
HAL Id: hal-00071307
https://hal.science/hal-00071307

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Removing the MAC Retransmission Times from the
RTT in TCP

Eugen Dedu, Sébastien Linck, François Spies

To cite this version:
Eugen Dedu, Sébastien Linck, François Spies. Removing the MAC Retransmission Times from the
RTT in TCP. Euromedia Conference, Workshop on Distributed Multimedia Databases and Multimedia
Adaptation, 2005, Toulouse, France. pp.190-193. �hal-00071307�

https://hal.science/hal-00071307
https://hal.archives-ouvertes.fr

Removing the MAC Retransmissions Times from the RTT in TCP

Eugen Dedu, Sébastien Linck, François Spies
{Eugen.Dedu,Sebastien.Linck,Francois.Spies}@pu-pm.univ-fcomte.fr

Laboratoire d’Informatique de l’Université de Franche-Comté (LIFC)
IUT de Belfort-Montbéliard, 4 place Tharradin, BP 427, 25211 Montbéliard, France

KEYWORDS

Wireless network, MAC retransmission, RTT, TCP.

Abstract

MAC retransmission of packets (for example in a video
transfer) raises the RTT and leads to throughput de-
crease on TCP versions based on RTT for their sending
rate. This is not the appropriate effect, because retrans-
missions are given by temporary interference, which of-
ten appear in wireless links. This paper treats effects of
MAC retransmissions. A new TCP option is proposed,
which fully takes into account the effect of MAC retrans-
missions. Wireless network cards have a timer which is
initialised with the value of the option once the packet
is sent the first time, and is put in this option each time
the packet is retransmitted. The exact time of retrans-
missions is then known by the source. Simulations show
that the proposed mechanism increases throughput.

INTRODUCTION AND MOTIVATION

It is now an evidence that TCP is not adapted to wire-
less links. The main concern is that losses/delays are
given by temporary interferences, hence no congestion
mechanisms should be taken.

Many studies treat effects of packet loss in wireless links
(802.11) on TCP, but only few treat effects of packet
delay during retransmission. It is worthwhile to note
that successful MAC retransmissions appear much more
frequently than MAC losses.

On wireless links, MAC retransmissions are the effect
of radio interferences. Because these are temporary and
appear randomly, they do not give any useful value, but
mislead network mechanisms. Therefore, several works
exist for avoiding their effect. But works treating the
MAC retransmission concentrate generally on the influ-
ence the RTT has on RTO (retransmission timer) of
TCP [11, 7, 6].

However, there are several TCP versions that use the
RTT for their sending rate, for instance Vegas [1] uses
all the RTT samples, and Westwood+ [4] and TIBET [2]
use smallest RTT. RTP/RTCP over UDP, common for
video streaming for example, is another case where RTT
values are needed. Other mechanisms which need cor-
rect RTT may arise. [10] shows that in certain cases

a gain of 10% in throughput appear if the real RTT is
replaced by the adjusted RTT.

This article proposes a mechanism that allow senders
to take into account the time taken by retransmissions.
A TCP option is added, with one field. Also, a timer
is added to the network card. Each time a packet is
transmitted, the network card puts in its option the time
taken by its retransmission, using the internal timer.
The field is echoed back to the source in an ACK packet.
The source is hence aware of the time lost in all the MAC
retransmissions. A similar mechanism can be applied to
non TCP flows too.

BACKGROUND

802.11 is a protocol which is used with two access modes:
PCF (Point Coordination Function) and DCF (Dis-
tributed Coordination Function).

In DCF mode, each machine can access the network
when it wants. However, in order to reduce collisions,
machines must choose randomly a value, called backoff,
in a given range, called collision window (Contention
Window CW). CW doubles at each retransmission (with
an upper bound equal to a power of 2 minus 1). The
initial window lies between 0 and 31 (= 25

− 1) units.
Units are called time slots, with ts = 20µs as defined by
the standard.

In PCF mode the AP (access point) is the master of
conversations. It gives the “access” in turn to all the
mobiles. Mobiles can send packets only when the AP
gives them the right. There is no backoff. It is worth-
while to note that in the mode PCF each period of time
is divided in two parts: the PCF part and the DCF
part. This allows machines which implement only DCF
mode to have the possibility to access the network. The
method proposed in this article works in both DCF and
PCF modes.

802.11 is a protocol which relies on ARQ (Automatic
Repeat Request). After sending a packet, the network
card listens for an acknowledgement from the receiver’s
network card. If it does not arrive, then the sender’s
network card considers that the packet was lost and it
will retransmit it. There is a limit in the number of
retransmissions.

Packet loss is frequent in wireless networks. They ap-
pear generally when an external interference occurs in

1

APFixed src Mobile dest

Wired Wireless

ACKs

Data

Figure 1: A TCP transmission between a wired machine
and a wireless one.

the network, but also when the mobile machines exits
from the covered area of the network. Interferences are
known to be temporary and appearing at random times.

A detailed explanation of the 802.11 standard can be
found in [3].

PRINCIPLE

Due to frequent losses, 802.11 allows MAC retransmis-
sion. Hence, 802.11 transform a network with losses
and predictible delay into a network with no loss and
variable delay. On the other hand, packet losses are
generally due to interferences. As they are temporary,
the RTT should not be influenced by them. We there-
fore propose a mechanism to remove the delay taken by
retransmissions.

In order to implement this idea we were faced to several
choices. Is the number of retransmissions or the total
retransmission times which is sent to the sender? Is
this information put at the TCP or at the IP level? Is
this information sent by the AP directly to the source,
or passed to the destination which in turn sends it to
the source? Several solutions exist, we present only the
solution we judge the most appropriate.

Our solution is the following (see figure 1). An option
is added to TCP, called timelost, containing a field,
called rets. Each wireless network card has a timer.
The timer is initialised to the value of the rets field of
the packet for the first transmission of a packet (after
the backoff). Each time it sends a packet on the wireless
link, the value of the timer is put in the rets field. Thus
the timer reflects the exact time loss due to retransmis-
sions. When the source receives a packet, it takes the
appropriate action, for example it subtracts the value of
the rets field from the RTT of the packet.

The reminder of this section details this mechanism in
TCP. A similar mechanism can be used for non TCP
flows too, for example in an RTP/RTCP transmission,
the receiver puts in RTCP packets going to the source
the time lost in retransmissions of data packets.

Retransmission Time Computing

As specified, each network card has a timer. Each time a
new packet is processed, its rets is used to initialise the

timer. This allows to sum several times, for example
when the packet is an ACK and it contains already a
time, the lost time of the corresponding data packet.
During each (re)transmission, the value of the timer is
put in the rets of the packet.

The modification which needs to be done at the net-
work card level is the addition of a timer. As nowadays
timers exist on all the network cards (used for backoff
for example), this is not an issue.

The MAC-level fragmentation does not influence our
mechanism. Indeed, when an IP packet is fragmented
the time loss is null if each fragment arrives at destina-
tion without retransmission.

Transmitting the Information to the Source

We propose an option, called timelost, to be added to
TCP. This option has only one field, containing a time
value. If the field has 2 bytes and the measurement unit
is the time slot ts given previously, then the field will
overflow at a time t = 65536ts = 65536×20µs ≈ 1.3s. In
the 802.11b standard the maximum CW is 1023, hence
2 bytes are sufficient. If the field has 4 bytes, it will
overflow after t ≈ 65536× 1.3s ≈ 1 day, which is largely
sufficient.

The source sets this field to zero. During the trip, the
field may be modified by a wired-wireless machine. The
receiver echoes back the value to the source in an ACK
packet, exactly like the TCP timestamp option [5]. Dur-
ing the return trip, the field may further be increased.
The source receives the ACK packet and computes the
retransmission time.

This mechanism allows incremental deploying. It gives
useful values only if the sender, the receiver and the AP
know about it. If the sender is not aware of this option,
nothing happens. Elsewhere, it adds the option and set
the field to 0. If the AP and/or the receiver do not
know this option, the sender either receives no option,
or an option with value 0, which do not change anything
either.

Actions Taken by the Source

It is up to the source to take appropriate actions. For
instance, we suggest that a TCP Vegas source would use
the new RTT in its formulae, or to a video server this
would allow to better know the network jitter.

Drawbacks

In this mechanism, network cards have access to level 4
(TCP) information. It is worthwhile to note that several
papers propose such methods.

Also, it needs to be further evaluated if the gains ob-
tained by this mechanism for a higher range of transfers
overtake the changes needed to implement it.

SIMULATIONS

The NS2 simulator [8] version 2.28 is used to simulate
our mechanism. We have modified NS2. All the modifi-
cations to NS2 and the source of the tests shown in this
article are available on-line1.

Modifications to NS2

We add only a new field, called rets, to TCP header.
It is easier to implement and does not change results.
rets is of type double. We modify:

1. The sending part of TCP/Vegas, which initialises
rets to 0.

2. The sending part of the MAC 802.11 protocol,
which adds retransmission time to rets field.

3. The sending part of TCPSink (whose role is to send
ACKs), which echoes rets field of the data packet
in the ACKs it sends.

4. The receiving part of TCP/Vegas, which computes
RTT as RTT minus rets. There is no other action
to take at source, because it sees the modified RTT.

The second item is used/applied only when useRets is 1.
useRets is an NS2 parameter which can be used in user’s
.tcl files. It defaults to 0.
At 802.11 level, each time a packet is retransmitted, its
retransmission time is computed. The value used is the
time between the packet sending time and the reception
of its acknowledgement.

Shadowing propagation model in NS2

Currently, three wireless propagation models are imple-
mented in NS2 [9]: Free space, Two ray ground and
Shadowing. The two first models are of type “all or
nothing”: If distance d between the mobiles is smaller
than a certain value, all packets are received. If d is
greater, no packet is received. These are not appropri-
ate in our case, since we need retransmissions from time
to time.
In the shadowing model, packets are always received for
d < s1, always lost for d > s2 and received with a
probability for s1 < d < s2.

Simulations

The simulated network in given in figure 1: a wired TCP
Vegas source, an AP, and a mobile TCP destination.
Note that both AP and the mobile use retransmission
times. The mobile destination moves away linearly from
the AP, starting at t = 0. At t = 150s, it stops moving
and stay there until the end of simulation. It is near

1At http://lifc.univ-fcomte.fr/~dedu/publi/euromedia/

Access Point (2,2)

x

y

Mobile (490,280,t=150)

Mobile (100,100,t=0)

Figure 2: The movement of the mobile.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 50 100 150 200 250 300

B
yt

es
 r

ec
ei

ve
d

Time (second)

Original version
Version with rets

Figure 3: Simulation results.

the covered area of the AP, where most of the retrans-
missions appear. Figure 2 details the movement of the
mobile.

Two simulations are executed: one with original ver-
sion of TCP and one with modified version of TCP. The
results of the simulation are given in figure 3. Several
stages can be seen in the figure:

• During the first 5 seconds, the routing protocol ini-
tialises and no data exchange appear.

• In the shadowing model, no packet
loss/retransmission appear until a certain dis-
tance. This is clearly seen in the figure, as the
curves of two versions are identical for t < 100.
Gains can be seen only on retransmissions.

• For t > 150, retransmissions are common. The mo-
bile does not move. An average improvement of
4.5% is obtained.

• The maximum increase in the bandwidth over a
100 seconds interval is obtained for 150 < t < 250:
approximately 15%.

RELATED WORK

From the implementation point of view, there are several
works on modifying the TCP specification and hence the
sender and the receiver.

Several works treat packet loss in wireless networks.

[11] presents an analytical model that predicts the RTO
of TCP for given network parameters. It concludes that
delay variations are critical only when they are of order
of seconds.

[7] presents a model where certain packets are artificially
delayed at link-layer. The RTT increases, and the RTO
of TCP with it, but the number of false TCP retransmis-
sions decreases, leading to a higher overall throughput.

In [6], the wireless access point (AP) encapsulates each
packet in a header containing a timestamp, which is
echoed by the receiver in its ACKs. This allows AP to
discover lost packets even if they are out-of-order. When
such a loss is detected, the AP sets a bit (ERN, Explicit
Retransmission Notification) in the ACK packet which
inform the sender to retransmit the packet without tak-
ing congestion actions.

The negative effect of MAC retransmission on TCP is
treated in [10], where the TCP connection between a
wired machine and a wireless machine is divided in two
TCP connections by the AP in the middle. The AP
buffers data received from the wired end and retrans-
mit it to the wireless end if it was not received. Also,
the time spent in the AP is subtracted from the TCP
timestamp option. Contrary to the method proposed in
this article, the time spent at the AP is not accurate
(the timestamp granularity depends on the source ma-
chine [5]), the AP needs to buffer data and it works only
with TCP timestamp option.

CONCLUSIONS AND FUTURE WORK

This article presents a method to remove the effect of
MAC retransmissions on the RTT computing on source-
side in TCP. In adds an option to TCP containing a
time value. This value is increased by wireless network
cards whenever the packet is retransmitted. The field is
propagated back to the source, like the TCP timestamp
option [5]. This allows the sender to know exactly the
time passed in retransmissions.

Simulations have shown an improvement of throughput
with our method. We plan to do real experiments in
order to validate our simulations. If successful, we plan
to give a complete proposal for improving TCP in case
of retransmissions on wireless links.

ACKNOWLEDGEMENTS

Authors are grateful to Dominique Dhoutaut for his in-
sights in the 802.11 protocol.

References

[1] L. Brakmo and L. Peterson. TCP Vegas: end
to end congestion avoidance on a global Internet.
IEEE Journal on Selected Areas in Communica-
tion, 13(8):1465–1480, Oct. 1995.

[2] A. Capone, L. Fratta, and F. Martignon. Band-
width estimation schemes for TCP over wireless
networks. IEEE Transactions on Mobile Comput-
ing, 3(2):129–143, Apr.-June 2004.

[3] D. Dhoutaut. Etude du standard 802.11 dans le
cadre des réseaux ad-hoc : de la simulation à
l’expérimentation. PhD thesis, Ecole Nationale
Supérieure de Lyon, Dec. 2003.

[4] L. A. Grieco and S. Mascolo. TCP Westwood and
Easy RED to improve fairness in high-speed net-
works. In IEEE/IFIP Seventh International Work-
shop on Protocols for High-Speed Networks, pages
130–146, Berlin, Germany, Apr. 2002.

[5] V. Jacobson, R. Braden, and D. Borman. TCP
extensions for high performance, May 1992.
RFC 1323.

[6] Z. Jing and N. Zhisheng. A reliable TCP-aware
link layer retransmission for wireless networks. In
International Conference on Communication Tech-
nology, volume 1, pages 900–905, Beijing, China,
Aug. 2000.

[7] N. Möller, K. H. Johansson, and H. Hjalmars-
son. Making retransmission delays in wireless links
friendlier to TCP. In 43rd IEEE Conference on
Decision and Control, Bahamas, Dec. 2004.

[8] Network simulator — ns-2. http://www.isi.edu/
nsnam/ns/.

[9] The NS manual. http://www.isi.edu/nsnam/ns/
ns-documentation.html.

[10] K. Ratnam and I. Matta. Effect of local retrans-
mission at wireless access points on the round trip
time estimation of TCP. In The 31st Annual Sim-
ulation Symposium, pages 150–156, Boston, MA,
USA, Apr. 1998.

[11] M. Scharf, M. Necker, and B. Gloss. The sensi-
tivity of TCP to sudden delay variations in mo-
bile networks. In 3rd IFIP-TC6 Networking Con-
ference, pages 76–87, Athens, Greece, May 2004.
LNCS 3042.

