above the 

radiation threshold, and the A1 and S1 modes do contribute now to the harmonic admittance 

(see fig.10(b)). The same computations as previously performed are then conducted for that 

case. The A0 and S0 modes almost vanishes as soon as the plate is loaded by water 

(fig.12(a)). However, the A1 mode exhibit more robustness to the presence of water, as shown 

in fig.12(b). It still exhibits a well defined peak on the conductance even for 10 cP viscosity. 

This result tends to prove that high order Lamb modes could operate as well as a low velocity 

A0 mode even when submitted to water load. This present the advantage of an efficient 

excitation together with a device architecture simpler than the one required for the 

exploitation of the A0 mode (very thin bimorph structures). 

 

IV. Conclusion 

A model describing the propagation of acoustic waves in fluids exhibiting or not viscosity 

properties has been developed and implemented. The use of an harmonic admittance enables 

one to determine the influence of non viscous and viscous water load on various combination 

of waves/substrates. The damping of Rayleigh wave due to the radiation of the displacement 

field component normal to the guiding surface is clearly pointed out. It is also shown that 

waves exhibiting a quasi pure shear polarisation are almost not affected by the presence of 

water. However, the influence of viscosity appears even for pure shear waves on quartz, 

yielding an additional leakage phenomenon generally neglected for practical applications. A 

more unusual result is the robustness of longitudinally polarized waves versus the presence of 

water. Moreover, according to our computations, since no shear effect is involved in this kind 

of propagation, longitudinal modes or pseudo-modes would be less sensitive to viscosity than 

the shear waves are. Also Lamb waves were tested, showing the interest of the A0 mode on 



very thin plates but also the capability of higher order modes to operate even with moderately 

viscous water loads.  

These results suggest that contrarily to what is usually admitted (i.e., only pure shear wave 

and modes with a velocity smaller than the water threshold – 1500m.s
-1

), different kind of 

waves and modes can be exploited for immersed application even with moderately viscous 

fluids. This mean there is still a lot of opportunities to point out optimal combinations of 

material, wave nature and electrode structures for the development of electro-acoustic devices 

operating in contact with fluids (for instance, sensing applications within organic bodies). 

In this context, the simulation of more complicated electrode structures using a combination 

of finite element analysis boundary element methods would yield better insight an new ideas 

in the development of such devices. 
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Appendix A : Definition of the matrices [Aij] 

 

We express the stress field according to (2) to define the matrices that appear in (5) as 

follows:  
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Consequently, 6 independent matrices are defined allowing for a more compact matrix 

formulation of the problem : 
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Figure captions : 

 

Fig.1 Scheme of the typical geometry considered for simulations 

Fig.2 Harmonic admittance of an infinite periodic IDT on (YXl)/36° cut of quartz with an 

adjacent semi-infinite fluid domain, influence on the Rayleigh and surface skimming bulk 

wave (SSBW) signature (period 5µm, metallisation ratio a/p=0,5) 

 

Fig.3 Harmonic admittance of an infinite periodic IDT on (YXl)/36° cut of quartz with 

vacuum, ideal and viscous water as adjacent semi-infinite media, (a) shear and (b) 

longitudinal radiated bulk waves (period 5µm, metallisation ratio a/p=0,5) 

 

Fig.4 Harmonic admittance of an infinite periodic IDT on (YXlt)/36°/90° cut of quartz (STW 

cut) with vacuum, ideal and viscous water as adjacent semi-infinite media (period 5µm, 

metallisation ratio a/p=0,5) 

 

Fig.5 Influence of the viscosity on the STW response on (YXlt)/36°/90° quartz – absolute 

viscosity equal to 1 cP, 10 cP and 100 cP (compressive viscosity equals 2.8 times the absolute 

one) 

 

Fig.6 Harmonic admittance of an infinite periodic IDT at the interface between a 500nm thick 

SiO2 overlay and the (YXlt)/36°/90° cut of quartz (excitation of Love waves) with vacuum, 

ideal and viscous water (0.1 and 1 cP) as adjacent semi-infinite media (period 5µm, 

metallisation ratio a/p=0,5, 500 nm thick fused quartz overlay) 

 

Fig.7 Harmonic admittance of an infinite periodic IDT on (YZ) cut of LiNbO3 with vacuum, 

ideal and viscous water as adjacent semi-infinite media (period 5µm, metallisation ratio 

a/p=0,5) 

 

Fig.8 Influence of the viscosity on the Rayleigh wave and longitudinal wave responses on 

(YZ) LiNbO3 – absolute viscosity equal to 1 cP, 10 cP and 100 cP (compressive viscosity 

equals 2.8 times the absolute one) 

 

Fig.9 Dispersion curves of lamb waves on a (YZ) lithium niobate thin plate 



 

Fig.10 Dispersion curves of fig.9 for a plate thickness fixed to (a) 1.4 µm (b) 5 µm 

 

Fig.11 Harmonic admittance of an infinite periodic IDT on a 1.4µm thick plate of LiNbO3 

(YZ) cut with vacuum, ideal and viscous water (1 cP and 10 cP, compressive viscosity equals 

2.8 times the absolute one) as adjacent semi-infinite media, (a) A0 mode (b) S0 mode (period 

5µm, metallisation ratio a/p=0,5)  

 

Fig.12 Harmonic admittance of an infinite periodic IDT on a 5µm thick plate of LiNbO3 (YZ) 

cut with vacuum, ideal and viscous water (1 cP and 10 cP, compressive viscosity equals 2.8 

times the absolute one) as adjacent semi-infinite media, (a) A0 and S0 modes (b) A1 and S1 

modes (period 5µm, metallisation ratio a/p=0,5) 
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