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Full band gap for surface acoustic waves in a piezoelectric phononic crystal

Vincent Laude, Mikaël Wilm, Sarah Benchabane, and Abdelkrim Khelif
Institut FEMTO-ST, département LPMO, CNRS UMR 6174,

32 avenue de l’Observatoire, F-25044 Besançon, France

A plane wave expansion method suited to the analysis of surface acoustic wave propagation in
two-dimensional piezoelectric phononic crystals is described. The surface modes of a square-lattice
Y-cut lithium niobate phononic crystal with circular void inclusions with a filling fraction of 63%
are identified. It is found that a large full-band gap with a fractional bandwidth of 34% exists for
surface acoustic waves of any polarization and incidence, coincidentally with the full band gap for
bulk waves propagating in the plane of the surface. The excitation of surface acoustic waves by
interdigital transducers is discussed.

PACS numbers: 46.40.Cd, 63.20.-e, 72.50.+b, 77.65.Dq

I. INTRODUCTION

Phononic crystals are periodic structures made of ma-
terials with different elastic properties [1, 2]. They are
receiving increasing attention as they enable the realiza-
tion of perfect mirrors, the confinement of acoustic en-
ergy in defect modes, and the fabrication of very effi-
cient waveguides. All these functions can be achieved in
a very tight space of the order of some acoustic wave-
lengths. Phononic crystals are similar to photonic crys-
tals but for the peculiarities of elastic as compared to
optical waves. Among these, the propagation of elastic
waves can be strongly anisotropic, various combinations
of shear and longitudinal polarizations can exist, and sur-
face modes almost always exist at the phononic crystal
boundaries. Most studies on phononic crystals have fo-
cused on the propagation of bulk acoustic or elastic waves
[3–11]. The consideration of bulk waves in phononic
crystal experiments is analogous to the use of external
light sources in photonic crystal experiments. Bulk elas-
tic waves are generally generated outside the sample of
interest, for instance using acoustic transducers. How-
ever, surface acoustic waves (SAW) can be conveniently
excited at the surface of a piezoelectric solid and they
are widely employed in ultrasonics, especially for high-
frequency applications. For instance, SAW devices fab-
ricated on piezoelectric materials such as quartz, lithium
niobate, or lithium tantalate, are extensively used as pas-
sive radio-frequency telecommunication filters [12]. The
importance of surface waves in this context originates
from their direct excitation and detection by interdigital
transducers on the surface of piezoelectric materials [13].

Surface waves propagating at the surface of a two-
dimensional Al-Hg phononic crystal have been observed
by Torres et al. [14]. Plane-wave-expansion (PWE) based
methods have been used to investigate the propagation of
surface modes in two-dimensional phononic crystals with
a solid/solid composition [15–17]. Tanaka and Tamura
[15] obtained the dispersion relations of surface modes
for phononic crystals consisting of circular cylinders of
AlAs forming a square lattice in a GaAs matrix. They
observed the existence and gave the stop band distribu-
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FIG. 1: (a) Square-lattice two-dimensional phononic crystal
consisting of cylindrical holes in a Y-cut lithium niobate sub-
strate (d = 0.9a) and (b) the corresponding first irreducible
Brillouin zone.

tion of true surface (Rayleigh) and pseudosurface modes
(leaky modes). They later reported similar findings for
phononic crystals consisting of aluminum cylinders form-
ing a triangular lattice in a polymer matrix [16]. This
study was subsequently generalized by Wu et al. [17] to
solid/solid elastic compositions with general anisotropy.

Here we focus on surface acoustic wave propagation
in piezoelectric phononic crystals and their band gaps.
For definiteness, we consider the case of lithium niobate
(LiNbO3) as the piezoelectric material in numerical sim-
ulations, though the mathematical derivations in this pa-
per are valid for an arbitrary piezoelectric material. The
propagation of bulk and surface waves in a piezoelectric
material is necessarily anisotropic. Furthermore, an elec-
tromagnetic wave accompanies the elastic wave along its
propagation. Accordingly, we use and extend a PWE
method suited to piezocomposite materials [18]. The
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phononic crystals we consider are two-dimensional in na-
ture; they are composed of a periodic repetition of hollow
cylinders inside a solid matrix, with the cylinders axes
normal to the propagation surface, as depicted in Fig-
ure 1. The solid/vacuum composition is interesting for
applications since it optimizes the contrast between the
matrix and the scatterers properties. The hollow cylin-
ders might in practice be realized by micro- or nanotech-
niques, for instance using reactive ion etching (RIE) and
focused ion beam (FIB) milling. With such techniques,
solid/vacuum compositions are generally easier to obtain
than solid/solid compositions involving the subsequent
filling of holes in the solid matrix with a different mate-
rial.

Following the traditional approach for piezoelectric
materials, the existence of surface modes is revealed by
the vanishing of the free and shorted boundary condi-
tion determinants for a plane and homogeneous surface.
These boundary conditions are here generalized to the
case of a periodically structured surface. The concepts of
a Green’s dyadic and of an effective permittivity matrix
(EPM) are further introduced, again generalizing tradi-
tional SAW procedures. The density of surface states is
also computed and used to predict the band structure of
surface modes. The procedure is illustrated with the Y
cut of lithium niobate, and the existence of a wide full
band gap for surface modes is found. We observe the
existence of many surface modes which do not exist on
an homogeneous surface and are a consequence of the
periodic structuration of the surface.

II. PLANE WAVE EXPANSION THEORY

Subsections IIA and IIB are essentially a summary of
the PWE method originally exposed in Ref. [18] in the
context of piezocomposite materials. Subsections IIC and
IID are extensions of the theory to the representation of
holes in a phononic crystal and to the problem of identi-
fying surface modes, respectively.

A. PWE basics

According to the Bloch-Floquet theorem, all fields in a
periodic solid, such as displacements or stresses, can be
expanded as infinite series

h(r, t) =
∑

G

hG(ω, k) exp((ωt− k · r −G · r)), (1)

where r = (x1, x2, x3)
T and the vectors of the reciprocal

lattice are G = (2πm1/a1, 2πm2/a2, 0)T . In this expres-
sion, k is the Bloch-Floquet wave vector and h stands
for either the displacements ui, the stresses Tij , the elec-
tric potential φ, or the electric displacements Di, with
i, j = 1, 2, 3.

The periodicity of the structure is also used to expand
the material constants as Fourier series

α(r) =
∑

G

αG e−jG·r, (2)

with α is either one of ρ, cijkl, eijk , or εij , with i, j, k, l =
1, 2, 3. ρ is the material density, and cijkl , eijk, and εij are
the elastic, piezoelectric, and dielectric tensors, respec-
tively. The Fourier harmonics αG are easily calculated
for various scatterers and lattice geometries [17, 19].

It is useful to define a generalized displacement field ũ

in which ũ4 represents the electric potential φ, and gener-
alized stress vectors t̃i = (Ti1, Ti2, Ti3, Di)

T . We further
group the generalized displacements and the generalized
stresses normal to the surface in the 8-components state
vector h̃ = (ũ, t̃3)

T . Assuming a truncation to a total of
N harmonics in the two-dimensional Fourier expansions,
the following vector notations are considered for the har-
monics of the generalized stress and displacement fields
(4N components each)

T̃ i =
(
t̃iG1

. . . t̃iGN

)T

, (3)

Ũ = (ũG1
. . . ũGN

)T , (4)

where the vectors of the reciprocal lattice, Gm, are la-
belled using a single index m.

Bulk waves are obtained as the eigensolutions of the
secular equation

ω2R̃Ũ =
∑

i,l=1,3

ΓiÃilΓlŨ , (5)

with the 4N × 4N matrices Γi, Ãil and R̃ defined by the
N ×N blocks with 4× 4 elements

(Γi)mn = δmn(ki + Gim)I4, (6)

(Ãil)mn = AilGm−Gn
, (7)

(R̃)mn = ρGm−Gn
Ĩ4, (8)

with I4 the 4×4 identity matrix, Ĩ4 = I4 but for Ĩ4(4, 4) =
0, and

AilG(j, k) = cijklG
, AilG(j, 4) = elijG

,

AilG(4, k) = eiklG , AilG(4, 4) = −εilG, (9)

with i, j, k, l = 1, 2, 3 and m, n = 1 . . .N . Eq. (5) defines
a generalized eigenvalue problem which can be solved for
ω2 as a function of k to obtain the band structure of bulk
waves.

The two-dimensional phononic crystal of Fig. 1 is not
periodic along the x3 axis and k3 can be obtained as a
function of the other parameters of the model – i.e. k1,
k2 and ω – as the eigenvalue of the equation

[
ω2 R̃−B 0
−C2 Id

]
H̃ = k3

[
C1 Id

D 0

]
H̃ , (10)
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where the eigenvector is H̃ = (Ũ , T̃ 3)
T , and with

B =
∑

i,j=1,2

Γi Ãij Γj , C1 =
∑

i=1,2

Γi Ãi3,

C2 =
∑

j=1,2

Ã3j Γj , D = Ã33. (11)

Solving this system yields 8N complex-valued eigenvalues
k3q and eigenvectors H̃q. By grouping in the eigenvectors
the 8 components corresponding to the m-th harmonic,
we introduce the notation

h̃mq =




(ui)Gmq

φGmq

(T3j)Gmq

(D3)Gmq


 , (12)

with i, j = 1, 2, 3, m = 1, . . . , N , and q = 1, . . . , 8N .
The generalized displacement and normal stress fields are
obtained from the superposition with relative amplitudes
Aq

h̃(r, t) =

N∑

m=1

8N∑

q=1

Aqh̃mq exp((ωt−(Gm+kq)·r)). (13)

This superposition is a finite approximation to the infi-
nite series (1). Each individual term H̃q exp((ωt−kq ·r))
in the superposition is termed a partial wave in the fol-
lowing.

B. Surface boundary conditions

Since we consider a semi-infinite (though composite)
substrate, only physically valid partial waves must be in-
cluded in the normal mode expansion (13). Due to the
tensor symmetries of the material constants, and for real-
valued k1 and k2, the partial waves belong in pairs to an
ensemble of 4N slowness curves. Hence, for each partial
wave, using a criterion based on the sign of the compo-
nent of the time-averaged Poynting vector that is normal
to the surface [20] (in the case of a propagative partial
wave) or on the sign of the imaginary part of k3q (in
the case of an evanescent partial wave), an unambiguous
modal selection can be performed. We are then left with
exactly 4N partial waves describing waves in the inte-
rior of the substrate. The eigenvectors H̃q can then be
restricted to the selected 4N partial waves.

The boundary conditions for surface modes apply at
the x3 = 0 surface. The mechanical boundary conditions
require the nullity of stress components normal to the
surface, or

4N∑

q=1

Aq(T3j)Gmq = 0, (14)

for a total of 3N conditions. In the derivation of bound-
ary conditions, the orthogonality of the exp(Gm ·r) har-
monic functions over one period of the surface is used [18].

From the electrical point of view, the free and shorted
boundary conditions are considered. The free boundary
condition is that the component of the electric displace-
ment normal to the surface is continuous, resulting in

4N∑

q=1

Aq [(D3)Gmq − ε0|κm|φGmq ] = 0, (15)

with |κm| =
√

(k1 + G1m)2 + (k2 + G2m)2 and with ε0
the permittivity of vacuum. The shorted boundary con-
dition considers that the electric potential at the surface
vanishes, for instance because of the presence of a thin
perfectly conducting metallic layer, yielding

4N∑

q=1

AqφGmq = 0. (16)

Both electrical boundary conditions result in a total of
N conditions.

C. Solid-void phononic crystals

The PWE method summarized in Sections IIA and IIB
assumes implicitly a solid-solid composition. In order to
describe also solid-void compositions, the material con-
stants of one of the two solids must be modified. More
precisely, this modification must be such that the inter-
faces between the solid matrix (solid 1) and the inclusions
(solid 2) are free of tractions. We first let the piezoelec-

tric constants in solid 2 vanish and impose ε
(2)
ij = ε0. The

equations of motion in solid 2 are then purely elastic

T
(2)
ij =

3∑

k,l=1

c
(2)
ijkl

∂u
(2)
k

∂xl

, (17)

ρ(2)
∂2 u

(2)
j

∂t2
=

3∑

i=1

∂T
(2)
ij

∂xi

. (18)

Since there are no stresses in a vacuum, we set c
(2)
ijkl = 0

to impose T
(2)
ij = 0 independently of the displacements,

which are precisely defined in solid 2 only at the inter-
faces. As a consequence, we set ρ(2) = 0 or otherwise
from Eq. (18) the displacements at the interface would
not be free.

Conversely, is the solution above compatible with the
conditions defining a free interface? The relations of con-

tinuity at the interface between two solids are u
(1)
i = u

(2)
i

and
∑3

j=1 T
(1)
ij nj =

∑3
j=1 T

(2)
ij nj , where nj defines the

outward normal. At a free interface, the displacements

u
(1)
i are unspecified and

∑3
j=1 T

(1)
ij nj = 0. Clearly both

sets of conditions are compatible if c
(2)
ijkl = 0 and ρ(2) = 0

simultaneously. We have thus defined a simple pseudo-
solid that will fake a vacuum in solid-solid PWE compu-
tations. It is worth pointing out that no numerical insta-
bilities result, since the Fourier coefficients in Eq. (2) are
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still well defined, though using the material constants of
only one solid.

D. Surface modes

In the case of a shorted surface, the surface boundary
conditions (14) and (16) must be satisfied simultaneously.
This yields a system of 4N linear equations in the 4N
unknown amplitudes Aq , which has a non trivial solution
only if the determinant

∆s(ω, k1, k2) =

∣∣∣∣
(T3j)Gmq

φGmq

∣∣∣∣ (19)

vanishes. Thus the SAW solutions on a shorted surface
can be identified by locating the zeros of ∆s. Similarly,
in the case of a free surface, the SAW solutions can be
identified by locating the zeros of the determinant

∆f (ω, k1, k2) =

∣∣∣∣
(T3j)Gmq

(D3)Gmq

∣∣∣∣ , (20)

where we have made the substitution

(D3)Gmq ←− (D3)Gmq − ε0 |κm|φGmq. (21)

This substitution is assumed from now on. As in the
case of a homogeneous substrate, it can be expected that
a simultaneous zero of both determinants ∆s and ∆f

is the signature of a non piezoelectrically coupled surface
mode. Indeed, in this case, the surface mode is insensitive
to the electrical boundary conditions. Conversely, in the
case there exists a (small) frequency shift between two
zeros of the determinants, this shift can be used to obtain
an estimate of the piezoelectric coupling factor K2 of
the surface mode, according to the usual formula K2 =
2(ωf − ωs)/(ωf + ωs).

A surface Green’s dyadic (generalizing the surface
Green’s dyadic or Green’s function of the homogeneous
piezoelectric substrate) can be obtained by eliminating
the partial waves amplitudes from Eq. (13). At the sur-
face, we take the scalar product over one eriod of the
surface of Eq. (13), restricted to the 4N selected partial
waves, with the N harmonic functions exp(Gm · r), or

1

a1a2

∫
h̃(r, t) exp(Gm · r)dr =

8N∑

q=1

Aqh̃mq exp((ωt− k1x1 − k2x2)

= h̃m exp((ωt− k1x1 − k2x2) (22)

Upon defining the 8N -component vector

H̃ = (h̃1 . . . h̃N )T =




(ui)Gm

φGm

(T3j)Gm

(D3)Gm


 , (23)

we have the vector-matrix relation between the har-
monics of the generalized displacements and generalized

stresses
(

(ui)Gm

φGm

)
= G×

(
(T3j)Gm

(D3)Gm

)
, (24)

with the Green’s dyadic

G =

(
uiGmq

φGmq

)
−1

×

(
(T3j)Gmq

D3Gmq

)
. (25)

The Green’s dyadic is a 4N × 4N square matrix and
relates the generalized displacements to the generalized
stresses. This is a direct generalization of the 4 × 4
Green’s dyadic of a homogeneous piezoelectric semi-
infinite substrate.

The concept of an effective permittivity for surface
acoustic waves on an homogeneous substrate is very use-
ful [21]. Such an effective permittivity is a scalar func-
tion relating the normal electric displacement to the po-
tential of a plane wave solution with a given wavevector
and frequency, in the case of a mechanically-free surface.
In the case treated here, there are N Fourier harmonics
which have to be considered for every wavevector and
frequency couple. Then an effective permittivity ma-
trix εeff can be defined by relating the normal electric
displacement harmonics to the potential harmonics, i.e.
[(D3)Gm

] = εeff [φGm
]. Using the boundary condition

(14), we obtain at once that the effective permittivity
matrix is given by the lower right N × N submatrix of
the inverse Green’s dyadic.

Before closing this section, we define two useful scalar
functions for locating surface modes. First, we remark
that in the case of a homogeneous substrate, the effective
permittivity is proportional to the function b(ω, k1, k2) =
∆f/∆s. This property is not valid anymore for a piezo-
composite material as considered here. However this
function still gives a direct information on piezoelectri-
cally coupled surface modes, since its poles indicate sur-
face modes on the shorted surface while its zeros indicate
surface modes on a free surface. Second, we can define
the variation of the total density of surface states accord-
ing to the formula [22]

∆n(ω, k1, k2) =
1

π
Im

{
∂

∂ω
log |G|

}
. (26)

This function is zero when there are no surface modes
and presents poles where there are.

III. RESULTS

In this section, we exemplify the PWE theory in the
case of the square-lattice lithium-niobate phononic crys-
tal depicted in Fig. 1. For a Y-cut substrate, the crys-
tallographic axis Y is the outward normal to the sur-
face, which is also the XZ plane. The reference frame
used for the PWE method is chosen to be (x1, x2, x3) =
(X,−Z,Y). Lithium niobate belongs to the trigonal 3m
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FIG. 2: Velocities of bulk and surface modes in the XZ plane
of Y-cut lithium niobate, as a function of the propagation an-
gle. The longitudinal (L) and shear (S1 and S2) bulk acoustic
waves are shown. The Rayleigh surface acoustic wave (SAW)
and the leaky surface acoustic wave (LSAW) are shown for
free (f) and shorted (s) electrical boundary conditions.

crystallographic class so that the XY plane is a symme-
try plane. Propagation in the plane of the surface along
axes Z and −Z is then equivalent. The holes have a cir-
cular cross-section with a diameter d = 0.9a, where a is
the lattice constant. The filling fraction π2d2/(4a2) then
equals 63%. 7 harmonics are used in each direction in the
PWE computations, resulting in a total of N = 49 har-
monics. By increasing this number, it was verified that
computations, and especially band structures, are within
1%-precision for all presented results.

It is first instructive to consider the bulk and surface
acoustic waves propagating in the plane of the surface of
a homogeneous (i.e. without holes) substrate of lithium
niobate, as depicted in Fig. 2. The propagation of piezoe-
lastic waves is clearly anisotropic with relatively large ve-
locity variations. In addition to the longitudinal and the
two shear bulk elastic modes, there exists two kind of sur-
face modes on the homogeneous surface. The Rayleigh
SAW is a true (lossless) surface mode located in the sub-
sonic region, i.e. at velocities lower than that of all bulk
waves. This SAW is sensitive to the electrical surface
boundary condition for all propagation angles. The dif-
ference in the free and shorted velocities is a direct mea-
sure of the piezoelectric coupling coefficient of this wave.
The leaky SAW (LSAW) is a lossy surface mode located
mostly in the hypersonic region, i.e. at velocities in be-
tween that of the two shear bulk waves. The LSAW is
also very sensitive to the electrical surface boundary con-
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FIG. 3: Band structure along the path Γ-X-M-Y-Γ in the first
irreducible Brillouin zone for bulk waves propagating in the
plane of the phononic crystal of Fig. 1 (i.e. with k3 = 0).

dition. Its piezoelectric coupling coefficient is maximum
in the X direction but vanishes in a wide angular range
about the Z direction, i.e. from 40 to 140 degrees.

Fig. 3 displays the band structure for bulk waves prop-
agating in the plane of the phononic crystal, plotted along
the closed path Γ-X-M-Y-Γ in the first irreducible Bril-
louin zone (Fig. 1b). Due to the lattice symmetry and to
the anisotropy of lithium niobate, this path is the short-
est yielding comprehensive information on band gaps. It
can be seen that a full band gap (i.e. a band gap for any
direction of propagation and polarization) exists for bulk
waves propagating in-plane from ωa/(2π) = 1935 m/s to
2745 m/s. The fractional bandwith is then larger than
34%. Qualitatively, it can be observed that although in
principle anisotropy makes it more difficult to open a full
band gap than with isotropic materials, the free bound-
aries of void inclusions are very efficient scatterers for
elastic waves of any polarization. The frequency width
of the band gap is defined solely by the M point.

Fig. 4 displays the variations of the free and shorted
boundary condition determinants of Eqs. (19) and (20)
as a function of frequency, for the X and the M points
of the first irreducible Brillouin zone. The occurrence
of surface modes is indicated by zeros (or sharp minima
in the case of leaky modes). As a general rule, it can
be observed that there exist many surface modes in the
phononic crystal, both below and above the full band
gap for bulk waves, but not within it. This multiplic-
ity of surface modes was not mentionned in the case of
the solid-solid phononic crystals of Refs. [15–17], but
is clearly apparent in previous studies of surface modes
in superlattices [22, 23], which can be viewed as one-
dimensional phononic crystals. The contributions of bulk
waves can also be seen in the form of discontinuities of
the first derivative of the determinants. The ratio of the
two boundary condition determinants is shown in Fig.
5. Poles of this function indicate the existence of piezo-
electrically coupled surface modes, since for uncoupled
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FIG. 4: Free (a) and shorted (b) boundary conditions deter-
minants for the X (solid line) and the M (dotted line) points
of the first irreducible Brillouin zone, for the lithium niobate
phononic crystal of Fig. 1.

surface modes the two determinants have identical zeros
that compensate one another.

Fig. 6 shows the band structure for surface modes
along the path Γ-X-M-Y-Γ. This band structure clearly
has similarities with the band structure of bulk waves
propagating in the plane of the surface of Fig. 3. This
plot is obtained using the modulus of the variation of
the total density of surface states, Eq. (26). The sur-
face modes branches define a full band gap that is ex-
actly coincident with that for in-plane propagating bulk
waves. This result is not obvious since the 4N par-
tial waves defining a surface mode include evanescent
waves as well as bulk waves propagating obliquely in the
phononic crystal, with possibly any direction and polar-
ization state. We observe that surface modes branches
often exist just below bulk branches, as in the case of the
homogeneous substrate, but not exclusively. In addition
to the existence of a full band gap, which offers the basis
for phononic crystal functions in combination with usual
interdigital transducers, such as mirrors, waveguides, or
filters, the variety of surface modes in phononic crystals
is also interesting in itself. However we do not attempt
here to identify the details of these surface modes, e.g.
their attenuation, coupling, and dispersion.

-3

-2

-1

 0

 1

 2

 3

 4

 0  500  1000  1500  2000  2500  3000  3500  4000

R
e(

∆ f
/∆

s)
 (

no
rm

.)

ωa/(2π) (m/s)

(a)

-4

-3

-2

-1

 0

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

Im
(∆

f/∆
s)

 (
no

rm
.)

ωa/(2π) (m/s)

(b)

FIG. 5: Real (a) and imaginary (b) parts of the free and
shorted boundary conditions determinants ratio for the X
(solid line) and the M (dotted line) points of the first irre-
ducible Brillouin zone, for the lithium niobate phononic crys-
tal of Fig. 1.

As already pointed out, a distinctive advantage of con-
sidering a piezoelectric material is the possibility to gen-
erate and detect surface modes using usual interdigital
transducers (IDTs) directly inside or in close proximity
to the phononic crystal. For instance, assuming a simple
transducer with an alternate potential of +1 and −1 Volt
applied to the IDT fingers, the resonance condition for
SAW generation and detection is

ωp

2π
=

v

2
, (27)

with p the transducer pitch and v the SAW velocity. This
relation in combination with the band structure of Fig. 6
makes it possible to design an IDT for frequencies inside
the full band gap. For instance, if the phononic crystal
has a lattice constant a = 1 µm, then the full band gap
extends approximately from 1.95 to 2.75 GHz. For an
IDT pitch p = 0.85 µm, it can be verified from Fig. 2 that
the Rayleigh SAW and the LSAW on the homogeneous
surface are simultaneously within the full band gap for
any propagation direction.
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FIG. 6: Band structure for surface modes along the path Γ-X-
M-Y-Γ in the first irreducible Brillouin zone, for the lithium
niobate phononic crystal of Fig. 1.

IV. CONCLUSION

A plane wave expansion method suited to the analysis
of surface acoustic wave propagation in phononic crystals
has been described. The surface modes of a square lattice

phononic crystal made of Y-cut lithium niobate with void
circular inclusions have been obtained. A full band gap
for surface waves with a fractional bandwidth of 34% has
been found, coincidentally with the full band gap for bulk
waves propagating in the plane of the surface. We conjec-
ture that this property generally applies to all phononic
crystals, although it is at present only the result of a nu-
merical observation. We suspect that it is directly related
to the existence of band gaps for bulk elastic waves propa-
gating out-of-plane [9], since these obliquely propagating
bulk waves contribute to the plane wave expansion of the
surface modes. However, the analysis presented in Ref.
[9] would need to be extended to all complex branches
of the band structure, whereas it was limited to only the
real branches.
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