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Abstract

Given a bivariate function f defined in a rectangular domain Ω, we approximate it
by a C1 quadratic spline quasi-interpolant (abbr. QI) and we take partial derivatives
of this QI as approximations to those of f . We give error estimates and asymptotic
expansions for these approximations. We also propose a simple algorithm for the
determination of stationary points, illustrated by a numerical example.

Key words: Quadratic spline quasi-interpolant; Partial derivative approximation;
Stationary points detection.

1 Introduction and notations

Let Ω = I × J = [a, b]× [c, d] be a rectangular domain. For a given steplength
h > 0, we assume that b = a+mh and d = c+nh and we consider the uniform
partitions Xm = {xi = a + ih, 0 ≤ i ≤ m} and Yn = {yj = c + jh, 0 ≤ j ≤ n},
respectively in I and J . We also need the midpoints si = 1

2
(xi−1 + xi) and

tj = 1
2
(yj−1 + yj) of subintervals defined by the two partitions. For the sake of

simplicity, and in order to avoid the use of boundary B-splines and functionals,
we add two points at each end of intervals (see Figure 1) , denoted respectively
by x−2, x−1, xm+1, xm+2 and y−2, y−1, yn+1, yn+2. In the same way, we have two
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Figure 1. Domains Ω and Ωh

more midpoints at each end: s−1, s0, sm+1, sm+2 and t−1, t0, tn+1, tn+2. Then
we define Ωh = [a − 2h, b + 2h] × [c − 2h, d + 2h] = [x−2, xm+2] × [y−2, yn+2].
We assume in the following that f is defined in the bigger domain Ωh. This
domain is endowed with the so-called criss-cross (or type 2) triangulation Tmn

consisting in drawing diagonals in each subsquare Ωij = [xi, xi+1] × [yj , yj+1]
of Ωh. The centres of these subsquares are the points Mα = (si, tj), and their
vertices are the points Nα = (xi, yj). Let A = {α = (i, j), 0 ≤ i ≤ m + 1, 0 ≤
j ≤ n + 1}, ε1 = (1, 0) and ε2 = (0, 1). Then the C1 quadratic spline quasi-
interpolant considered in this paper is defined by

Qf =
∑
α∈A

µα(f)Bα

where the coefficient functionals are

µα(f) =
3

2
f(Mα) −

1

8
(f(Mα−ε1

) + f(Mα+ε1
) + f(Mα−ε2

) + f(Mα+ε2
)) .

and the Bα’s are the classical C1-quadratic B-splines (or box-splines). For
their properties, see e.g. [2, 3]. Note that the family {Bα, α ∈ A} of B-splines
whose support intersect Ω is only a spanning system, not a basis, of the space
S2(Ω, Tmn) of quadratic splines defined in Ω endowed with the triangulation
Tmn. However, this has no effect on the definitions and results given below.
Note also that for the construction of Qf , we need values of f at points of
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{Mγ ∈ Ωh, γ ∈ Γ} where Γ = {γ = (i, j), −1 ≤ i ≤ m + 2,−1 ≤ j ≤ n + 2},
except the four pairs (−1,−1), (m + 2,−1), (−1, n + 2), (m + 2, n + 2).

By introducing the fundamental splines

B̃γ =
3

2
Bγ −

1

8
(Bγ−ε1

+ Bγ+ε1
+ Bγ−ε2

+ Bγ+ε2
) ,

it is also very convenient and useful to write Qf in the ”quasi-Lagrange” form

Qf =
∑
γ∈Γ

f(Mγ)B̃γ.

In particular, the Lebesgue function Λ of Q, defined by

Λ =
∑
γ∈Γ

|B̃γ|

allows us to evaluate its infinity norm (see Section 3.1 below)

‖Q‖∞ = |Λ|∞ = max{Λ(x, y), (x, y) ∈ Ω} = 1.5.

The operator Q is constructed in order to be exact on the space Π2 of bivariate
quadratic polynomials (i.e. of total degree at most 2). In other words, it satisfies
Qp = p for all p ∈ Π2.

There exist other types of quadratic spline approximants on the same trian-
gulation (see e.g.[9] with applications to contour plotting) and on other types
of triangulations, e.g. the Powell-Sabin one ([8]).

Here is an outline of the paper. In Section 2, for the sake of completeness,
we give the full equations of fundamental splines B̃γ and of their first and
second order partial derivatives, in each of the 68 subtriangles of its support.
In Section 3, we give error estimates for infinity norms of f−Qf and its p.d. In
Section 4, we give a general algorithm for the exact computation of stationary
points of Qf . Finally, in Section 5, we give a numerical example in order to
illustrate this algorithm.

Partial derivatives are be denoted by one of the following forms :

∂1 =
∂

∂x
= D10, ∂2 =

∂

∂y
= D01,

∂2
1 =

∂2

∂x2
= D20, ∂1∂2 =

∂2

∂x∂y
= D11, ∂2

2 =
∂2

∂y2
= D02.

3
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Figure 2. Centres M̃k of the 21 supports of fundamental splines B̃γ covering the
subsquare Ωij centered at Mij = M̃11

In Taylor’s formulas, we use Ciarlet’s notations [5], with Cj
k = k!

j!(k−j)!
:

Dkf(M).(M0M)k =
k∑

j=0

Cj
k(x − x0)

j(y − y0)
k−j.

For norms of derivatives, we set, for k ≥ 1 :

‖Dkf‖∞,Ω = max{|Dαf |∞,Ω, |α| = k},

where , for α = (α1, α2) and |α| = α1 + α2 = k :

|Dαf |∞,Ω = max{|Dαf(M)|, M ∈ Ω}.

Often, we use the simpler notation |.|∞ instead of |.|∞,Ω, without explicit
reference to the domain Ω.

2 Equations of fundamental splines and of their partial derivatives

The local representation of B-splines and fundamental splines in the Bernstein
basis of bivariate quadratic polynomials in each triangle of their support has
been given in the technical reports [13b] and [13c]. For the sake of simplicity, we
now give the equations of fundamental splines w.r.t. local cartesian cordinates
(u, v) ∈ [−1

2
, 1

2
]2, with (x, y) = (si+uh, tj+vh), associated with each subsquare

Ωij of the partition, the origin being taken at its centre Mij. We consider only
the 21 fundamental splines B̃γ , for which the support cover (at least partly)
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Table 1
Equations of 16B̃γ

k N S E W

1 −p̄2
1 0 0 −p̄2

1

2 −1
2(1 + 4q̄2) −1

2p2
3 p2

1 −
1
2p2

3 p̄2
1 −

1
2p2

3

3 −p2
1 0 −p2

1 0

4 −p̄2
1 0 0 −p̄2

1

5 13p̄2
1 + 2p̄1 − 1 −(1 − p̄1)

2 −(1 − p̄1)
2 13p̄2

1 + 2p̄1 − 1

6 4(1 + 6q̄2) 2q3 13p̄2
1 + 4(1 + 6q̄2) 13p2

1 + 4(1 + 6q̄2)

7 13p2
1 − 2p1 − 1 −(1 + p1)

2 13p2
1 − 2p1 − 1 −(1 + p1)

2

8 −p2
1 0 −p2

1 0

9 p̄2
1 −

1
2 p̄2

2 p2
1 −

1
2 p̄2

2 −1
2 p̄2

2 −1
2(1 − 4q1)

10 13p2
1 + 4(1 − 6q1) 13p̄2

1 + 4(1 − 6q1) 2q̄4 4(1 − 6q1)

11 p4 p4 p4 p4

12 13p̄2
1 + 4(1 + 6q̄1) 13p2

1 + 4(1 + 6q̄1) 4(1 + 6q̄1) 2q4

13 p2
1 −

1
2p2

2 p̄2
1 −

1
2p2

2 −1
2(1 + 4q̄1) −1

2p2
2

14 0 −p2
1 0 −p2

1

15 −(1 − p1)
2 13p2

1 + 2p1 − 1 −(1 − p1)
2 13p2

1 + 2p1 − 1

16 2q̄3 4(1 − 6q2) 13p2
1 + 4(1 − 6q2) 13p̄2

1 + 4(1 − 6q2)

17 −(1 + p̄1)
2 13p̄2

1 − 2p̄1 − 1 13p̄2
1 − 2p̄1 − 1 −(1 + p̄1)

2

18 0 −p̄2
1 −p̄2

1 0

19 0 −p2
1 0 −p2

1

20 −1
2 p̄2

3 −1
2(1 − 4q2) p̄2

1 −
1
2 p̄2

3 p2
1 −

1
2bp2

3

21 0 −p̄2
1 −p̄2

1 0

the subsquare Ωij . We number them by indices k from 1 to 21, associated
to their support centres M̃k, as given Figure 2 Table 1 gives the equations
of fundamental splines B̃γ . Tables 2 and 3 give the equations of their first
partial derivatives. Finally, Table 4 gives the equations of their second partial
derivatives. In Table 1, we use the following abbreviations:

p1 = u + v, p̄1 = u − v, p2 = 1 + 2u, p̄2 = 1 − 2u,

p3 = 1 + 2v, p̄3 = 1 − 2v, p4 = 22 − 24(u2 + v2),

q1 = u + v2, q̄1 = u − v2, q2 = v + u2, q̄2 = v − u2,

q3 = u2 + 13v2 + 12v + 2, q̄3 = u2 + 13v2 − 12v + 2,

5



Table 2
Equations of 16h∂1B̃γ

k N S E W

1 −u + v 0 0 −u + v

2 2u 0 u + v u − v

3 −(u + v) 0 −(u + v) 0

4 −u + v 0 0 −u + v

5 13(u − v) + 1 1 − u + v 1 − u + v 13(u − v) + 1

6 −24u 2u −11u − 13v −11u + 13v

7 13(u + v) − 1 −(1 + u + v) 13(u + v) − 1 −(1 + u + v)

8 −(u + v) 0 −(u + v) 0

9 1 − u − v 1 − u + v 1 − 2u 1

10 13(u + v) − 12 13(u − v) − 12 26u − 12 −12

11 −24u −24u −24u −24u

12 13(u − v) + 12 13(u + v) + 12 12 26u + 12

13 −1 − u + v −(1 + u + v) −1 −(1 + 2u)

14 0 −(u + v) 0 −(u + v)

15 1 − u − v 13(u + v) + 1 1 − u − v 13(u + v) + 1

16 2u −24u −11u + 13v −11u − 13v

17 −1 − u + v 13(u − v) − 1 13(u − v) − 1 −1 − u + v

18 0 −u + v −u + v 0

19 0 −(u + v) 0 −(u + v)

20 0 2u u − v u + v

21 0 −u + v −u + v 0

q4 = 13u2 + v2 + 12u + 2, q̄4 = 13u2 + v2 − 12u + 2.

3 Global error estimates for smooth functions

In this section, we assume that f ∈ C3(Ωh): in [13a], error bounds have been
already computed in the case of a non-uniform triangulation. In the specific
case of uniform triangulations, the constants can be substantially reduced.

6



Table 3
Equations of 16h∂2B̃γ

k N S E W

1 u − v 0 0 u − v

2 −1 −(1 + 2v) −1 + u − v −(1 + u + v)

3 −(u + v) 0 −(u + v) 0

4 u − v 0 0 u − v

5 −13(u − v) − 1 −1 + u − v −1 + u − v −13(u − v) − 1

6 12 26v + 12 −13(u − v) + 12 12 + 13(u + v)

7 13(u + v) − 1 −(1 + u + v) 13(u + v) − 1 −(1 + u + v)

8 −(u + v) 0 −(u + v) 0

9 −u + v u + v 0 2v

10 13u − 11v −(13u + 11v) 2v −24v

11 −24v −24v −24v −24v

12 −(13u + 11v) 13u − 11v −24v 2v

13 u + v u − v 2v 0

14 0 −(u + v) 0 −(u + v)

15 1 − u − v 13(u + v) + 1 1 − u − v 13(u + v) + 1

16 26v − 12 −12 13(u + v) − 12 −13(u − v) − 12

17 1 + u − v −13(u − v) + 1 −13(u − v) + 1 1 + u − v

18 0 u − v u − v 0

19 0 −(u + v) 0 −(u + v)

20 1 − 2v 1 1 − u − v 1 + u − v

21 0 u − v u − v 0

Theorem 1 The following error estimates are valid, for constants C0 ≤ 5
96

,
C1 ≤ 2 and C2 ≤

41
4

respectively:

|f − Qf |∞≤C0h
3‖D3f‖∞,

|Dβ(f − Qf)|∞≤C1h
2‖D3f‖∞, for |β| = 1,

|Dβ(f − Qf)|∞,T ≤C2h‖D
3f‖∞, for |β| = 2, and for all T ∈ Tmn.

7



Table 4
Values of second derivatives of 16h2B̃γ

∂2
1 ∂1∂2 ∂2

2

k N S E W N S E W N S E W

1 −1 0 0 −1 1 0 0 1 −1 0 0 −1

2 2 0 1 1 0 0 1 −1 0 −2 −1 −1

3 −1 0 −1 0 −1 0 −1 0 −1 0 −1 0

4 −1 0 0 −1 1 0 0 1 −1 0 0 −1

5 13 −1 −1 13 −13 1 1 −13 13 −1 −1 13

6 −24 2 −11 −11 0 0 −13 13 0 26 13 13

7 13 −1 13 −1 13 −1 13 −1 13 −1 13 −1

8 −1 0 −1 0 −1 0 −1 0 −1 0 −1 0

9 −1 −1 −2 0 −1 1 0 0 1 1 0 2

10 13 13 26 0 13 −13 0 0 −11 −11 2 −24

11 −24 −24 −24 −24 0 0 0 0 −24 −24 −24 −24

12 13 13 0 26 −13 13 0 0 −11 −11 −24 2

13 −1 −1 0 −2 1 −1 0 0 1 1 2 0

14 0 −1 0 −1 0 −1 0 −1 0 −1 0 −1

15 −1 13 −1 13 −1 13 −1 13 −1 13 −1 13

16 2 −24 −11 −11 0 0 13 −13 26 0 13 13

17 −1 13 13 −1 1 −13 −13 1 −1 13 13 −1

18 0 −1 −1 0 0 1 1 0 0 −1 −1 0

19 0 −1 0 −1 0 −1 0 −1 0 −1 0 −1

20 0 2 1 1 0 0 −1 1 −2 0 −1 −1

21 0 −1 −1 0 0 1 1 0 0 −1 −1 0

Proof Let us choose a triangle T of type N(North) and the midpoint M0 = (x0, y0)
of its upper edge. By Taylor’s formula, we obtain, for all M = (x, y) ∈ T ,

f(M) = p2(M) + r2(M),

where p2 and q2 are respectively the quadratic Taylor polynomial and the
associated remainder

8



p2(M) = f(M0) + Df(M0).(M0M) +
1

2
D2f(M)(M0M)2,

r2(M) =
1

6

1∫

0

D3f((1 − t)M + tM0).(M0M)3 dt.

As |M0M |1 = |x − x0| + |y − y0| ≤ h/2, we get

|r2(M)| ≤
1

6
‖D3f‖∞|M0M |31 ≤

h3

48
‖D3f‖∞.

On the other hand, Qf = Qp2 + Qr2 = p2 + Qr2 since Q is exact on Π2.
Therefore, using the above majoration

|f − Qf |∞ = |r2 − Qr2| = |(I − Q)r2| ≤ (1 + ‖Q‖∞)|r2| =
5

2
|r2| ≤

5h3

96
‖D3f‖∞.

For ∂1(f −Qf), we can use the following technique. We do not go into details
and we only give a sketch of the computations. We start from the expression
of the derivative ∂1Qf =

∑
γ f(Mγ)∂1B̃γ and from Taylor’s formula of order

2:

f(Mγ)= f(M) + Df(M).(MMγ) +
1

2
D2f(M).(MMγ)

2

+
1

6

1∫

0

D3f((1 − t)Mγ + tM).(MMγ)
3 dt.

Replacing f(Mγ) by its expansion in the formula of ∂1Qf , we obtain

∂1Qf(M) = f(M) +
1

6

∑
γ

[

1∫

0

D3f((1 − t)Mγ + tM).(MMγ)
3 dt] ∂1B̃γ(M).

This is a consequence of the following facts. We use the notation Mγ =
(xγ , yγ) and the property of Q to be exact on Π2. As

∑
γ B̃γ = 1,

∑
γ xγB̃γ =

x,
∑

γ yγB̃γ = y, then
∑

γ ∂1B̃γ = 0,
∑

γ xγ∂1B̃γ = 1, and
∑

γ yγ∂1B̃γ = 0.
Therefore we get

∑
γ

∂1B̃γ[Df(M).(MMγ)] =
∑
γ

∂1B̃γ[(xγ − x)∂1f(M) + (yγ − y)∂2f(M) = ∂1f(M),

9



In a similar way, as
∑

γ x2
γB̃γ = x2,

∑
γ y2

γB̃γ = y2,
∑

γ xγyγB̃γ = xy, then∑
γ x2

γ∂1B̃γ = 2x,
∑

γ xγyγ∂1B̃γ = y,
∑

γ y2
γ∂1B̃γ = 0. and we get

∑
γ

∂1B̃γD
2f(M).[(MMγ)

2] = 0,

We deduce from the above expression that

|∂1Qf(M) − f(M)| ≤
1

6
‖D3f‖∞

∑
γ

|MMγ |
3
1|∂1B̃γ |

Now, setting ϕγ(M) = |MMγ |
3
1|∂1B̃γ |, we use Table 2 to compute the exact

maximum of ϕγ in the triangle T . We obtain the following bounds: ϕγ ≤ 9
for k = 1, 3, 4, 8, 9, 13, 15, 17; ϕγ ≤ 19 for k = 5, 7, 10, 12; ϕγ ≤ 8 for k = 2, 16;
ϕγ ≤ 12 for k = 6, 11, from which we deduce

∑
γ ϕγ ≤ 2 and finally

|∂1Qf − f |∞ ≤ 2h2‖D3f‖∞.

A similar method is used for second order derivatives. 2

4 An algorithm for computing stationary points

In view of the results of the preceding sections, we propose the following
algorithm for the detection of stationary points of Qf :

(i) compute π and χ at centres Mij and vertices Nij of subsquares of the par-
tition.

(ii) select the subset T ′ ⊂ Tmn of triangles in which the sum of signs of π at the
three vertices is ±1.

(iii) select the subset T ′′ ⊂ T ′ of those triangles in which the sum of signs of χ
at the three vertices is ±1.

(iv) in each triangle of T ′′, solve the system of equations π = χ = 0, i.e. compute
the exact intersection point of the two corresponding segments. We thus
obtain the set of stationary points of Qf .

(v) study locally the sign of H = σ2 − ρτ : if H < 0, then if ρ > 0 and τ > 0,
then there is a local minimum, else if ρ < 0 and τ < 0, then there is a local
maximum. Finally, if H ≥ 0, we have a saddle point or a degenerate point
(see e.g. [7]).

Remark 2 Of course, one can exchange the roles of π and χ in the above
algorithm.
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5 Numerical example

We test the previous algorithm with a Scilab ([12]) program and obtain the
following results.

Example 3 Franke’s function (see e.g. [1], p. 144):
f2(x, y) = .75exp(−1

4
((9x−2)2 +(9y−2)2)+ .75exp(− 1

49
(9x+1)2− 1

10
(9y+1))

+.5exp(−1
4
((9x − 7)2 + (9y − 3)2) − .2exp(−(9x − 4)2 − (9y − 7)2).
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Figure 3. Surface z = f(x, y) and its level lines

We compute five stationary points (xi,h, yi,h, i = 1, ..., 5 : one local minimum,
two local maxima and two saddle points or degenerate points. For the sake
of comparison, we have found with Matlab the following stationary points :
(x1, y1) = (0.456, 0.784), (x2, y2) = (0.206, 0.208), (x3, y3) = (0.755, 0.326),
(x4, y4) = (0.556, 0.277), (x5, y5) = (0.616, 0.857). Table 5 gives the error
Ei(h) = ((xi,h − xi)

2 + (yi,h − yi)
2)1/2, i = 1, ..., 5, for a few values of h.

Table 5
Approximation errors for the computed stationary points

h E1(h) E2(h) E3(h) E4(h) E5(h)

1/5 1.03E-01 2.55E-03 4.20E-02 1.22E-02 3.82E-02

1/10 5.38E-03 1.48E-03 2.74E-03 5.39E-03 1.50E-02

1/20 8.26E-04 1.91E-04 2.69E-04 4.32E-04 1.14E-02

1/40 2.52E-04 6.62E-05 7.42E-05 6.53E-05 1.59E-03

1/80 5.51E-05 4.86E-05 1.46E-05 4.74E-05 2.97E-04
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