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REPRESENTATION THEORY OF

MANTACI-REUTENAUER ALGEBRAS

C. BONNAFÉ

Abstract. We study some aspects of the representation theory of Mantaci-Reutenauer
algebras: Cartan matrix, Loewy length, modular representations.

Let Wn be a Coxeter group of type Bn (i.e. the group of permutations σ of In =

{±1, . . . ,±n} such that σ(−i) = −σ(i) for every i ∈ In) and let R be a commutative ring.

Mantaci and Reutenauer [MR] have defined a subalgebra RΣ′(Wn) of the group algebra

RWn which contains both the Solomon descent algebra of the symmetric group Sn and

the one of Wn. In [BH], the authors have provided another construction of the Mantaci-

Reutenauer algebra RΣ′(Wn) which relies more on the structure of Wn as a Coxeter group.

As a consequence of their work, they were able to generalize to this algebra the classical

results of Solomon on the Solomon descent algebra (construction of a morphism to the

character ring of Wn, description of the radical whenever R is a field of characteristic

0...). For instance, the description of the simple QΣ′(Wn)-modules was obtained in [BH,

Proposition 3.11]: they are all of dimension 1.

In this paper, we study the representation theory of KΣ′(Wn) whenever R = K is a

field of any characteristic: simple modules, radical, projective modules, Cartan matrix...

We also define some morphisms between different Mantaci-Reutenauer algebras. Let us

gather here some of the main results obtained all along the text:

Theorem. Let p denote the characteristic of K. Then:

(a) There exists a natural morphism of algebras KΣ′(Wn) → KΣ′(Wn−1); it is surjec-

tive if p = 0.

(b) If p 6= 2, then the Loewy length of KΣ′(Wn) is n. If p = 2, then this Loewy length

lies in {n, n + 1, . . . , 2n − 1}.

(c) If p does not divide |Wn| (i.e. is p = 0 or p > max(2, n)), then the Cartan matrix

of KΣ′(Wn) is unitriangular.

(d) If p does not divide the order of Wn, then the Cartan matrix of KΣ′(Wn) is a

submatrix of the Cartan matrix of KΣ′(Wn+1).
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2 C. Bonnafé

Note that, in the statement (a), we expect that the homomorphism is surjective even

if p > 0, but we are unable to prove it. In the statement (b), we expect that the Loewy

length of F2Σ
′(Wn) is equal to 2n − 1 whenever n > 2.

The paper is organized as follows. In the first section, we gather (and sometimes im-

prove, or make more precise) some of the principal results of [BH]. In the second section,

we study some particular families of left, right and two-sided ideals of RΣ′(Wn). In the

third section, we introduce a class of positive elements of KΣ′(Wn) (whenever K is an

ordered field) and study the ideals they generate (and also some other properties: cen-

tralizer, minimal polynomial). In the fourth section, we study the action of the longest

element wn of Wn on simple modules and on KΣ′(Wn): since wn is central (and is an ele-

ment of KΣ′(Wn)), this provides a first decomposition of the Mantaci-Reutenauer algebra

(at least when K is not of characteristic 2: we also give a basis of KΣ′(Wn) consisting

of eigenvectors for the action of wn by left multiplication). In the fifth section, we define

some morphisms between Mantaci-Reutenauer algebras and prove the statement (a) of the

Theorem above. In the sixth section, we study the simple modules and compute explicitly

the radical of KΣ′(Wn) (this is done in any characteristic). Section 7 is devoted to the

computation of the Loewy length of KΣ′(Wn), that is to the proof of the statement (b)

of the above Theorem. We also obtain the Loewy length of the algebra K Irr Wn in any

characteristic. The section 8 is concerned with the projective modules and the Cartan

matrix of KΣ′(Wn): the statement (c) and (d) of the above Theorem are proved. We

also obtain some results about the structure of KWn as a KΣ′(Wn)-module. We give in

section 9 some numerical results (character tables, primitive idempotents and the Cartan

matrices for small values of n). In the final section, we address some questions that are

raised by the present work.

Most of this work is largely inspired by works of several authors on Solomon descent

algebras (see for instance [A], [BBHT], [APVW], [BP]...). Sections 2, 3, 4, 5 are analogous

to [BP, §2, 3, 4] (for §5, see also [A] and [BBHT]). Sections 6 and 8 are inspired by

[APVW]). Section 7 is the analogue of [BP, §5]. The question 6 in section 10 has been

suggested by a similar question of G. Pfeiffer on Solomon descent algebras.
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1. Notation, preliminaries

1.A. General notation. All along this paper, R will denote a fixed commutative ring

and K a fixed field. If G is a finite group, the group algebra of G over R is denoted by RG

and the set of irreducible characters of G over C is denoted by IrrG. We denote by R IrrG

the ring of formal R-linear combinations of irreducible characters of G (with multiplication

given by tensor product). In particular, Z IrrG can be identified with the Grothendieck

ring of the category of finite dimensional CG-module (which is usually called the character

ring of G) and R IrrG = R ⊗Z Z IrrG. If A is a finite dimensional K-algebra, we denote

by Rad A its radical.

1.B. Weyl group of type Bn. If n > 1, we denote by (Wn, Sn) a Weyl group of type

Bn: write Sn = {t, s1, s2, . . . , sn−1} in such a way that the Dynkin diagram of Wn is

i i i · · · i
t s1 s2 sn−1

Let S−n = {s1, s2, . . . , sn−1} and W−n =< S−n >. Note that W−n ≃ Sn. We denote by

ℓ : Wn → N the length function attached to Sn.

Let In = {±1,±2, . . . ,±n}. We identify Wn with the group of permutations σ of In

such that σ(−i) = −σ(i) for every i ∈ In. The identification is as follows: t corresponds

to the transposition (1,−1) while si corresponds to (i, i + 1)(−i,−i − 1). Let t1 = t and,

if 1 6 i 6 n − 1, let ti+1 = sitisi. As a permutation of In, ti is equal to (i,−i). Now, we

set Tn = {t1, . . . , tn} and S′
n = Sn ∪ Tn. Then the reflection subgroup Tn generated by Tn

is naturally identified with (Z/2Z)n. Therefore Wn = W−n⋉Tn is, abstractly, the wreath

product of Sn by Z/2Z.

Let (e1, . . . , en) denote the canonical basis of the euclidean R-vector space Rn. If α ∈ Rn,

we denote by sα the orthogonal reflection such that sα(α) = −α. Let

Φn = {±2ei | 1 6 i 6 n} ∪ {±ei ± ej | 1 6 i < j 6 n}.

Then Φn is a root system and Wn can be also identified with the Weyl group of Φn:

through this identification, we have ti = s2ei
and si = sei+1−ei

. Let

∆n = {2e1, e2 − e1, e3 − e2, . . . , en − en−1}.
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Then ∆n is a basis of Φn and we denote by Φ+
n the set of roots which are linear combinations

with non-negative coefficients of roots in ∆n. If α ∈ Φn, we write α > 0 if α ∈ Φ+
n and

α < 0 otherwise.

1.C. Signed compositions, bipartitions. A signed composition is a finite sequence

C = (c1, . . . , cr) of non-zero elements of Z. The number r is called the length of C and

will be denoted by lg(C). We denote by lg+(C) (respectively lg−(C)) the number of

positive (respectively negative) parts of C. In particular, lg(C) = lg+(C) + lg−(C). We

set |C| =
∑r

i=1 |ci|. If |C| = n, we say that C is a signed composition of n and we write

C ||=n. We also define C+ = (|c1|, . . . , |cr|) ||=n and C− = −C+. We denote by Comp(n)

the set of signed compositions of n. In particular, any composition is a signed composition

(any part is positive). Note that

(1.1) |Comp(n)| = 2.3n−1.

If C = (c1, . . . , cr) and D = (d1, . . . , ds) are signed compositions of m and n respectively,

we denote by C ⊔ D the signed composition (c1, . . . , cr, d1, . . . , ds) of m + n.

A bipartition of n is a pair λ = (λ+, λ−) of partitions such that |λ| := |λ+| + |λ−| = n.

We set lg+(λ) = lg(λ+), lg−(λ) = lg(λ−) and lg(λ) = lg(λ+) + lg(λ−). We write λ  n

to say that λ is a bipartition of n, and the set of bipartitions of n is denoted by Bip(n).

We define λ̂ as the signed composition of n obtained by concatenation of λ+ and −λ−. In

other words, λ̂ = λ+ ⊔ −λ−. The map Bip(n) → Comp(n), λ 7→ λ̂ is injective.

Now, let C be a signed composition of n. We define λ(C) = (λ+, λ−) as the bipartition

of n such that λ+ (resp. λ−) is obtained from C by reordering if necessary the positive parts

of C (resp. the absolute value of the negative parts of C). Note that lg(λ(C)) = lg(C),

lg+(λ(C)) = lg+(C) and lg−(λ(C)) = lg−(C). One can easily check that the map

λ : Comp(n) −→ Bip(n)

is surjective (indeed, if λ ∈ Bip(n), then λ(λ̂) = λ).

1.D. A class of reflection subgroups of Wn. Now, to each C = (c1, . . . , cr) ||=n, we

associate a reflection subgroup WC of Wn which is isomorphic to Wc1 × . . . × Wcr . We

proceed as follows: for 1 ≤ i ≤ r, set

I
(i)
C =

{

I
(i)
C,+ if ci < 0,

I
(i)
C,+ ∪ −I

(i)
C,+ if ci > 0,

where I
(i)
C,+ is the set of natural numbers k such that |c1|+· · ·+|ci−1|+1 6 k 6 |c1|+· · ·+|ci|.

Then

WC = {w ∈ Wn | ∀ 1 6 i 6 r, w(I
(i)
C ) = I

(i)
C }

is a reflection subgroup generated by

SC = (S−n ∩ WC) ∪ {t|c1|+···+|cj−1|+1 ∈ Tn | cj > 0} ⊂ S′
n.
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Note that (WC , SC) is a Coxeter group. Moreover, WC ≃ Wc1 × · · · × Wcr . Let TC =

Tn ∩ WC . Then WC = SC+⋉ < TC >, where SC+ = WC− .

Now let ΦC = {α ∈ Φn | sα ∈ WC}. Then ΦC is a root system and WC is naturally

identified with the Weyl group of ΦC . Let Φ+
C = ΦC ∩Φ+

n and ∆C = {α ∈ Φ+
C | sα ∈ SC}.

Then ∆C is a basis of ΦC , and Φ+
C is a positive root system of ΦC .

If C,D ||=n, then we write C ⊂ D if WC ⊂ WD. This defines an order ⊂ on Comp(n).

Remark 1.2 - If C ⊂ D, then lg(C) > lg(D) and lg−(C) > lg−(D). If C ⊂ D, lg(C) =

lg(D) and lg−(C) = lg−(D), then C = D. �

Example - It might happen that C ⊂ D and lg+(C) < lg+(D). For example, take

C = (−n) and D = (n). �

1.E. Conjugacy classes. If C ||=n, we denote by coxC a Coxeter element of (WC , SC).

If C, C ′ ⊂ D and if WC and WC′ are conjugate under WD, then we write C ≡D C ′. Note

that coxC and coxC′ are conjugate in WD if and only if C ≡D C ′. Moreover, every element

of WD is WD-conjugate to coxC for some C ⊂ D. If D = (n), we write ≡ instead of ≡D.

We recall the following easy proposition:

Proposition A. Let C,D ||=n. Then WC and WD are conjugate in Wn if and only if

λ(C) = λ(D).

If w ∈ Wn, we denote by Λ(w) the unique bipartition λ of n such that w is conjugate

to coxC for some (every) C ∈ λ
−1(λ). The map

Λ : Wn −→ Bip(n)

is well-defined, surjective and its fibers are precisely the conjugacy classes of Wn: if λ ∈

Bip(n), we set C(λ) = Λ−1(λ) and we fix an element coxλ ∈ C(λ) (if C ∈ Comp(n), coxλ(C)

is conjugate to coxC). We denote by o(λ) the order of an element of C(λ): if λ = (λ+, λ−)

where λ+ = (λ+
1 , . . . , λ+

k ) and λ− = (λ−
1 , . . . , λ−

l ), then o(λ) is the least common multiple

of {2λ+
1 , . . . , 2λ+

k , λ−
1 , . . . , λ−

l }.

1.F. Mantaci-Reutenauer algebra. Let C ||=n, then

XC = {x ∈ Wn | ∀ w ∈ WC , ℓ(xw) > ℓ(x)}

is a distinguished set of minimal coset representatives for Wn/WC (see [BH, Proposition

2.8 (a)]). It is readily seen that

XC = {w ∈ Wn | ∀ s ∈ SC , ℓ(ws) > ℓ(w)}

= {w ∈ Wn | ∀ α ∈ Φ+
C , w(α) > 0}

= {w ∈ Wn | ∀ α ∈ ∆C , w(α) > 0}.
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Now, we set

xC =
∑

w∈XC

w ∈ RWn.

(Recall that R is a fixed commutative ring.) By [BH, §3.1], the family (xC)C∈Comp(n) is

free over R. Let

RΣ′(Wn) = ⊕
C∈Comp(n)

RxC ⊂ RWn.

For simplification, we set Σ′(Wn) = ZΣ′(Wn), so that RΣ′(Wn) = R ⊗Z Σ′(Wn).

Remark - The algebra RΣ′(Wn) is nothing else but the algebra constructed by Mantaci

and Reutenauer [MR] by combinatorial methods (see [BH, Remark of Subsection 3.1] for

the identification). �

Let (ξC)C∈Comp(n) denote the basis HomR(RΣ′(Wn), R) dual to (xC)C∈Comp(n). In other

words, we have, for every x ∈ RΣ′(Wn),

x =
∑

C∈Comp(n)

ξC(x)xC .

We now define

θR
n : RΣ′(Wn) −→ R IrrWn

as the unique R-linear map such that

θR
n (xC) = IndWn

WC
1C

for every C ∈ Comp(n). Here, 1C is the trivial character of WC . We denote by εC the

sign character of WC . We can now recall the following result.

Theorem B [BH, Theorem 3.7].

(a) RΣ′(Wn) is a unitary sub-R-algebra of RWn.

(b) θR
n : RΣ′(Wn) → R IrrWn is a morphism of R-algebras.

(c) θR
n is surjective and Ker θR

n =
∑

C≡D

R(xC − xD).

(d) If K is a field of characteristic 0, then Ker θK
n is the radical of the K-algebra

KΣ′(Wn).

Let Comp+(n) be the set of compositions of n. A signed composition C = (c1, . . . , cr)

is called semi-positive (resp. parabolic) if ci > −1 (resp. ci < 0) for every i > 1 (resp. for

every i > 2). Note that C is parabolic if and only if WC is a standard parabolic subgroup

of W (i.e. if and only if SC ⊂ Sn). We denote by Comppar(n) the set of parabolic

compositions of n. Let

RΣ(Wn) = ⊕
C∈Comppar(n)

RxC

and RΣ(Sn) = ⊕
C∈Comp+(n)

RxC .
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Then RΣ(Wn) and RΣ(Sn) are sub-R-algebras of RΣ′(Wn): RΣ(Wn) is the Solomon

descent algebra of Wn (see [S] for the definition of Solomon descent algebras of finite

Coxeter groups) and it is easy to check [BH, §3.2] that RΣ(Sn) is the Solomon descent

algebra of Sn = W−n.

The restriction of θR
n to RΣ(Wn) is equal to the classical Solomon homomorphism.

On the other hand, the canonical surjective morphism Wn → Sn induces an injective

morphism of algebras R Irr Sn →֒ R IrrWn. We view R IrrSn naturally as a subalgebra of

R IrrWn through this morphism. Then the image, through θR
n , of an element of RΣ(Sn)

belongs to R IrrSn. Also, the restriction of θR
n to a morphism (still denoted by θR

n ) of

algebras RΣ(Sn) → R IrrSn is again equal to the classical Solomon homomorphism. By

construction, the diagram

(1.3)

RΣ(Sn) �

�

//

θR
n

��

RΣ′(Wn)

θR
n

��

R Irr Sn
�

�

// R IrrWn

is commutative [BH, Diagram 3.4].

1.G. On the multiplication in RΣ′(Wn). By Theorem B, RΣ′(Wn) is a sub-R-algebra

of RWn and θR
n is a morphism of algebras. However, the multiplication in RΣ′(Wn) is not

described. In fact, it turns out that its description is much more complicated than the

multiplication in the Solomon descent algebra. Theoretically, it is possible to extract from

the proof of [BH, Theorem 3.7] an inductive process for this multiplication. We shall not

do it here. We shall just give some easy consequences of this inductive process.

First, if F is a subset of Comp(n), we set

RΣ′
F (Wn) = ⊕

C∈F
RxC .

For instance, RΣ(Wn) = RΣ′
Comppar(n)(Wn) and RΣ(Sn) = RΣ′

Comp+(n)
(Wn).

We shall now describe an order 4 on Comp(n) which is finer than ⊂. Let C and D

be two signed composition of n. We write C 4 D if one of the following two conditions is

satisfied:

(1) C ⊂ D.

(2) C ⊂ D+ and lg(C) > lg(D) and lg−(C) > lg−(D).

One can easily check that it defines an order 4 on Comp(n) (see Remark 1.2). We set

F≺D = {C ∈ Comp(n) | C ≺ D}

and F4 D = {C ∈ Comp(n) | C 4 D}.
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For simplification, we set

RΣ′
≺D(Wn) = RΣ′

F≺D
(Wn) and RΣ′

4 D(Wn) = RΣ′
F4 D

(Wn).

Remark 1.4 - If C 4 D, then C+ ⊂ D+, lg(C) > lg(D) and lg−(C) > lg−(D). �

We shall now describe a preorder ⊂λ on Comp(n). First, note that the order ⊂ on

Comp(n) induces an order on Bip(n) which we still denote by ⊂. If C and D are two

signed compositions of n, we then write C ⊂λ D if λ(C) ⊂ λ(D). In other words, C ⊂λ D

if and only if WC is contained in some conjugate of WD. We write C  λ D if λ(C)  λ(D).

Similarly as above, we set

F λD = {C ∈ Comp(n) | C  λ D}

and F⊂λD = {C ∈ Comp(n) | C ⊂λ D}.

For simplification, we set

RΣ′
 λD(Wn) = RΣ′

F 
λ

D
(Wn) and RΣ′

⊂λD(Wn) = RΣ′
F⊂

λ
D
(Wn)

Remark 1.5 - It is easily checked that ⊂λ is a preorder on Comp(n) and that the

equivalence relation associated to the preorder ⊂λ is exactly the relation ≡. �

We now recall some notation from [BH, Proposition 2.13]. If C and D are two signed

compositions of n, we set

XCD = X−1
C ∩ XD.

Moreover, if d ∈ XCD, we denote by C ∩ dD the unique signed composition of n such that

WC ∩ dWD = WC∩dD. If C, C ′ ⊂ D, we set XD
C = XC ∩ WD, xD

C =
∑

w∈XD
C

w ∈ RWD,

XD
CC′ = XCC′ ∩ WD, RΣ′(WD) = ⊕C⊂D RxD

C and we define θR
D : RΣ′(WD) → R IrrWD,

xD
C 7→ IndWD

WC
1C . Then RΣ′(WD) is a sub-R-algebra of RWD and θR

D is a surjective

morphism of algebras. Moreover, if D = (d1, . . . , dr), then

RΣ′(WD) ≃ RΣ′(Wd1) ⊗R · · · ⊗R RΣ′(Wdr
),

where Σ′(Wd) = Σ(S−d) if d < 0.

Proposition C (see [BH, Proof of Theorem 3.7]). Let C and D be two signed

compositions of n. Then

(a) There is a map fCD : XCD → Comp(n) such that:

(1) For every d ∈ XCD, fCD(d) ⊂ D and fCD(d) ≡D
d−1

C ∩ D.

(2) xCxD −
∑

d∈XCD

xfCD(d) ∈ RΣ′
 λC(Wn) ∩ RΣ′

≺D(Wn) ∩ Ker θR
n .

(b) If C is parabolic or if D is semi-positive, then fCD(d) = d−1
C ∩ D for every

d ∈ XCD and xCxD =
∑

d∈XCD

xd−1
C∩D

.
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Proof. In fact, (b) is proved in [BH, Example 3.2]. Let us now prove (a). We first need

an easy lemma about double cosets representatives:

Lemma 1.6. Let C, D and D′ be three signed compositions of n such

that D ⊂ D′. Let E = {(d, e) | d ∈ XCD′ and e ∈ XD′

(d−1
C∩D′),D

}. Let

f : E → XCD be the map defined by de ∈ WCf(d, e)WD. Then f is

bijective and Wf(d,e)−1
C∩D

is conjugate, inside WD, to (de)−1
WC ∩ WD.

Now, by arguing by induction on n as in [BH, Proof of Theorem 3.7] and by using

Lemma 1.6, we are reduced to the case where C = (k, l) with k, l > 1 and k + l = n and

D = (−n). Then this follows from [BH, Example 2.25]. �

1.H. Some morphisms of algebras RΣ′(Wn) → R. If λ ∈ Bip(n), let πλ : Σ′(Wn) →

Z, x 7→ θn(x)(coxλ). Recall that θn(x) is a Z-linear combination of permutation characters,

so θn(x)(w) lies in Z. Moreover, πλ does not depend on the choice of coxλ in C(λ), and is

a morphism of Z-algebras. We denote by πR
λ : RΣ′(Wn) → R the morphism of algebras

IdR ⊗Zπλ. We denote by DR
λ the left RΣ′(Wn)-module whose underlying R-module is free

of rank one and on which RΣ′(Wn) acts through πR
λ . If K is a field, then DK

λ is a simple

KΣ′(Wn)-module.

If C and D are two signed compositions of n, let X⊂
CD = {d ∈ XCD | d−1

WC ⊂ WD}.

Then

(1.7) πλ(C)(xD) = |X⊂
CD|.

Proof. By definition, we have

πλ(C)(xD) =
(

IndWn

WD
1D

)

(coxC) =
(

ResWn

WC
IndWn

WD
1D

)

(coxC).

Therefore, by the Mackey formula,

πλ(C)(xD) =
∑

d∈XCD

(

IndWC

W
C∩dD

1C∩dD

)

(coxC).

But, by the argument in the proof of [BH, proposition 3.12], we get that coxC lies in a

subgroup of WC conjugate to WC∩dD if and only if C∩ dD = C. This shows the result. �

1.I. Action of the normalizer. If C and D are two signed compositions of n, we set

X≡
CD = {d ∈ XCD | WC = dWD}. Then

(1.8) X≡
CD = {d ∈ Wn | ∆C = d(∆D)}.

Proof. Let X = {d ∈ Wn | ∆C = d(∆D)}. Then it is clear that X ⊂ X≡
CD. Conversely, if

d ∈ X≡
CD, then d(ΦD) = ΦC . So d(∆D) is a basis of ΦC , hence there exists w ∈ WC such

that d(∆D) = w(∆C). So d−1w ∈ XC and d−1 ∈ XC . So w = 1, as desired. �
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Remark 1.9 - If D and D′ are two signed compositions of n and if d ∈ XDD′ is such

that dWD′ = WD, then d(∆D′) = ∆D by 1.8 and

XD′ = XDd and xD′ = xDd.

Moreover, for every C ⊂ D′, we have dxD′

C d−1 = xD
dC

(here, note that d ∈ XDC , and we

denote for simplification dC ∩ D by dC because dWC ∩ WD = dWC). So conjugacy by d

induces a morphism of algebras d∗ : RΣ′(WD′) → RΣ′(WD). �

If C ≡ D, then X≡
CD = X⊂

CD. If D ∈ Comp(n), we define W(D) = X⊂
DD.

Lemma 1.10. Let D be a signed compositions of n. Then:

(a) W(D) = {w ∈ Wn | w(∆D) = ∆D}.

(b) W(D) is a subgroup of NWn(WD).

(c) The natural map W(D) → NWn(WD)/WD is an isomorphism of groups.

(d) NWn(WD) = W(D)⋉WD.

(e) If C ∈ Comp(n), then |W(D)| divides |X⊂
CD|.

Proof. (a), (b), (c) and (d) follow immediately from 1.8. Let us now prove (e). First, by

1.7, |X⊂
CD| is equal to the number of fixed points of coxC in its action on Wn/WD by left

multiplication. But W(D) acts on Wn/WD by right translation and this action commutes

with the left action of coxC . Therefore, W(D) permutes the fixed points of coxC . Since

W(D) acts freely on Wn/WD, (e) follows. �

2. On the ideals of RΣ′(Wn)

This section is inspired by [BP, §3.A]. We shall define some families of left, right and

two-sided ideals of RΣ′(Wn) related to the order 4 and the preorder ⊂λ defined in the

previous section. We need the following definition: if x ∈ RΣ′(Wn), the support of x

(denoted by Supp(x)) is the subset of Comp(n) defined by

Supp(x) = {C ∈ Comp(n) | ξC(x) 6= 0}.

2.A. Some left ideals. A subset F of Comp(n) is called left-saturated if, for every

D ∈ F and every C ∈ Comp(n) such that C 4 D, we have C ∈ F . By Proposition C (a),

if F is left-saturated, then RΣ′
F(Wn) is a left ideal of RΣ′(Wn).

If x ∈ RΣ′(Wn), we set

Satl(x) = {C ∈ Comp(n) | ∃ D ∈ Supp(x), C 4 D}.

Then Satl(x) is the minimal left-saturated subset of Comp(n) containing the support of

x. By the previous remark,

(2.1) RΣ′(Wn)x ⊂ RΣ′
Satl(x)(Wn).
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Example 2.2 - If D ∈ Comp(n), then F4 D and F≺D are left-saturated. In fact,

F4 D = Satl(xD). Consequently, RΣ′
4 D(Wn) and RΣ′

≺D(Wn) are left ideals of RΣ′(Wn).

Note that RΣ′
4 D(Wn)/RΣ′

≺D(Wn) is a left RΣ′(Wn)-module which is free of rank 1 over

R (it is generated by the image of xD). The action of RΣ′(Wn) on this module is described

in the next proposition. �

Proposition 2.3. Let D be a signed composition of n and let x ∈ Σ′(Wn). Then

xxD − πR
λ(D)(x)xD ∈ RΣ′

≺D(Wn).

In other words, RΣ′
4 D(Wn)/RΣ′

≺D(Wn) ≃ DR
λ(D).

Proof. By Proposition C, we only need to show that ξD(xxD) = πλ(D)(x) for every x ∈

RΣ′(Wn). Let C ∈ Comp(n). By Proposition C, we have

ξD(xCxD) = |{d ∈ XCD | WD ⊂ d−1
WC}| = |X⊂

CD|.

So the result follows from 1.7. �

The next result follows immediately from Proposition 2.3.

Corollary 2.4. Let F be a left-saturated subset of Comp(n) and let χF denote the char-

acter of the left KΣ′(Wn)-module KΣ′
F(Wn). then

χF =
∑

C∈F

πK
λ(C).

If a ∈ RΣ′(Wn), we denote by fa(T ) ∈ R[T ] its minimal polynomial. Let γa :

RΣ′(Wn) → RΣ′(Wn), x 7→ ax be the left multiplication by a and let Γa be the ma-

trix of γa in the basis (xC)C∈Comp(n). Then fa is the minimal polynomial of γa (or of the

matrix Γa). By 2.3, Γa is triangular (with respect to the order 4 on Comp(n)) and its

characteristic polynomial is

(2.5)
∏

C∈Comp(n)

(T − πR
λ(C)(a)).

In particular:

Corollary 2.6. fa is split over R.

2.B. Some right ideals. A subset F of Comp(n) is called right-saturated if, for every

D ∈ F and every C ∈ Comp(n) such that C ⊂λ D, we have C ∈ F . If F is right-saturated,

then RΣ′
F (W ) is a right ideal of RΣ′(Wn) (see Proposition D (a)). It must be noticed

that, by opposition with the case of the classical Solomon algebra [BP, §3.B], RΣ′
F(W ) is

not necessarily a two-sided ideal of RΣ′(Wn) (see Example 2.8 below).

Example 2.7 - If D ∈ Comp(n), then F⊂λD and F λD are left-saturated. In fact,

F⊂λD = Satr(xD). Consequently, RΣ′
⊂λD(Wn) and RΣ′

 λD(Wn) are right ideals of

RΣ′(Wn). �
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Example 2.8 - Assume here that n = 2. Then RΣ⊂λ(−2)(W2) = Rx(−2) ⊕ Rx(−1,−1) is

not a two-sided ideal of Σ′
R(Wn) because

x(1,1)x(−2) = x(−1,−1) + x(−1,1) − x(1,−1). �

If x ∈ RΣ′(Wn), we set

Satr(x) = {C ∈ Comp(n) | ∃ D ∈ Supp(a), C ⊂λ D}.

Then Satr(x) is the minimal right-saturated subset of Comp(n) containing the support of

x. By the previous remark,

(2.9) xRΣ′(Wn) ⊂ RΣ′
Satr(x)(Wn).

We shall construct in Section 3 a class of elements x for which equality holds in 2.9.

2.C. Some two-sided ideals. A subset F of Comp(n) is called saturated if it is left-

saturated and right-saturated. If F is saturated, then RΣ′
F (Wn) is a two-sided ideal of

RΣ′(Wn).

Example 2.10 - If k > 0, we set Fk(n) = {C ∈ Comp(n) | lg(C) > k + 1} and F−
k (n) =

{C ∈ Comp(n) | lg(C) + lg−(C) > k + 1}. Then, by the Remarks 1.2 and 1.4, Fk(n) and

F−
k (n) are saturated subsets of Comp(n). �

3. Positivity properties

In this section, and only in this section, we assume that K is an ordered (for in-

stance K = Q or K = R). Recall that this implies that K has characteristic 0. We

shall now construct a class of elements of KΣ′(Wn) for which equality holds in 2.9. We

denote by KΣ′(Wn)+ the set of elements a ∈ KΣ′(Wn) such that ξC(a) > 0 for every

C ∈ Comp(n). Note that xC ∈ KΣ′(Wn)+ for any C ∈ Comp(n). If a and b are two

elements of KΣ′(Wn)+, then

(3.1) a + b ∈ KΣ′(Wn)+.

However, contrarily to the case of Solomon algebras [BP, 3.2], it might happen that

ab 6∈ KΣ′(Wn)+ (see example 2.8). However, the analogue of [BP, First statement of

Proposition 3.6] holds:

Proposition 3.2. Assume that K is an ordered field. Let a ∈ KΣ′(Wn)+. Then

aKΣ′(Wn) = KΣ′
Satr(a)(Wn).
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Proof. Let F = Satr(a). By 2.9, we have aKΣ′(Wn) ⊂ KΣ′
F(Wn). We shall show by

induction on C ∈ F (induction with respect to the order 4) that xC ∈ aKΣ′(Wn). For

this, we may, and we will, assume that a 6= 0.

First, if C = (−1,−1, . . . ,−1), then xC =
∑

w∈Wn
w so

axC =
( ∑

D∈Comp(n)

ξD(a)|XD|
)

xC .

Since a 6= 0 and a ∈ KΣ′(Wn)+, we have by definition
∑

D∈Comp(n) ξD(a)|XD | > 0. So

x(−1,−1,...,−1) ∈ aKΣ′(Wn).

Now, let C ∈ F and assume that, if C ′ ∈ F is such that C ′ ≺ C, then xC′ ∈ aKΣ′(Wn).

Then, by Propositions C and 2.3, we have

axC − πλ(C)(a)xC ∈ KΣ′
≺C(Wn).

But, by the induction hypothesis, we have that KΣ′
⊂λC(Wn) ⊂ aKΣ′(Wn). So it remains

to show that πλ(C)(a) 6= 0. But,

πλ(C)(a) =
∑

D∈Supp(a)

ξD(a)πλ(C)(xD).

Since ξD(a) > 0 and πλ(C)(xD) > 0 for every D ∈ Supp(a), it remains to show that there

exists D ∈ Supp(a) such that πλ(C)(xD) > 0. But, by the definition of F , there exists

D ∈ Supp(a) such that WC is contained in a conjugate of WD. So, for this particular D,

we have that coxC is contained in a conjugate of WD. So πλ(C)(xD) = IndWn

WD
(coxC) > 1

and the proof of the proposition is complete. �

The next four corollaries must be compared with [BP, Corollaries 4.7, 3.8 and 3.12 and

Proposition 3.10].

Corollary 3.3. Assume that K is an ordered field. Let a ∈ KΣ′(Wn)+. Then a is

invertible in KΣ′(Wn) if and only if ξn(a) > 0.

Corollary 3.4. Assume that K is an ordered field. Let a1,. . . , ar ∈ KΣ′(Wn)+. Then

a1 + · · · + ar ∈ KΣ′(Wn)+ and

a1KΣ′(Wn) + · · · + arKΣ′(Wn) = (a1 + · · · + ar)KΣ′(Wn).

The proof of the next corollary follows an argument of Atkinson [A].

Corollary 3.5. Assume that K is an ordered field. Let a ∈ KΣ′(Wn)+ and let r be a

non-zero natural number. Then:

(a) val fa 6 1.

(b) arKΣ′(Wn) = aKΣ′(Wn).

(c) KΣ′(Wn)ar = KΣ′(Wn)a.
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Proof. Recall that fa is the minimal polynomial of a. We first prove (b). It is sufficient

to show the result for r = 2. Let m : aKΣ′(Wn) → aKΣ′(Wn), x 7→ ax. Then, by

Proposition 3.2, we have aKΣ′(Wn) = KΣ′
Satr(a)(Wn). But, by the proof of Proposition

3.2, we have πλ(C)(a) > 0 for every C ∈ Satr(a). Therefore, by Proposition 2.3, the matrix

of m in the basis (xC)C∈Satr(a) is triangular (with respect to the order 4) and has positive

diagonal coefficients. So it is invertible. This shows (b).

(a) By (b), the minimal polynomial f ∈ K[T ] of m has a non-zero constant term. But,

f(a)a = f(m)(a) = 0. Therefore, fa divides Tf(T ). This shows (a).

(c) Now, by (a), we have that a ∈ K[a]a2. So a ∈ KΣ′(Wn)a2, as desired. �

Recall that γa denote the left multiplication KΣ′(Wn) → KΣ′(Wn), x 7→ ax. Let

δa : KΣ′(Wn) → KΣ′(Wn), x 7→ xa denote the right multiplication by a.

Corollary 3.6. Assume that K is an ordered field. Let a ∈ KΣ′(Wn)+. Then:

(a) Ker γa ⊕ Im γa = KΣ′(Wn).

(b) Ker δa ⊕ Im δa = KΣ′(Wn).

Proof. (a) For dimension reasons, it is sufficient to prove that Ker γa ∩ Im γa = 0. Let

x ∈ Ker γa ∩ Im γa. Then ax = 0 and there exists y ∈ KΣ′(Wn) such that x = ay. So

a2y = 0. Therefore, ary = 0 for every r > 2. But a ∈
∑

r > 2 Kar by Corollary 3.5 (a). So

ay = 0. In other words, x = 0, as desired. The proof of (b) is similar. �

Remark 3.7 - By opposition with the case of Solomon descent algebras, it may happen

that fxC
is not square-free (compare with [BP, Proposition 3.10]). For instance, if n = 4

and if K = Q, we have

fx(−3,1)
(T ) = T (T − 2)(T − 4)(T − 8)2(T − 32).

This computation has been done using CHEVIE [Chevie]. �

We close this section by a result on the centralizers of positive elements (compare with

[BP, Corollary 3.12]: the proof presented here is really different):

Proposition 3.8. Assume that K is an ordered field. Let a ∈ KΣ′(Wn)+ and r be a

non-zero natural number. Then ZKΣ′(Wn)(a) = ZKΣ′(Wn)(a
r).

Proof. Let A = EndK KΣ′(Wn). Let γ : KΣ′(Wn) → A, x 7→ γx. It is an injective

homomorphism of algebras. Therefore, ZKΣ′(Wn)(a) = γ−1(ZA(γa)). So, in order to prove

the proposition, we only need to prove that ZA(γa) = ZA(γr
a).

Let A′ = EndK(Ker γa) and A′′ = EndK(Im γa). Then, by Corollary 3.6, A′ ⊕ A′′ is

a sub-K-algebra of A and ZA(γa) is contained in A′ ⊕ A′′. Let γ′′ denote the restriction

of γa to Im γa. Then ZA(γa) = A′ ⊕ ZA′′(γ′′). Since Ker γr
a = Ker γa and Im γr

a = Im γa,

we only need to prove that ZA′′(γ′′) = ZA′′(γ′′r). But, by Proposition 3.2 and its proof,

(xC)C∈Satr(a) is a basis of Im γa and the matrix of γ′′ in this basis is triangular (with
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respect to the order 4) with positive coefficients on the diagonal. So the proposition

follows from Lemma 3.9 below. �

Lemma 3.9. Let m be a non-zero natural number. Let M = (mij) ∈ Matm(K)
be an upper triangular m×m matrix such that mii > 0 for every i ∈ {1, 2, . . . , m}.
Then

ZMatm(K)(M) = ZMatm(K)(M
r)

for every r > 1.

Proof of Lemma 3.9. Let E = Matm(K). Since M is invertible, we can write
M = SU = US where S (resp. U) is a diagonalizable (resp. unipotent) matrix.
Then ZE(M) = ZE(S) ∩ZE(U). So it is sufficient to show that ZE(S) = ZE(Sr)
and ZE(U) = ZE(U r).

Since S is diagonalizable, we may assume that it is diagonal. Now the fact that
ZE(S) = ZE(Sr) follows from the fact that, if x, y ∈ K are such that x > 0, y > 0
and xr = yr, then x = y (because K is an ordered field).

Let us now show that ZE(U) = ZE(U r). Since K is an ordered field, its
characteristic is zero. Let N be a nilpotent matrix such that U = eN (exponential).
Then ZE(U) = ZE(N) and, since U r = erN , we have ZE(U r) = ZE(rN) = ZE(N)
(because r 6= 0 in K). �

4. Action of the longest element

If C ∈ Comp(n), we denote by wC the longest element of WC . If C ∈ Comp+(n), we

denote by σC the longest element of SC (in other words, σC = w−C). In particular, wn is

the longest element of Wn. Recall that wn ∈ RΣ′(Wn) (in fact wn ∈ RΣ(Wn)) and that

θR
n (wn) = εn, the sign character of Wn (see for instance [S]). Moreover, wn is central in

Wn, so it is central in RΣ′(Wn).

First, note that

(4.1) εn(cox C) = (−1)n−lg−(C).

Recall that the function lg− : Comp(n) → N has been defined in §1.C. In particular,

(4.2) πλ(wn) = (−1)n−lg−(λ)

for all λ ∈ Bip(n).

From now on, and until the end of this section, we assume that 2 is invertible in R.

Write

e+
n =

1

2
(1 + wn) and e−n =

1

2
(1 − wn).

Since wn is central in Wn, e+
n and e−n are central idempotents of KΣ′(Wn). Moreover,

they are orthogonal and e+
n + e−n = 1.
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We shall now describe a basis of RΣ′(Wn)e+
n and RΣ′(Wn)e−n . This is build on the same

model as for the classical Solomon algebra [BP, §2.B]. First, note that

(4.3) wnXC = XCwC

for every signed composition C of n. This is proved as follows. An element w ∈ Wn

belongs to XC if and only if w(α) > 0 for every α ∈ Φ+
C . In other words, w ∈ wnXC if and

only if w(α) < 0 for every α ∈ Φ+
C . A similar argument applies to show that w ∈ XCwC

if and only if w(α) < 0 for every α ∈ Φ+
C . This shows 4.3. Consequently,

(4.4) wnxC = xCwC .

Since 2 is invertible in R, we can define

x′
C =

∑

D∈Comp(n)
SD⊂SC

(

−
1

2

)|SC |−|SD|
xD.

These elements have the following properties:

Proposition 4.5. If 2 is invertible in R, then:

(a) (x′
C)C∈Comp(n) is an R-basis of RΣ′(Wn).

(b) Ker θR
n =

∑

C≡D R(x′
C − x′

D).

(c) wnx′
C = (−1)|SC |x′

C = (−1)n−lg−(C)x′
C .

Proof. (a) is trivial. Note for information that

xC =
∑

D∈Comp(n)
SD⊂SC

(1

2

)|SC |−|SD|
x′

D.

(b) follows from Theorem B (c) and Remark 1.9.

Let us now prove (c). First, we set

x̃C =
∑

D∈Comp(n)
SD⊂SC

(

−
1

2

)|SC |−|SD|
xC

D.

Now, by 4.4, we get wnxC = xCwC x̃C . But now, x̃C is an element of the classical

Solomon descent algebra RΣ(WC) to which the result of [BP, 2.12] can be applied: we get

wC x̃C = (−1)|SC |x̃C . This shows the first equality. The second equality is easy from the

definition of SC . �

Corollary 4.6. If 2 is invertible in R, then dimR RΣ′(Wn)e+
n = dimR RΣ′(Wn)e−n = 3n−1.

Proof. Let

C+ = {C ∈ Comp(n) | lg−(C) ≡ n mod 2}

and C− = {C ∈ Comp(n) | lg−(C) ≡ n + 1 mod 2}.
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Then, by Proposition 4.5 (a) and (c), we have dimR RΣ′(Wn)e?
n = |C?| for ? ∈ {+,−}. It

is now sufficient to show that |C+| = |C−| = 3n−1. Since the number of compositions of n

of length k is equal to

(
n − 1
k − 1

)

, we have

|C+| =
n∑

k=1

(
n − 1
k − 1

)

2k−1 = 3n−1,

and similarly for |C−|. �

Example 4.7 - We consider in this example the elements of the form x′
ν1,ν2,...,νn

of

RΣ′(Wn) where νi ∈ {1,−1}. We shall show that they are quasi-idempotents. We first

need some notation. Let I+
n = {1, 2, . . . , n}. If σ ∈ Wn, let I(σ) = {i ∈ I+

n | σ(i) > 0}. If

I ⊂ I+
n , we denote by C(I) the signed composition (ν1, . . . , νn), where νi = 1 (respectively

νi = −1) if i ∈ I (respectively i 6∈ I). We also define γI : Wn → R×, σ 7→ (−1)|I|−|I∩I(σ)|.

For instance, γ∅ = 1n and γI+
n

is a linear character of Wn (it will be denoted by γn for

simplification). Note also that the restriction of γI to Tn is always a linear character (the

group Tn has been defined in §1.B: it is the group generated by t1,. . . , tn). Moreover, if

σ ∈ Sn and τ ∈ Wn, we have I(στ) = I(τ), so γI(στ) = γI(τ). Finally, we denote by

Sn(I) the stabilizer of I in Sn.

With this notation, we have

(4.8) x′
C(I) =

1

2|I|

∑

σ∈Wn

γI(σ)σ.

Proof of 4.8. First, note that

x′
C(I) =

∑

J⊂I

(

−
1

2

)|I|−|J |
xC(J).

Now, let σ ∈ Wn and J ⊂ I+
n . Then σ ∈ XC(J) if and only J ⊂ I(σ).

Therefore, by the previous equality, the coefficient of σ in x′
C(I) is equal to

∑

J⊂I∩I(σ)

(

−
1

2

)|I|−|J |
=

(−1)|I|−|I∩I(σ)|

2|I|
,

as desired. �

If I and J are two subsets of I+
n , then

(4.9) x′
C(I)x

′
C(J) =

{

2n−|I||Sn(I)|x′
C(J) if |I| = |J |,

0 otherwise.

Proof of 4.9. Let eI =
∑

τ∈Tn
γI(τ)τ and let e =

∑

σ∈Sn
σ. Then, by 4.8,

we have x′
C(I) = eeI/2

|I|. Moreover,

eIeJ =

{

2neI if I = J,

0 otherwise.
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Therefore,

x′
C(I)x

′
C(J) =

1

2|I|+|J |
eeI

( ∑

σ∈Sn

σ
)

eJ

=
1

2|I|+|J |

∑

σ∈Sn

eσ−1eIσeJ

=
1

2|I|+|J |

∑

σ∈Sn

eeσ−1(I)eJ .

If |I| 6= |J |, then σ−1(I) 6= J for every σ ∈ Sn. If |I| = |J |, then the number

of elements σ ∈ Sn such that σ−1(I) = J is equal to |Sn(I)| = |I|!(n−|I|)!.

This shows the result in this last case. �

In particular, if 2|Sn(I)| is invertible in R, then x′
C(I)/(2

n−|I||Sn(I)|) is an idempotent

of RΣ′(Wn). We shall show later that it is a primitive idempotent of RΣ′(Wn) (see 8.4).

A description of the module QWnx′
C(I) will be given in Example 10.1.

Since γI+
n

= γn is a linear character of Wn, we deduce immediately the following two

properties of x′
1,1,...,1:

(4.10) x′
1,1,...,1 is central in QWn, hence is central in QΣ′(Wn);

(4.11) (x′
1,1,...,1)

2 = n! x′
1,1,...,1.

In particular, if p does not divide |Wn|, then x1,1,...,1/n! is a primitive central idempotent

of QWn, hence is a primitive central idempotent of QΣ′(Wn). �

5. Restriction morphisms between Mantaci-Reutenauer algebras

F. Bergeron, N. Bergeron, R.B. Howlett and D.E. Taylor [BBHT] have constructed so-

called restriction morphisms between the Solomon algebra of a finite Coxeter group and the

Solomon algebras of its standard parabolic subgroups. We shall construct here a restriction

morphism RΣ′(Wn) → RΣ′(WD) whenever D is a semi-positive signed compositions of n.

It might be possible that such a morphism exists for every signed compositions, but we

are not able to prove it (or to prove that there is no analogue in general). Most of the

results of this section have an analogue in the context of Solomon’s descent algebras [BP,

§4].

5.A. Definition. We fix in this section a semi-positive signed composition D of n. We

denote by ResD : RΣ′(Wn) → RΣ′(WD) the unique R-linear map such that

ResD xC =
∑

d∈XCD

xD
d−1

C∩D

for every C ∈ Comp(n). If C ⊂ D is a semi-positive signed composition, we define

ResD
C : RΣ′(WD) → RΣ′(WC) similarly.
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Proposition 5.1. Let D be a semi-positive signed composition of n. Then:

(a) If x ∈ Σ(Wn), then xD ResD(x) = xxD.

(b) ResD is a morphism of algebras.

(c) If C ⊂ D is also semi-positive, then ResD
C ◦ResD = ResC .

(d) The diagram

RΣ′(Wn)

ResD

��

θR
n

// R IrrWn

ResWn

WD

��

RΣ′(WD)
θR
D

// R IrrWD

is commutative.

(e) If D′ is another signed composition of n and if d ∈ XDD′ is such that dSD′ = SD,

then D′ is semi-positive and d∗ ◦ ResD′ = ResD.

Proof. (a) follows from Proposition C (b). (b) and (c) follow from (a) and from the fact

that the map µD : RΣ′(WD) → RΣ′(Wn), x 7→ xDx is injective. (d) follows from the

Mackey formula. (e) follows easily from Remark 1.9 and from (a). �

By Remark 1.9, the group W(D) acts on RΣ′(WD). Moreover, by Proposition 5.1 (e),

we have

(5.2) Im ResD ⊂ RΣ′(WD)W(D).

Let Comp(D) = {C ∈ Comp(n) | C ⊂ D}. Write D = (d1, . . . , dr) and Bip(D) =

Bip(d1) × · · · × Bip(dr): here, if d < 0, Bip(d) denotes the set of partitions of −d. If

C ∈ Comp(D), we denote by λD(C) the element of Bip(D) defined in the natural way

component by component. Then λD(C) = λD(C ′) if and only if C ≡D C ′. Therefore, the

canonical injection Comp(D) →֒ Comp(n) induces a unique map τD : Bip(D) → Bip(n)

such that τD(λD(C)) = λ(C).

Corollary 5.3. Let D be a semi-positive signed composition of n and let λ ∈ ΛD. Then

πR
τD(λ) = πR

λ ◦ ResD.

Proof. Let (ξD
C )C∈Comp(D) denote the basis of HomR(RΣ′(WD), R) dual to (xD

C )C∈Comp(D).

Let C be a signed composition of n which is contained in D and let λ = λD(C) ∈ Bip(D).

Then, if x ∈ RΣ′(WD), we have by Proposition 2.3,

πR
λ (x) = ξD

C (xxD
C ).
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Therefore, if x ∈ RΣ′(Wn), we have

πR
λ (ResD x) = ξD

C ((ResD x)xD
C )

= ξC(xD(ResD x)xD
C )

= ξC(xxDxD
C )

= ξC(xxC)

= πλ(C)(x).

Now, the result follows from the fact that λ(C) = τD(λ) by definition. �

We conclude this subsection by a result on the kernel of ResD.

Proposition 5.4. We have:

(a) Ker(ResD) = {x ∈ RΣ′(Wn) | xxD = 0}.

(b) If K is a field of characteristic zero, then KΣ′(WD) = Ker(ResD) ⊕ KΣ′(Wn)xD.

Proof. (a) follows from Proposition 5.1 (a). To prove (b), we may, and we will, assume

that K = Q. Then, since Q is an ordered field, (b) follows from (a) and Corollary 3.6. �

5.B. Restriction to the Solomon algebra of Sn. If D is a semi-positive signed

composition of n, then SD+ is a parabolic subgroup of Sn. So there is a restriction

morphism ResS

D+ : RΣ(Sn) → RΣ(SD+) which was constructed in [BBHT] (see also [BP,

Proposition 4.1] for the proof of the fact that it is a morphism of algebras: it works as in

the Proposition 5.1 above). Then the diagram

(5.5)

RΣ(Sn) �

�

//

ResS

D+

��

RΣ′(Wn)

ResD

��

RΣ(SD+) �

�

// RΣ′(WD)

is commutative. Indeed, if x ∈ RΣ(Sn), then, by definition, we have

xD ResD(x) = xxD = xxD+xD+

D = xD+ ResS

D+(x)xD+

D .

So it remains to show that, if u ∈ RΣ(SD+), then uxD+

D = xD+

D u. By direct product,

we are reduce to prove this whenever D = D+ (in which case it is trivial) or whenever

D = D−. In this last case, since D is semi-positive, we have D+ = (1) and the result

follows from the fact that the algebra RΣ′(W1) = RW1 is commutative.

5.C. An example. Now, let us consider a particular semi-positive signed composition. If

D = (k,−1,−1, . . . ,−1), where k > 1, then ResD induces in fact a morphism of algebras

Resn
k : RΣ′(Wn) → RΣ′(Wk). Since D is also parabolic, we have that Resn

k(RΣ(Wn)) ⊂
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RΣ(Wk), that the induced map RΣ(Wn) → RΣ(Wk) coincides with the map denoted by

ResSn

Sk
in [BP, §4.B] and that the diagram

(5.6)

RΣ(Wn) �

�

//

ResSn
Sk

��

RΣ′(Wn)

Resn
k

��

RΣ(Wk)
�

�

// RΣ′(Wk)

is commutative. The next result can be compared with [BP, Proposition 4.15].

Proposition 5.7. If R = K is a field of characteristic zero, then Resn
k is surjective.

Remark 5.8 - It is probable that the above proposition remains valid for every commu-

tative ring R (i.e. for R = Z). It has been checked for n 6 5 using CHEVIE [Chevie]. �

Proof. By transitivity (see Proposition 5.1 (c)), we only need to prove that Resn
n−1 is

surjective. We almost reproduce the argument in [BP, Proposition 4.15]. We have

Xn−1,−1 = {sisi+1 . . . sn−1 | 1 6 i 6 n}
∐

{sisi−1 . . . s1ts1s2 . . . sn−1 | 0 6 i 6 n − 1}.

Therefore, if d ∈ Wn and i ∈ {1, 2, . . . , n− 1} (resp. i ∈ {1, 2, . . . , n}) are such that d−1 ∈

Xn−1,−1, ℓ(dsi) > ℓ(d) (resp. ℓ(dti) > ℓ(d)), and dsid
−1 ∈ S′

n−1 (resp. dtid
−1 ∈ S′

n−1),

then

(∗) dsid
−1 ∈ {si, si−1}

(resp.

(∗∗) dtid
−1 ∈ {ti, ti−1}.

We now define a total order E on Comp(n−1). Let C and D be two signed compositions

of n − 1. We write C E D if and only if one of the following two conditions are satisfied:

(1) |S′
C | < |S′

D|;

(2) |S′
C | = |S′

D| and S′
C is smaller than S′

D for the lexicographic order

induced by the order t1 < t2 < · · · < tn−1 < s1 < · · · < sn−2 on S′
n−1.

It follows immediately from (∗) and (∗∗) that

Resn
n−1 xD⊔(−1) ∈ αDxD +

∑

C⊳D

KxC

with αD ∈ Z, αD > 0 (for every D ∈ Comp(n − 1)). Recall that the operation ⊔

(concatenation) has been defined in §1.C. The proof of the proposition is complete. �
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6. Simple modules, radical

Hypothesis and notation: From now on, and until the end of this paper,

we assume that R = K is a field. We denote by p its characteristic (p > 0).

We denote by Bipp′(n) the set of bipartitions λ of n such that o(λ) is in-

vertible in K (recall that o(λ) denotes the order of coxλ). If λ ∈ Bip(n), we

denote by λp′ the bipartition of n such that the p′-part of coxλ is conjugate

to coxλp′
(if p = 0, then λp′ = λ).

6.A. Simple modules. Since Ker θK
n is a nilpotent two-sided ideal of KΣ′(Wn), it

is contained in the kernel of every simple representation of KΣ′(Wn). Therefore, every

simple representation factorizes (through θK
n ) to a simple representation of K IrrWn. Since

every irreducible character of Wn has value in Z, and since θK
n is surjective by Theorem

B (c), we get (see for instance [B2, Proposition 2.14 and Corollary 2.15]):

Proposition 6.1. Let λ and µ be two bipartitions of n.

(a) DK
λ ≃ DK

µ if and only if λp′ = µp′.

(b) {DK
λ | λ ∈ Bipp′(n)} is a set of representatives of isomorphy classes of simple left

KΣ′(Wn)-modules.

Corollary 6.2. KΣ′(Wn) is split.

Corollary 6.3. IrrK KΣ′(Wn) = {πK
λ | λ ∈ Bipp′(n)}.

The formula for the irreducible characters of KΣ′(Wn) is given by 1.7.

6.B. Radical. The aim of this subsection is to describe the radical of KΣ′(Wn) in

full generality. If p = 0, then this is done in Theorem B (d). Let Compp(n) = {C ∈

Comp(n) | p divides |W(C)|}. The next result must be compared with [APVW, Theorem

3]:

Theorem 6.4. If K is a field of characteristic p, then

Rad KΣ′(Wn) = Ker θK
n +

∑

C∈Compp(n)

KxC .

Proof. Let I = Ker θK
n +

∑

C∈Compp(n) KxC . By Proposition 6.1, we get that

Rad KΣ′(Wn) =
⋂

λ∈Bip(n)

Ker πK
λ .

Now, if λ ∈ Bip(n), then Ker θK
n ⊂ KerπK

λ and xC ⊂ Ker πK
λ for every C ∈ Compp(n) by

1.7 and by Lemma 1.10 (e). Therefore, I ⊂ Rad KΣ′(Wn).

Now, let x ∈ Rad KΣ′(Wn). We want to prove that x ∈ I. Let C ∈ Comp(n) be

maximal (for the preorder ⊂λ) such that ξC(x) 6= 0. By an easy induction argument (on
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the preorder ⊂λ) we only need to prove that x′ =
∑

C′≡C ξC′(x)xC′ belongs to I. Let

λ = λ(C). Then, by Lemma 1.10 (d) and by 1.7, we have

0 = πλ(x) = πλ(x′) = |W(C)|
∑

C′≡C

ξC′(x).

To cases may occur:

• If C ∈ Compp(n), then x′ ∈
∑

D∈Compp(n) KxD ⊂ I.

• If C 6∈ Compp(n), then p does not divide |W(C)|, so
∑

C′≡C ξC′(x) = 0. So x′ ∈

Ker θK
n ⊂ I. This completes the proof of the proposition. �

Corollary 6.5. |Bip(n)| = |Bipp′(n)| + |λ(Compp(n))|.

Proof. By Proposition 6.4, we get that

dimK

(
Rad KΣ′(Wn)

)
= dimK(Ker θK

n ) + |λ(Compp(n))|.

On the other hand, we have

dimK KΣ′(Wn) = dimK(Ker θK
n ) + |Bip(n)|

and dimK KΣ′(Wn) = dimK

(
Rad KΣ′(Wn)

)
+ |Bipp′(n)|.

(the last equality follows from Proposition 6.1 (b)). The corollary now follows from these

observations. �

Note that the above corollary could have been proved directly by a pure combinatorial

argument. Let us sketch it here. First, a bipartition λ = (λ+, λ−) is said p-regular

(respectively p-singular) if it does not belong (respectively if it belongs) to λ(Compp(n)).

The set of p-regular partitions of n (which will be denoted by Bipp−reg(n)) can be described

more concretely as follows. If i > 1, we denote by r+
i (λ) (respectively r−i (λ)) the number

of occurrences of i as a part of λ+ (respectively λ−). Similarly, if C ∈ Comp(n), we denote

by r+
i (C) (respectively r−i (C)) the number of occurrences of i (respectively −i) as a part

of C. In other words, r+
i (C) = r+

i (λ(C)) and r−i (C) = r−i (λ(C)). It is readily seen that

(6.6) W(C) ≃ NWn(WC)/WC ≃ Sr+
1 (C) × · · · × Sr+

n (C) × Wr−1 (C) × · · · × Wr−n (C).

Consequently,

(6.7) Bip2−reg(n) = {λ ∈ Bip(n) | ∀i > 1, r+
i (λ) 6 1 and r−i (λ) = 0}

and, if p is an odd prime number,

(6.8) Bipp−reg(n) = {λ ∈ Bip(n) | ∀i > 1, r+
i (λ) 6 p − 1 and r−i (λ) 6 p − 1}.

Now, recall from §1.E that the order o(λ) of coxλ is equal to the lowest common multiple

of (2λ+
1 , . . . , 2λ+

r , λ−
1 , . . . , λ−

s ), where λ+ = (λ+
1 , . . . , λ+

r ) and (λ−
1 , . . . , λ−

s ). Therefore,

(6.9) Bip2′(n) = {λ ∈ Bip(n) | ∀i > 1, r+
i (λ) = r−2i(λ) = 0}
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and, if p is an odd prime number,

(6.10) Bipp′(n) = {λ ∈ Bip(n) | ∀i > 1, r+
pi(λ) = r−pi(λ) = 0}.

Now, Corollary 6.5 asserts that

(6.11) |Bipp−reg(n)| = |Bipp′(n)|.

This can be proved directly by using the descriptions 6.7, 6.8, 6.9 and 6.10 of both sets

and by using the classical argument for proving the analogue of 6.11 for partitions instead

of bipartitions.

6.C. Character table. Let us now talk about the character table of KΣ′(Wn). By

Theorem 6.4, the classes of the elements of the family (x
λ̂
)λ∈Bipp−reg(n) in the semisimple

quotient KΣ′(Wn)/Rad(KΣ′(Wn)) form a K-basis of this last space (recall that λ̂ has been

defined in §1.C: it is a representative of λ
−1(λ)). Therefore, to compute an irreducible

character of KΣ′(Wn), we only need to give the values on (x
λ̂
)λ∈Bipp−reg(n). We call the

character table of KΣ′(Wn) the square matrix (πK
λ (xµ̂))λ∈Bipp′(n),µ∈Bipp−reg(n). By 1.7, we

have :

(6.12) The character table of KΣ′(Wn) is upper triangular

(for the order ⊂ on Bip(n)).

The character tables of QΣ′(W2) and QΣ′(W3) will be given at the end of this paper. If

p > 0, the character table of KΣ′(W2) and KΣ′(W3) are obtained from the previous ones

by reduction modulo p and by deleting the appropriate rows and columns.

7. Loewy length

Recall that the Loewy length of a finite dimensional K-algebra A is the smallest natural

number r > 1 such that (Rad A)r = 0. In this section, we shall use the description of the

radical obtained in Theorem 6.4 to compute the Loewy length of KΣ′(Wn) (except if

p = 2). But before doing this, we determine the Loewy length of the algebra K Irr Wn:

Proposition 7.1. The Loewy length of K Irr Wn is equal to







1, if p = 0;

n + 1, if p = 2;

[n/p] + 1, if p > 2.

Proof. The result is obvious if p = 0 so we may, and we will, assume that p > 0. If G is a

finite group, we denote by ℓp(G, 1) the Loewy length of the principal block of K IrrG (see

[B2, §3] for the definition of the principal block of K Irr G: it is the unique block on which

the degree map deg : K IrrG → K is non-zero). We denote by ℓp(n) the Loewy length of

K IrrWn. Then

(1) ℓp(n) > ℓp(Wn, 1).
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If p is odd, then it follows from [B2, Proposition 4.7 (d)] that ℓp(Wn, 1) = ℓp(Sn, 1).

But, by [B2, Corollary 5.8], we have ℓp(Sn, 1) = [n/p] + 1. On the other hand, since Wn

is isomorphic to a subgroup of S2n of odd index, it follows from [B2, Proposition 4.7 (a)]

that ℓ2(Wn, 1) > ℓ2(S2n, 1). But, by [B2, Corollary 5.8], we have ℓ2(S2n, 1) = n + 1. So,

by using (1), we have proved that

(2) ℓp(n) >

{

n + 1, if p = 2;

[n/p] + 1, if p > 2.

We shall now prove that these inequalities are actually equalities. For this, we shall

need some notation. Recall that the p-rank of a finite group G is the maximal possible

rank of an elementary abelian p-subgroup of G. It will be denoted by rkp(G). We have

rkp(Sn) = [n/p] and rkp(Wn) =

{

n if p = 2,

[n/p] if p > 2.

If λ ∈ Bip(n), we set

ϕλ = θK
n (x

λ̂
) and rkp(λ) = rkp(W(λ̂)).

In other words, by 6.6, we have

rkp(λ) =







∑

i > 1

(
[r+

i (λ)/2] + r−i (λ)
)

if p = 2,

∑

i > 1

(
[r+

i (λ)/p] + [r−i (λ)/p]
)

if p > 2.

In particular, π2(λ) ∈ {0, 1, 2, . . . n} and, if p is odd, then πp(λ) ∈ {0, 1, 2, . . . , [n/p]}. Note

that λ ∈ Bipp−reg(n) if and only if πp(λ) = 0. Note also that (ϕλ)λ∈Bip(n) is a K-basis of

K IrrWn (see Theorem B). Now, by (2), it is sufficient to show that, if i > 0, then

(3)
(
Rad(K IrrWn)

)i
⊂ ⊕

rkp(λ) > i
Kϕλ.

So let us now prove (3). Let Ii = ⊕
rkp(λ) > i

Kχλ. We denote by IiIj the space of K-linear

combinations of elements of the form xy, where x ∈ Ii and y ∈ Ij. Then

(4) IiIj ⊂ Ii+j.

Proof of (4). We proceed as in [B1, proof of (♣)]. For simplification, we

set NC = NWn(WC) for every C ∈ Comp(n). We have, for λ, µ ∈ Bip(n),

ϕλϕµ =
∑

d∈X
λ̂µ̂

ϕ
λ(λ̂∩dµ̂).

The group W(λ̂)×W(µ̂) acts on X
λ̂µ̂

(W(λ̂) acts by left multiplication while

W(µ̂) acts by right multiplication). If d ∈ X
λ̂µ̂

and (x, y) ∈ W(λ̂)×W(µ̂),

then the groups W
λ̂
∩ dWµ̂ and W

λ̂
∩ xdy−1

Wµ̂ = x(W
λ̂
∩ dWµ̂) are conjugate.

In other words,

λ(λ̂ ∩ dµ̂) = λ(λ̂ ∩ xdy−1
µ̂).
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So, if X ′
λ̂µ̂

denotes a set of representatives of (W(λ̂)×W(µ̂))-orbits in X
λ̂µ̂

,

then

ϕλϕµ =
∑

d∈X′

λ̂µ̂

nλ,µ,dϕλ(λ̂∩dµ̂),

where nλ,µ,d denotes the cardinality of the orbit of d. So it is sufficient to

show that, if p does not divide nλ,µ,d, then rkp(λ(λ̂∩ dµ̂)) > rkp(λ)+rkp(µ).

So let d ∈ X ′
λ̂µ̂

be such that p does not divide nλ,µ,d. Let

∆d : N
λ̂
∩ dNµ̂ −→ N

λ̂
×Nµ̂

w 7−→ (w, d−1wd).

Let ∆̃d : N
λ̂
∩ dNµ̂ → W(λ̂) × W(µ̂) denote the composition of ∆d with

the canonical projection. Then ∆̃d induces an injective morphism ∆̄d :

W(λ, µ, d) → W(λ̂)×W(µ), where W(λ, µ, d) = (N
λ̂
∩ dNµ̂)/W

λ̂∩dµ̂
. Then

it is easily checked that ∆̄d(W(λ, µ, d)) is the stabilizer of d in W(λ̂)×W(µ̂).

In particular,

nλ,µ,d =
|W(λ̂)|.|W(µ̂)|

|W(λ, µ, d)|
.

So, since p does not divide nλ,µ,d, this means that, if P a Sylow p-subgroup

of W(λ, µ, d), then ∆̄d(P ) is a Sylow p-subgroup of W(λ̂) × W(µ̂). In

particular, rkp(W(λ, µ, d)) > rkp(λ)+rkp(µ). Now, W(λ, µ, d) is a subgroup

of W(λ̂ ∩ dµ̂). So rkp(λ(λ̂ ∩ dµ̂)) > rkp(λ) + rkp(µ), as desired. �

By (4), Ii is an ideal of K IrrWn = I0. Moreover, again by (4), I1 consists of nilpotent

elements. So I1 ⊂ Rad(K IrrWn). On the other hand, dimK I1 = |Bip(n)|−|Bipp−reg(n)|,

so dimK I1 = dimK

(
Rad(K IrrWn)

)
(see [B2, Corollary 2.16]). So I1 = Rad(K IrrWn).

But, by (4), I i
1 ⊂ Ii. This shows (3), so the proof of the proposition is complete. �

We are now ready to prove the main theorem of this section (compare with [BP, §5.E]):

Theorem 7.2. If p 6= 2, then the Loewy length of KΣ′(Wn) is n. If p = 2, then this

Loewy length lies in {n, n + 1, . . . , 2n − 1}.

Proof. Let lp(n) denote the Loewy length of KΣ′(Wn). If n = 1, then the result of the

Theorem is easily checked. So we may, and we will, assume that n > 2. The proof will

proceed in two steps.

• First step: upper bound. We use here the notation of Example 2.10. Let us first prove

the following result: if k > 0 and if x ∈ Rad KΣ′(Wn), then:

(1) xKΣ′
F−

k
(n)

(Wn) ⊂ KΣ′
F−

k+1(n)
(Wn);

(2) If p 6= 2, then xKΣ′
Fk(n)(Wn) ⊂ KΣ′

Fk+1(n)(Wn).
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Proof of (1) and (2). Let An denote the algebra KΣ′(Wn)/KΣ′
F−

1 (n)
(Wn).

Recall that KΣ′
F−

1 (n)
(Wn) is a two-sided ideal of KΣ′(Wn) (see Example

2.10). Then An ≃ K[T ]/(T (T − 2)), where T is an indeterminate. Indeed,

An has dimension 2 and is generated by the image tn of x(−n) and it is

easily checked that t2n = 2tn (this follows for instance from Proposition

C (c), from Proposition 2.3, from Lemma 1.10 (c) and from the fact that

|NWn(Sn)/Sn| = |W(−n)| = 2). In particular, if p 6= 2, then An ≃ K ×K

is split semisimple.

Now, let D ∈ Comp(n). Write D = (d1, . . . , dr) and let a = ResD+(x).

Then

xxD = xD+axD+

D .

Since ResD+ is a morphism of algebras, a is a nilpotent element of the

algebra Σ′(WD+) ≃ Σ′(W|d1|)⊗· · ·⊗Σ′(W|dr |). In particular, its image ā in

AD+ = A|d1| ⊗ · · · ⊗ A|dr | is also nilpotent. So, if D ∈ F−
k (n) (respectively

if D ∈ Fk(n) and p 6= 2) then the above description of An shows that

xxD ∈ KΣ′
F−

k+1(n)
(Wn) (respectively xxD ∈ KΣ′

Fk+1(n)(Wn)). �

Since Fn(n) = F−
2n(n) = ∅, then the statement (1) above shows that l2(n) 6 2n and

the statement (2) shows that, if p 6= 2, then lp(n) 6 n. We shall show now that, if n > 2,

then l2(n) 6 2n − 1. So let a1,. . . , a2n−1 ∈ Rad KΣ′(Wn). Then, by (a), we have

a1 . . . a2n−1 ∈ KΣ′
F2n(n)(Wn) = Kx(−1,−1,...,−1).

Let λ ∈ K be such that a1 . . . a2n−1 = λx(−1,−1,...,−1). Then θK
n (a1 . . . a2n−1) = λχn,

where χn is the regular character of Wn. But, since θK
n (ai) belongs to the radical of the

K-algebra K IrrWn, since this algebra has Loewy length 6 n+1 (see Proposition 7.1) and

since n + 1 6 2n − 1 (because n > 2), we get that λ = 0, as desired. So we have proved

the following results:

(3) If n > 2, then l2(n) 6 2n − 1.

(4) If p 6= 2, then lp(n) 6 n.

• Second step: lower bound. Let a = x(n−1,−1) − x(−1,n−1). Then a ∈ Ker θK
n . If

1 6 i 6 n, let Ci denote the signed compositions (1, . . . , 1,−1, 1, . . . , 1) of n, where the −1

term is in position i. Then:

(5) an−1 =
n∑

i=1

(−1)i
(

n − 1
i − 1

)

xCi
.
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Proof of (5). If 1 6 j 6 n and if 1 6 i 6 n + 1 − j, we denote by Ci,j the

signed composition (−1, . . . ,−1, j,−1, . . . ,−1), where j appears in the i-th

position (for instance, Ci,1 = Ci). For simplification, we set si,j = xCi,j
.

We have in particular a = s1,n−1 − s2,n−1. We want to show by induction

on k ∈ {1, 2, . . . , n − 1} that

(5+) ak =
k+1∑

i=1

(−1)i
(

k
i − 1

)

si,n−k.

Note that the formula (5) is obtained by specialising k to n − 1 in the

formula (5+). For proving (5+) by induction, it is sufficient to show that

s1,n−1si,j = αi,jsi,j + si,j−1 and s2,n−1si,j = αi,jsi,j + si+1,j−1

for some αi,j ∈ N. The first equality is easily checked using the description

of Xn−1,−1 given in the proof of Proposition 5.7. The second one follows

from a similar argument. �

The statement (5) above shows that lp(n) > n. By (3) and (4), the proof of the Theorem

is complete. �

Remark 7.3 - Keep the notation of the proof of the previous Theorem. It is probable

that l2(n) = 2n − 1 whenever n > 2 (note that l2(1) = 2, l2(2) = 3, l2(3) = 5, l2(4) = 7

and l2(5) = 9). In fact, it is probable that the element a defined in the above proof lies

in (RadF2Σ
′(Wn))2 (it has been checked for n 6 5): this would imply that l2(n) = 2n− 1

for n > 2 (see the statement (5) of the above proof). �

8. Projective modules, Cartan matrix

8.A. Projective modules. If λ ∈ Bip(n), we denote by eQλ : Wn → Q the characteristic

function of C(λ). We may, and we will, view it as an element of Q IrrWn: we have

(8.1) eQλ =
|C(λ)|

|Wn|

∑

χ∈Irr Wn

χ(coxλ)χ.

Then (eQλ )λ∈Bip(n) is a family of orthogonal primitive idempotents of Q IrrWn such that
∑

λ∈Bip(n) eQλ = 1n. Since the morphism θQn is surjective, there exists [T, Theorem 3.1 (f)]

a family (EQλ )λ∈Bip(n) of primitive idempotents of QΣ′(Wn) such that

(1) ∀ λ ∈ Bip(n), θQn (EQλ ) = eQλ .

(2) ∀ λ, µ ∈ Bip(n), EQλ EQµ = EQµ EQλ = δλµEQλ .

(3)
∑

λ∈Bip(n) EQλ = 1.

Let PQλ = QΣ′(Wn)EQλ . It is an indecomposable projective QΣ′(Wn)-module: this is the

projective cover of DQλ . Moreover,

(8.2) ⊕
λ∈Bip(n)

PQλ = QΣ′(Wn).
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If p = 0, then Q ⊂ K and we set EK
λ = EQλ . Note that, if p = 0, then (EK

λ )λ∈Bip(n) is still

a family of orthogonal primitive idempotents of KΣ′(Wn) (since QΣ′(Wn) is split).

Example 8.3 - We keep the notation introduced in Example 4.7. If I ⊂ I+
n , then

λ(C(I)) = ((1, 1, . . . , 1
︸ ︷︷ ︸

|I| times

), (1, 1, . . . , 1
︸ ︷︷ ︸

n − |I| times

)).

Then

(8.4) the idempotent x′
C(I)/(2

n−|I||Sn(I)|) is conjugate to EQ
λ(C(I)).

Let us prove this result. Since x′
C(I)/(2

n−|I||Sn(I)|) is an idempotent (see 4.9), it is

sufficient to show that θQn (x′
C(I)/(2

n−|I||Sn(I)|)) = θQn (EQ
λ(C(I))) (see [T, Theorem 3.1

(e)]). In other words, it is sufficient to show that θQn (x′
C(I)) is a multiple of eQ

λ(C(I).

If J ⊂ I+
n , let TJ denote the subgroup of Tn generated by (ti)i∈J and let tJ =

∏

i∈J ti.

Then tJ ∈ C(λ(C(J))) and

θQn (x′
C(I)) = IndWn

TI
fI , where fI =

∑

J⊂I

(

−
1

2

)|I|−|J |
1J .

Here, 1J denotes the trivial character of TJ . It is now sufficient to show that fI is the

characteristic function of {tI} in TI : since TI is an elementary abelian 2-group, this is

easily reduced, by direct products, to the case where |I| = 1 (for which it is obvious). �

Let us now assume that p > 0. For each λ ∈ Bipp′(n), we denote by Cp′(λ) the set of

elements w in Wn such that wp′ belongs to C(λ). It is a union of conjugacy classes of Wn.

We set

eQλ,p′ =
∑

µ∈Bip(n)
µp′=µ

eQµ .

This is the characteristic function of Cp′(λ). It is an idempotent of Q IrrWn and, by [B2,

Corollary 2.21], it is a primitive idempotent of Z(p) IrrWn. We denote by eK
λ its image in

K IrrWn: it is still a primitive idempotent of K Irr Wn. Then (eK
λ )λ∈Bipp′(n) is a family of

orthogonal primitive idempotents of K IrrWn such that
∑

λ∈Bipp′ (n) eK
λ = 1n. Since the

morphism θK
n is surjective, there exists [T, Theorem 3.1 (f)] a family (EK

λ )λ∈Bipp′ (n) of

primitive idempotents of KΣ′(Wn) such that

(1) ∀ λ ∈ Bipp′(n), θK
n (EK

λ ) = eK
λ .

(2) ∀ λ, µ ∈ Bipp′(n), EK
λ EK

µ = EK
µ EK

λ = δλµEK
λ .

(3)
∑

λ∈Bip(n) EK
λ = 1.

Let PK
λ = KΣ′(Wn)EK

λ . It is an indecomposable projective KΣ′(Wn)-module: this is the

projective cover of DK
λ . Moreover,

(8.5) ⊕
λ∈Bipp′ (n)

PK
λ = KΣ′(Wn).
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We conclude this section by a useful remark on the idempotents EQλ : this will be used

for proving the unitriangularity of the Cartan matrix of QΣ′(Wn).

Proposition 8.6. Let D ∈ Comp(n), let λ = λ(D) and let D′ be a semi-positive signed

composition of n such that D ⊂ D′. Then there exists a primitive idempotent E of

QΣ′(Wn) satisfying the following two conditions:

(a) θQn (E) = eQλ .

(b) E ∈ QΣ′(Wn)xD′ .

In particular, E is conjugate to EQλ .

Remark 8.7 - In the above Proposition, one can choose D′ = D+. �

Proof. For simplification, let K = Ker(ResD′) and I = QΣ′(Wn)xD′ . By Proposition 5.4

(b), we have

QΣ′(Wn) = K⊕ I.

In particular, the restriction of ResD′ to the left ideal I is injective. Moreover, as a direct

consequence of the hypothesis, we get that ResWn

WD′
eQλ 6= 0, so in particular ResD′ EQλ 6= 0

(see also Proposition 5.1 (d)). Let us write EQλ = A + E, with A ∈ K and E ∈ I. Then

E2 −E ∈ I and ResD′(E2 −E) = ResD′((EQλ )2 −EQλ ) = 0. Therefore, E2 = E. Moreover,

AE ∈ K ∩ I, so AE = 0. In other words, EQλ E = E2 = E. This shows in particular that

(∗) dimQQΣ′(Wn)E = dimQQΣ′(Wn)EQλ E 6 dimQQΣ′(Wn)EQλ .

Now, ResD′(EQλ ) = ResD′(E). Since EQλ is primitive, this implies that E = Eλ + F , where

Eλ and F are orthogonal idempotent and Eλ is conjugate to EQλ (see [T, Theorem 3.2 (c)]).

But, by (∗), we get that F = 0, so that θQn (E) = eQλ . This shows the proposition. �

8.B. About the structure of KWn as a left KΣ′(Wn). The next result is the

analogue of [BBHT, Theorem 7.15]:

Proposition 8.8. If p = 0 and if λ ∈ Bip(n), then dimK KWnEK
λ = |C(λ)|.

Proof. We may assume that K = Q. Let Tn : QWn → Q denote the unique linear map

such that Tn(1) = 1 and Tn(w) = 0 for every w ∈ Wn which is different from 1. Then

Tn is the canonical symmetrizing form on QWn. Now, if x ∈ QWn, then the trace of the

multiplication by x on QWn (on the left or on the right) is equal to |Wn|Tn(x). Therefore,

since EQλ is an idempotent, dimQQWnEQλ = |Wn|Tn(EQλ ). But, by [BH, Proposition 3.8],

we have

Tn(EQλ ) = 〈θQn (EQλ ), θQn (1)〉Wn = 〈eQλ , 1n〉Wn =
|C(λ)|

|Wn|
,

as expected. �

In the same spirit, we have the following result:

Proposition 8.9. The character of the QΣ′(Wn)-module QWn is
∑

λ∈Bip(n)

|C(λ)|πQλ .
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Proof. If C ∈ Comp(n), the trace of xC in its left action on QWn is equal to |Wn|Tn(xC) =

|Wn|. On the other hand,
∑

λ∈Bip(n)

|C(λ)|πQλ (xC) =
∑

λ∈Bip(n)

|C(λ)|θQn (xC)(coxλ)

=
∑

λ∈Bip(n)

|Wn|〈θ
Q
n (xC), eQλ 〉Wn

= |Wn|〈θ
Q
n (xC), 1n〉Wn

= |Wn|,

as desired. �

Proposition 8.10. If p > 0 and if λ ∈ Bipp′(n), then dimK KWnEK
λ = |Cp′(λ)|.

Proof. We may, and we will, assume that K = Fp. The idempotent E
Fp
λ can be lifted to an

idempotent E
Zp

λ of ZpΣ
′(Wn), where Zp denotes the ring of p-adic integers [T, Theorem

3.2 (b)]. It is sufficient to show that

(?) dimQp QpΣ
′(Wn)E

Zp

λ = |Cp′(λ)|.

Now, θn(E
Zp

λ ) is an idempotent of Zp IrrWn that lifts eK
λ . Therefore, θn(E

Zp

λ ) = eQλ,p′ by

the unicity of liftings in commutative algebras [T, Theorem 3.2 (d)]. Therefore, E
Zp

λ is

conjugate to the idempotent
∑

µ∈Bip(n),µp′=λ EQµ (see [T, Theorem 3.2 (d)]). So the result

follows from Proposition 8.8. �

8.C. Cartan matrix. We return to the general situation, namely we assume that K

is a field of characteristic p > 0. We denote by Cartan(KΣ′(Wn)) the Cartan matrix of

KΣ′(Wn). It is the square matrix ([PK
λ : DK

µ ])λ,µ∈Bipp′ (n), where [PK
λ : DK

µ ] denotes the

multiplicity of DK
µ as a chief factor in a Jordan-Hölder series of PK

λ . Recall that

(8.11) [PK
λ : DK

µ ] = dimK HomKΣ′(Wn)(P
K
µ ,PK

λ )

and that we have a canonical isomorphism of vector spaces

(8.12) HomKΣ′(Wn)(P
K
µ ,PK

λ ) ≃ EK
µ KΣ′(Wn)EK

λ .

Moreover, the isomorphism 8.12 is an isomorphism of algebras whenever λ = µ.

Let DK
n = (δλp′ ,µ

)λ∈Bip(n),µ∈Bipp′ (n), where δ!,? is the Kronecker symbol. If p does not

divide the order of |Wn|, this is just the identity matrix. In general, it may be seen

as the decomposition matrix from QΣ′(Wn) to KΣ′(Wn) (see [GP, §7.4] for the gen-

eral definition of a decomposition matrix). The next lemma reduces the computation

of Cartan(KΣ′(Wn)) to the computation of Cartan(QΣ′(Wn)) by making use of the de-

composition matrix DK
n (see [APVW, Theorem 8] for the analogue of the next result for

Solomon descent algebras).

Lemma 8.13. We have Cartan(KΣ′(Wn)) = tDK
n Cartan(QΣ′(Wn))DK

n .
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Proof. This follows from [GR, §2.3]. �

The next result is a first decomposition of the Cartan matrix of KΣ′(Wn) into diagonal

blocks (whenever p 6= 2), according to the action of wn on simple modules.

Lemma 8.14. Assume that p 6= 2. Let λ, µ ∈ Bipp′(n). If [PK
λ : DK

µ ] 6= 0, then

lg−(λ) ≡ lg−(µ) mod 2.

Proof. Let λ, µ ∈ Bipp′(n) be such that [PK
λ : DK

µ ] 6= 0 and let ? ∈ {+,−}. First, note

that e?
nP

K
λ = PK

λ if and only if e?
nD

K
λ because PK

λ is indecomposable. On the other hand,

if e?
nP

K
λ = PK

λ , then e?
nD

K
µ = DK

µ . So the result follows from 4.2. �

The main result of this section is the following:

Theorem 8.15. The Cartan matrix Cartan(QΣ′(Wn)) is unitriangular. More precisely,

if λ and µ are two distinct bipartitions of n, then:

(a) [PQλ : DQλ ] = 1.

(b) If [PQλ : DQµ ] 6= 0, then lg(µ) > lg(λ).

Proof. Let F = {C ∈ Comp(n) | lg(C) > lg(λ)}. Then F is saturated so I = QΣ′
F (Wn)

is a two-sided ideal of QΣ′(Wn). The theorem follows from the fact that PQλ ⊂ QEQλ + I,

which is an immediate consequence of the statement (2) in the proof of the Theorem

7.2. �

We shall give at the end of this paper the Cartan matrices of QΣ′(W2), QΣ′(W3) and

QΣ′(W4).

Corollary 8.16. If p does not divide the order of Wn (i.e. if p = 0 or p > max(2, n)),

then the centre of KΣ′(Wn) is split semisimple.

Proof. Note that Bip(n) = Bipp′(n). Let Z be the centre of KΣ′(Wn). Then the map Z →

EndK(KΣ′(Wn)) sending z ∈ Z to the left multiplication by z is injective. Moreover, the

image is contained in ⊕λ∈Bipp′ (n) EndKΣ′(Wn) P
K
λ . But, by 8.11, by Lemma 8.13 (and the

fact that the matrix DK
n is the identity) and by Theorem 8.15 (a), we have an isomorphism

of K-algebras

EndKΣ′(Wn) P
K
λ ≃ K.

So Z is a subalgebra of K × · · · × K (|Bip(n)| times). The proof of the corollary is

complete. �

Example 8.17 - If p divides the order of Wn, then the centre of KΣ′(Wn) is not

semisimple. Indeed, the element x(−1,−1,...,−1) is central in QΣ′(Wn) and (x(−1,−1,...,−1))
2 =

|Wn|x(−1,−1,...,−1). �

Corollary 8.18. Let ZR
n denote the centre of RΣ′(Wn). If p does not divide the order of

Wn, then the natural map K ⊗Z ZZn → ZK
n is an isomorphism of algebras.
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Proof. It is sufficient to show that dimK ZK
n = dimQ ZQn . But, since ZK

n is split semisimple

(see Corollary 8.16), its dimension is equal to the number of blocks of KΣ′(Wn). This

number is determined by the Cartan matrix of KΣ′(Wn). Since the Cartan matrices of

KΣ′(Wn) and QΣ′(Wn) coincide by Lemma 8.13, the result follows. �

The next example shows that the Corollary 8.18 does not hold for any p and any n.

Example 8.19 - It would be interesting to determine the centre of KΣ′(Wn). Note that

this dimension is always > 4. Indeed, if p 6= 2, then xn = 1, wn, x∅ and x′
1,1,...,1 are

linearly independent central elements (see 4.10). If p = 2, then x′
1,1,...,1 must me replaced

by the image of 2n−1x′
1,1,...,1 − x∅/2 ∈ ZΣ′(Wn) in KΣ′(Wn).

The next table, obtained using CHEVIE [Chevie], provides the dimension of this centre

for n 6 5: it depends on the characteristic p of K.

n\p 0 2 > 3

1 2 2 2

2 4 4 4

3 4 4 4

4 5 6 5

5 4 4 4

Note that the case p > n has been handled by using the Lemma 8.18. It would also be

interesting to determine for which pairs (p, n) does the Lemma 8.18 hold. For instance,

does it hold if p is odd? �

We conclude this section by proving that the Cartan matrix of QΣ′(Wn) is a submatrix

of the Cartan matrix of QΣ′(Wn+1). We identify Bip(n,−1) with Bip(n) and the map

τ(n,−1) : Bip(n) → Bip(n + 1) defined in §5.A will be denoted simply by τn. Then:

Theorem 8.20. Let λ and µ be two bipartitions of n. Then

[PQ
τn(λ) : DQ

τn(µ)] = [PQλ : DQµ ].

Proof. By Proposition 8.6, we may, and we will, assume that EQ
τn(λ) and EQ

τn(µ) belong to

QΣ′(Wn+1)xn,−1. In particular, by Proposition 5.4 (b), EQ
τn(µ)QΣ′(Wn+1)E

Q
τn(λ) is mapped

isomorphically to EλQΣ′(Wn)Eµ through the map Resn+1
n , where Eλ = Resn+1

n (EQλ ) and

Eµ = Resn+1
n (EQµ ). So it remains to show that Eλ and Eµ are conjugate to EQλ and EQµ

respectively (see 8.11 and 8.12).
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Let us prove it for λ (this is sufficient). By Proposition 5.1 (d), we have

θQn (Eλ) = Res
Wn+1

Wn
eQ
τn(λ) = eQλ .

But, Eλ is a primitive idempotent in the image of Resn+1
n (see [T, Theorem 3.2 (d)]) and

since Resn+1
n is surjective (see Proposition 5.7), we get that Eλ is a primitive idempotent

of QΣ′(Wn). So Eλ and EQλ are conjugate [T, Theorem 3.2 (c)]. �

9. Numerical results

For simplification, a bipartition ((λ+
1 , . . . , λ+

r ), (λ−
1 , . . . , λ−

s )) will be denoted in a com-

pact way λ+
1 . . . λ+

r ;λ−
1 . . . λ−

s . For instance, 31; 411 stands for ((3, 1), (4, 1, 1)) and ∅; 221

stands for ((), (2, 2, 1)). If i > 1, the number −i will be denoted by ī: for instance, the

signed composition (2,−3,−1, 1,−2) will be denoted by (2, 3̄, 1̄, 1, 2̄).

We shall give here the Cartan matrix and the primitive central idempotents of the

algebras QΣ′(Wn) for n ∈ {2, 3, 4}. For n ∈ {2, 3}, we also give the character table and an

example of a family (EQλ )λ∈Bip(n). Note that they are obtained by lifting the idempotents

(eQλ )λ∈Bip(n) by using CHEVIE [Chevie] and the algorithm described in [T, Theorem 3.1 (b)

and (f)]. In the next tables, we have replaced zeroes by dots. Note also that, for simplicity,

the idempotents will be expressed in the basis (x′
C)C∈Comp(n) constructed in Section 4.

9.A. The case n = 2. The character table of QΣ′(W2) is:

x2 x2̄ x1,1 x1,1̄ x1̄,1̄

πQ2;∅ 1 . . . .

πQ∅;2 1 2 . . .

πQ11;∅ 1 . 2 . .

πQ1;1 1 . 2 2 .

πQ∅;11 1 4 2 4 8

We can take for the family (EQλ )λ∈Bip(2) the following idempotents:

EQ2;∅ = x′
2 −

1

2
x′

1,1 +
1

8
x′

1̄,1̄

EQ∅;2 =
1

2
x′

2̄ +
1

4
(x′

1,1̄ − x′
1̄,1)

EQ11;∅ =
1

2
x′

1,1

EQ1;1 =
1

4
(x′

1,1̄ + x′
1̄,1)

EQ∅;11 =
1

8
x′

1̄,1̄.
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The Cartan matrix of QΣ′(W2) is given by:

DQ2;∅ DQ∅;2 DQ1;1 DQ11;∅ DQ∅;11

PQ2;∅ 1 . . . .

PQ∅;2 . 1 1 . .

PQ1;1 . . 1 . .

PQ11;∅ . . . 1 .

PQ∅;11 . . . . 1

The primitive central idempotents of QΣ′(W2) are

F1 = x′
2 −

1

2
x′

1,1 +
1

8
x′

1̄,1̄

F2 =
1

2
(x′

2̄ + x′
1,1̄)

F3 =
1

2
x′

1,1

F4 =
1

8
x′

1̄,1̄

If we denote by Ai the blockQΣ′(W2)Fi, then Ai ≃ Q if i ∈ {1, 3, 4} and A2 is isomorphic

to the algebra to upper triangular 2 × 2-matrices (see [BH, §6]). In particular, QΣ′(W2)

is hereditary.

For information, we provide the dimensions of the left ideal, right ideal, two-sided ideal

generated by xC (for C ∈ Comp(2)) and also the dimension of the centralizer of xC . In

this table, A denotes the algebra QΣ′(W2).

x x2 x2̄ x1,1 x1,1̄ x1̄,1 x1̄,1̄

dimQAx 6 3 3 2 2 1

dimQ xA 6 2 4 3 3 1

dimQAxA 6 3 4 3 3 1

dimQ ZA(x) 6 5 5 5 5 6

9.B. The case n = 3. The character table of QΣ′(W3) is:



36 C. Bonnafé

x3 x3̄ x2,1 x2,1̄ x1,2̄ x2̄,1̄ x1,1,1 x1,1,1̄ x1,1̄,1̄ x1̄,1̄,1̄

πQ3;∅ 1 . . . . . . . . .

πQ∅;3 1 2 . . . . . . . .

πQ21;∅ 1 . 1 . . . . . . .

πQ2;1 1 . 1 2 . . . . . .

πQ1;2 1 . 1 . 2 . . . . .

πQ∅;21 1 4 1 2 2 4 . . . .

πQ111;∅ 1 . 3 . . . 6 . . .

πQ11;1 1 . 3 2 . . 6 4 . .

πQ1;11 1 . 3 4 4 . 6 8 8 .

πQ∅;111 1 8 3 6 12 24 6 12 24 48

We can take for the family (EQλ )λ∈Bip(3) the following idempotents:

EQ3;∅ = x′
3 − x′

1,2 +
1

4
x′

1̄,2̄ +
1

3
x′

1,1,1 −
1

6
x′

1̄,1,1̄ +
1

12
(x′

1,1̄,1̄ + x′
1̄,1̄,1)

EQ∅;3 =
1

2
(x′

3̄ + x′
2,1̄ − x′

1̄,2) −
1

3
x′

1,1,1̄ +
1

6
(x′

1,1̄,1 + x′
1̄,1,1,)

EQ21;∅ = x′
1,2 −

1

2
x′

1,1,1 +
1

8
x′

1,1̄,1̄

EQ2;1 =
1

2
x′

1̄,2 −
1

4
x′

1̄,1,1 +
1

16
x′

1̄,1̄,1̄

EQ1;2 =
1

2
x′

1,2̄ +
1

4
(x′

1,1,1̄ − x′
1,1̄,1)

EQ∅;21 =
1

4
x′

2̄,1̄ +
1

8
(x′

1,1̄,1 − x′
1̄,1,1̄)

EQ111;∅ =
1

6
x′

1,1,1

EQ11;1 =
1

12
(x′

1,1,1̄ + x′
1,1̄,1 + x′

1̄,1,1)

EQ1;11 = −
1

12
x′

1,1̄,1̄ +
7

24
x′

1̄,1,1̄ −
1

12
x′

1̄,1̄,1

EQ∅;111 =
1

48
x′

1̄,1̄,1̄

The Cartan matrix of QΣ′(W3) is given by
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DQ3;∅ DQ21;∅ DQ∅;21 DQ1;11 DQ∅;3 DQ2;1 DQ1;2 DQ11;1 DQ111;∅ DQ∅;111

PQ3;∅ 1 1 1 1 . . . . . .

PQ21;∅ . 1 . . . . . . . .

PQ∅;21 . . 1 1 . . . . . .

PQ1;11 . . . 1 . . . . . .

PQ∅;3 . . . . 1 1 1 1 . .

PQ2;1 . . . . . 1 . . . .

PQ1;2 . . . . . . 1 1 . .

PQ11;1 . . . . . . . 1 . .

PQ111;∅ . . . . . . . . 1 .

PQ∅;111 . . . . . . . . . 1

The primitive central idempotents of QΣ′(W3) are

F1 = x′
3 +

1

4
(x′

2̄,1̄ + x′
1̄,2̄ + x′

1,1̄,1̄) −
1

6
x′

1,1,1

F2 =
1

2
(x′

3̄ + x′
2,1̄ + x′

1,2̄) +
5

48
x′

1̄,1̄,1̄

F3 =
1

6
x′

1,1,1

F4 =
1

48
x′

1̄,1̄,1̄

For information, we provide the dimensions of the left ideal, right ideal, two-sided ideal

generated by xC (for C ∈ Comp(3)) and also the dimension of the centralizer of xC . In

these tables, A denotes the algebra QΣ′(W3).

x x3 x3̄ x2,1 x1,2 x2,1̄ x1̄,2 x2̄,1 x1,2̄ x2̄,1̄ x1̄,2̄

dimQAx 18 7 10 10 6 6 6 6 3 3

dimQ xA 18 4 16 16 11 11 8 8 3 3

dimQAxA 18 9 16 16 11 11 10 10 5 5

dimQ ZA(x) 18 13 10 10 12 12 13 13 16 16
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x x1,1,1 x1,1,1̄ x1,1̄,1 x1̄,1,1 x1,1̄,1̄ x1̄,1,1̄ x1̄,1̄,1 x1̄,1̄,1̄

dimQAx 4 3 3 3 2 2 2 1

dimQ xA 8 7 7 7 4 4 4 1

dimQAxA 8 7 7 7 4 4 4 1

dimQ ZA(x) 14 14 14 14 16 16 16 18

9.C. The case n = 4. We shall give here only the Cartan matrix and the central

idempotents of A. The Cartan matrix is given by

4 31 ∅ ∅ 211 2 1 11 ∅ 3 1 2 21 11 ∅ 111 1 22 1111 ∅

∅ ∅ 31 22 ∅ 11 21 11 4 1 3 2 1 2 211 1 111 ∅ ∅ 1111

PQ4;∅ 1 1 1 . 1 1 2 1 . . . . . . . . . . . .

PQ31;∅ . 1 . . 1 . 1 1 . . . . . . . . . . . .

PQ∅;31 . . 1 . . 1 1 1 . . . . . . . . . . . .

PQ∅;22 . . . 1 . . 1 1 . . . . . . . . . . . .

PQ211;∅ . . . . 1 . . . . . . . . . . . . . . .

PQ2;11 . . . . . 1 . . . . . . . . . . . . . .

PQ1;21 . . . . . . 1 1 . . . . . . . . . . . .

PQ11;11 . . . . . . . 1 . . . . . . . . . . . .

PQ∅;4 . . . . . . . . 1 1 1 1 2 1 1 1 1 . . .

PQ3;1 . . . . . . . . . 1 . . 1 . 1 . 1 . . .

PQ1;3 . . . . . . . . . . 1 . 1 1 . 1 . . . .

PQ2;2 . . . . . . . . . . . 1 1 . . . . . . .

PQ21;1 . . . . . . . . . . . . 1 . . . . . . .

PQ11;2 . . . . . . . . . . . . . 1 . 1 . . . .

PQ∅;211 . . . . . . . . . . . . . . 1 . 1 . . .

PQ111;1 . . . . . . . . . . . . . . . 1 . . . .

PQ1;111 . . . . . . . . . . . . . . . . 1 . . .

PQ22;∅ . . . . . . . . . . . . . . . . . 1 . .

PQ1111;∅ . . . . . . . . . . . . . . . . . . 1 .

PQ∅;1111 . . . . . . . . . . . . . . . . . . . 1
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The primitive central idempotents of QΣ′(W4) are

F1 = x′
4 −

1

2
x′

2,2 +
1

4
(x3̄,1̄ + x′

1̄,3̄ + x′
2,1,1 + x′

1,1,2 + x′
2̄,2̄ + x′

1,1̄,2̄ + x′
1,2̄,1̄)

+
1

6
x′

1,1,1,1 +
3

16
x′

2,1̄,1̄ −
1

16
x′

1̄,1̄,2 +
1

32
(x′

1,1,1̄,1̄ + x′
1̄,1̄,1,1) +

5

96
x′

1̄,1̄,1̄,1̄

F2 =
1

2
(x′

4̄ + x′
3,1̄ + x′

1,3̄ + x′
2,2̄) +

1

8
(x′

2̄,1̄,1̄ + x′
1̄,2̄,1̄ + x′

1̄,1̄,2̄ + x′
1,1̄,1̄,1̄)

F3 =
1

2
x′

2,2 −
1

4
(x′

2,1,1 + x′
1,1,2) +

1

8
x′

1,1,1,1 +
1

16
(x′

2,1̄,1̄ + x′
1̄,1̄,2)

−
1

32
(x′

1,1,1̄,1̄ + x′
1̄,1̄,1,1) +

1

128
x′

1̄,1̄,1̄,1̄

F4 =
1

24
x′

1,1,1,1

F5 =
1

384
x′

1̄,1̄,1̄,1̄

10. Questions

Let us raise here some questions about the representation theory of the Mantaci-

Reutenauer algebra KΣ′(Wn):

(1) Determine the centre of KΣ′(Wn), or at least its dimension (in characteristic zero,

its dimension determines its structure because it is split semisimple by Corollary 8.16).

(2) Compute the Cartan matrix of QΣ′(Wn). Note that the Theorem 8.20 provides a

first induction argument.

(2+) Determine the Loewy series of the projective indecomposable KΣ′(Wn)-modules.

Determine the Loewy length of F2Σ
′(Wn) (see Remark 7.3: it is probably equal to 2n− 1

if n > 2).

(3) For which values of n is the algebra QΣ′(Wn) hereditary? It is reasonable to expect

that it is hereditary if and only if n ∈ {1, 2, 3}. Note that it is not hereditary for n ∈ {4, 5}.

(3+) Compute the path algebra of QΣ′(Wn).

(4) Is the inclusion (4) in the proof of Proposition 7.1 always an equality? For the

analogous statement for the symmetric group, we have an equality [B1, Theorem A].

(5) Is the morphism Resn
k : ZΣ′(Wn) → ZΣ′(Wk) surjective? Compare with Proposition

5.7. Note that the morphism ResWn

Wk
: Z IrrWn → Z IrrWk is surjective.

(6) The Corollary 8.8 suggests, by analogy with the case of the symmetric group, the

following question: if λ ∈ Bip(n), does there exist a linear character ζλ of CWn(coxλ) such

that CWnECλ affords the character IndWn

CWn (coxλ) ζλ? In fact, the answer to this question is

negative in general, even for n = 2 (take λ = ((2);∅)). Computations using CHEVIE (for

n 6 4) suggests that the following slight modification of the previous question could have

a positive answer: if λ ∈ Bip(n), does there exist a linear character ζλ of CWn(coxλopp)
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such that CWnECλ affords the character IndWn

CWn (coxλopp ) ζλ? Here, if λ = (λ+, λ−), we have

denoted by λopp the bipartition (λ−, λ+).

Remark - It is readily seen that |CWn(wλ)| = |CWn(wλopp)|. �

Example 10.1 - We keep here the notation of Example 4.7. Let r ∈ {0, 1, 2, . . . , n}.

Then

C(I+
r ) = (1, 1, . . . , 1

︸ ︷︷ ︸

r times

,−1,−1, . . . ,−1
︸ ︷︷ ︸

n − r times

)

and, if we set λ(r) = λ(C(I+
r )), then

λ(r) = ((1, 1, . . . , 1)
︸ ︷︷ ︸

r times

, (1, 1, . . . , 1)
︸ ︷︷ ︸

n − r times

).

We shall prove that the answer to question 6 is positive whenever λ = λ(r).

Let us make this statement more precise. We may choose for coxλ(r)opp the element

cox
C(I+

r ) = tr+1tr+2 . . . tn. Then

CWn(coxλ(r)opp) = Wr,n−r.

Let γr ⊠ 1n−r denote the linear character of Wr,n−r ≃ Wr ×Wn−r which is equal to γr on

the component Wr and which is trivial on Wn−r (recall that the linear character γr of Wr

has been defined in Example 4.7). Then:

(10.2) The QWn-module QWnEλ(r) affords the character IndWn

Wr,n−r
(γr ⊠ 1n−r).

Let us prove 10.2. First, note that γr ⊠ 1n−r is just the restriction of the map γI+
r

: Wn →

{1,−1} to Wr,n−r defined in Example 4.7. By Example 8.3, we may take for EQ
λ(r)

the

idempotent x′
I+
r
/(2n−rr!(n − r)!). Let eSn

= (1/n!)
∑

σ∈Sn
σ and let

E(r) =
1

|Wr,n−r|

∑

σ∈Wr,n−r

(γr ⊠ 1n−r)(σ)σ.

Then the module QWnE(r) affords the character IndWn

Wr,n−r
(γr ⊠ 1n−r) and, by Example

8.3, we have Eλ(r) = (|Wn|/|Wr,n−r)eSn
E(r). Therefore, QWnEλ(r) ⊂ QWnE(r). But

dimQQWnE(r) = |Wn|/|Wr,n−r| and dimQQWnEλ(r) = |C(λ(r))| = |Wn|/|Wr,n−r|, so we

get that QWnEλ(r) = QWnE(r). �
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