Hopf diagrams and quantum invariants - Archive ouverte HAL
Article Dans Une Revue Algebraic and Geometric Topology Année : 2005

Hopf diagrams and quantum invariants

Résumé

The Reshetikhin-Turaev invariant, Turaev's TQFT, and many related constructions rely on the encoding of certain tangles (n-string links, or ribbon n-handles) as n-forms on the coend of a ribbon category. We introduce the monoidal category of Hopf diagrams, and describe a universal encoding of ribbon string links as Hopf diagrams. This universal encoding is an injective monoidal functor and admits a straightforward monoidal retraction. Any Hopf diagram with n legs yields a n-form on the coend of a ribbon category in a completely explicit way. Thus computing a quantum invariant of a 3-manifold reduces to the purely formal computation of the associated Hopf diagram, followed by the evaluation of this diagram in a given category (using in particular the so-called Kirby elements).

Dates et versions

hal-00071052 , version 1 (22-05-2006)

Identifiants

Citer

Alain Bruguieres, Alexis Virelizier. Hopf diagrams and quantum invariants. Algebraic and Geometric Topology, 2005, 5, paper no. 68, p. 1677-1710. ⟨10.2140/agt.2005.5.1677⟩. ⟨hal-00071052⟩
68 Consultations
0 Téléchargements

Altmetric

Partager

More