Hopf diagrams and quantum invariants
Résumé
The Reshetikhin-Turaev invariant, Turaev's TQFT, and many related constructions rely on the encoding of certain tangles (n-string links, or ribbon n-handles) as n-forms on the coend of a ribbon category. We introduce the monoidal category of Hopf diagrams, and describe a universal encoding of ribbon string links as Hopf diagrams. This universal encoding is an injective monoidal functor and admits a straightforward monoidal retraction. Any Hopf diagram with n legs yields a n-form on the coend of a ribbon category in a completely explicit way. Thus computing a quantum invariant of a 3-manifold reduces to the purely formal computation of the associated Hopf diagram, followed by the evaluation of this diagram in a given category (using in particular the so-called Kirby elements).