
HAL Id: hal-00070840
https://hal.science/hal-00070840v3

Submitted on 30 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

N-complexes as functors, amplitude cohomology and
fusion rules

Claude Cibils, Andrea Solotar, Robert Wisbauer

To cite this version:
Claude Cibils, Andrea Solotar, Robert Wisbauer. N-complexes as functors, amplitude cohomology and
fusion rules. Communications in Mathematical Physics, 2007, 272 (3), pp.837–649. �10.1007/s00220-
007-0210-x�. �hal-00070840v3�

https://hal.science/hal-00070840v3
https://hal.archives-ouvertes.fr


cc
sd

-0
00

70
84

0,
 v

er
si

on
 3

 -
 3

0 
Se

p 
20

06

N-complexes as functors, amplitude cohomology and

fusion rules

Claude Cibils, Andrea Solotar and Robert Wisbauer ∗

Abstract

We consider N-complexes as functors over an appropriate linear cat-
egory in order to show first that the Krull-Schmidt Theorem holds, then
to prove that amplitude cohomology (called generalized cohomology by
M. Dubois-Violette) only vanishes on injective functors providing a well
defined functor on the stable category. For left truncated N-complexes,
we show that amplitude cohomology discriminates the isomorphism class
up to a projective functor summand. Moreover amplitude cohomology of
positive N-complexes is proved to be isomorphic to an Ext functor of an
indecomposable N-complex inside the abelian functor category. Finally we
show that for the monoidal structure of N-complexes a Clebsch-Gordan
formula holds, in other words the fusion rules for N-complexes can be
determined.

2000 Mathematics Subject Classification : 16E05, 16W50, 18E10, 16S40, 16D90.

Keywords : quiver, Hopf algebra, k-category, cohomology, N-complex, Clebsch-Gordan.

1 Introduction

Let N be a positive integer and let k be a field. In this paper we will consider N-
complexes of vector spaces as linear functors (or modules) over a k-category, see the
definitions at the beginning of Section 2.

Recall first that a usual k-algebra is deduced from any finite object k-category
through the direct sum of its vector spaces of morphisms. Modules over this algebra
are precisely k-functors from the starting category, with values in the category of k-
vector spaces. Consequently if the starting category has an infinite number of objects,

∗This work has been supported by the projects PICT 08280 (ANPCyT), UBA-
CYTX169, PIP-CONICET 5099 and the German Academic Exchange Service (DAAD).
The second author is a research member of CONICET (Argentina) and a Regular Asso-
ciate of ICTP Associate Scheme.
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linear functors with values in vector spaces are called modules over the category, as
much as modules over an algebra are appropriate algebra morphisms.

An N-complex as considered by M. Kapranov in [19] is a Z-graded vector space
equipped with linear maps d of degree 1 verifying dN = 0. The amplitude (or general-
ized) cohomology are the vector spaces Ker da/ Im dN−a for each amplitude a between
1 and N − 1. Note that we use the terminology amplitude cohomology in order to
give a graphic idea of this theory and in order to clearly distinguish it from classical
cohomology theories.

M. Dubois-Violette has shown in [9] a key result, namely that for N-complexes
arising from cosimplicial modules through the choice of an element q ∈ k such that
1 + q + · · · + qN−1 = 0, amplitude cohomology can be computed using the classical
cohomology provided the truncated sums 1 + q + · · · + qn are invertible for 1 ≤ n ≤
N − 1. As a consequence he obtains in a unified way that Hochschild cohomology at
roots of unity or in non-zero characteristic is zero or isomorphic to classical Hochschild
cohomology (see also [20]) and the result proven in 1947 by Spanier [26], namely that
Mayer [22] amplitude cohomology can be computed by means of classical simplicial
cohomology.

Note that N-complexes are useful for different approaches, as Yang-Mills algebras
[8], Young symmetry of tensor fields [13, 14] as well as for studying homogeneous
algebras and Koszul properties, see [1, 2, 16, 23, 24] or for analysing cyclic homology
at roots of unity [28]. A comprehensive description of the use of N-complexes in
this various settings is given in the course by M. Dubois-Violette at the Institut Henri
Poincaré, [12].

We first make clear an obvious fact, namely that an N-complex is a module over a
specific k-category presented as a free k-category modulo the N-truncation ideal. This
way we obtain a Krull-Schmidt theorem for N-complexes. The list of indecomposables
is well-known, in particular projective and injective N-complexes coincide. This fact
enables us to enlarge Kapranov’s aciclicity Theorem in terms of injectives. More pre-
cisely, for each amplitude a verifying 1 ≤ a ≤ N − 1 a classic 2-complex is associated
to each N-complex. We prove first in this paper that an N-complex is acyclic for a
given amplitude if and only if the N-complex is projective (injective), which in turn is
equivalent to aciclicity for any amplitude.

In [15, 9] a basic result is obtained for amplitude cohomology for N ≥ 3 which
has no counterpart in the classical situation N = 2, namely hexagons raising from
amplitude cohomologies are exact. This gap between the classical and the new theory
is confirmed by a result we obtain in this paper: amplitude cohomology does not
discriminate arbitrary N-complexes without projective summands for N ≥ 3, despite
the fact that for N = 2 it is well known that usual cohomology is a complete invariant
up to a projective direct summand. Nevertheless we prove that left truncated N-
complexes sharing the same amplitude cohomology are isomorphic up to a projective
(or equivalently injective) direct summand.

We also prove that amplitude cohomology for positive N-complexes coincides with
an Ext functor in the category of N-complexes. In other words, for each given am-
plitude there exists an indecomposable module such that the amplitude cohomologies
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of a positive N-complex are actually extensions of a particular degree between the in-
decomposable and the given positive N-complex. We use the characterisation of Ext
functors and the description of injective positive N-complexes. In this process the fact
that for positive N-complexes, projectives no longer coincide with injectives requires
special care.

We underline the fact that various indecomposable modules are used in order to
show that amplitude cohomology of positive N-complexes is an Ext functor. This
variability makes the result compatible with the non classical exact hexagons [15, 9] of
amplitude cohomologies quoted above.

M. Dubois-Violette has studied in [11] (see Appendix A) the monoidal structure of
N-complexes in terms of the coproduct of the Taft algebra, see also [12]. J. Bichon in
[3] has studied the monoidal structure of N-complexes, considering them as comodules,
see also the work by R. Boltje [4] and A. Tikaradze [27]. We recall in this paper that
the k-category we consider is the universal cover of the Taft Hopf algebra U+

q (sl2). As
such, there exists a tensor product of modules (i.e. N-complexes) for each non-trivial
Nth-root of unity (see also [4, 5]). Using Gunnlaugsdottir’s axiomatisation of Clebsch-
Gordan’s formula [18] and amplitude cohomology we show that this formula is valid for
N-complexes, determining this way the corresponding fusion rules.

2 N-complexes and categories

Let C be a small category over a field k. The set of objects is denoted C0. Given x, y
in C0, the k-vector space of morphisms from x to y in C is denoted yCx . Recall that
composition of morphisms is k-bilinear. In this way, each xCx is a k-algebra and each

yCx is a yCy-xCx – bimodule.

For instance let Λ be a k-algebra and let E be a complete finite system of orthogonal
idempotents in Λ, that is

∑

e∈E e = 1, ef = fe = 0 if f 6= e and e2 = e, for
all e, f ∈ E. The associated category CΛ,E has set of objects E and morphisms

f (CΛ,E)
e

= fΛe. Conversely any finite object set category C provides an associative
algebra Λ through the matrix construction. Both procedures are mutually inverse.

In this context linear functors F : CΛ,E → Modk coincide with left Λ-modules.
Consequently for any arbitrary linear category C, left modules are defined as k-functors
F : C → Modk. In other words, a left C-module is a set of k-vector spaces {xM}x∈C0

equipped with ”left oriented” actions that is, linear maps

yCx ⊗k xM → yM

verifying the usual associativity constraint.

Notice that right modules are similar, they are given by a collection of k-vector
spaces {Mx}x∈C0

and ”right oriented”’ actions. From now on a module will mean a
left module.

Free k-categories are defined as follows: let E be an arbitrary set and let V =
{yVx}x,y∈E be a set of k-vector spaces. The free category FE(V ) has set of objects
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E and set of morphisms from x to y the direct sum of tensor products of vector spaces
relying x to y:

y(FE(V ))x =
⊕

n≥0

⊕

x1,...,xn∈E

(yVxn
⊗ · · · ⊗ x2

Vx1
⊗ x1

Vx)

For instance, let E = Z and let i+1Vi = k while jVi = 0 otherwise. This data
can be presented by the double infinite quiver having Z as set of vertices and an arrow
from i to i + 1 for each i ∈ Z. The corresponding free category L has one dimensional
vector space morphisms from i to j if and only if i ≤ j, namely

jLi = jVj−1 ⊗ · · · ⊗ i+2Vi+1 ⊗ i+1Vi.

Otherwise jLi = 0.

A module over L is precisely a graded vector space {iM}i∈Z together with lin-
ear maps di : iM → i+1M . This fact makes use of the evident universal property
characterizing free linear categories.

On the other hand we recall from [19] the definition of an N-complex: it consists
of a graded vector space {iM}i∈Z and linear maps di : iM → i+1M verifying that
di+N ◦ · · · ◦ di = 0 for each i ∈ Z.

In order to view an N-complex as a module over a k-linear category we have to
consider a quotient of L. Recall that an ideal I of a k-category C is a collection of sub-
vector spaces yIx of each morphism space yCx, such that the image of the composition
map zCy ⊗ yIx is contained in zIx and yIx ⊗ xCu is contained in yIu for each choice
of objects. Quotient k-categories exist in the same way that algebra quotients exist.

Returning to the free category L, consider the truncation ideal IN given by the
entire jLi in case j ≥ i + N and 0 otherwise. Then LN := L/IN has one dimensional
morphisms from i to j if and only if i ≤ j ≤ i + N − 1.

Clearly N-complexes coincide with LN-modules. We have obtained the following

Theorem 2.1. The categories of N-complexes and of LN-modules are isomorphic.

An important point is that LN is a locally bounded category, which means that
the direct sum of morphism spaces starting (or ending) at each given object is finite
dimensional. More precisely:

∀x0, y0 ∈ (LN)0, dimk





⊕

y∈Z

y(LN)x0



 = N = dimk

[

⊕

x∈Z

y0
(LN)x

]

.

It is known that for locally bounded categories Krull-Schmidt theorem holds, for
instance see the work by C. Sáenz [25]. We infer that each N-complex of finite di-
mensional vector spaces is isomorphic to a direct sum of indecomposable ones in an
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essentially unique way, meaning that given two decompositions, the multiplicities of
isomorphic indecomposable N-complexes coincide.

Moreover, indecomposable N-complexes are well known, they correspond to ”short
segments” in the quiver: the complete list of indecomposable modules is given by
{M l

i}i∈Z,0≤l≤N−1 where i denotes the beginning of the module, i + l its end and l its
length. More precisely, i(M

l
i ) = i+1(M

l
i ) = · · · = i+l(M

l
i ) = k while j(M

l
i ) = 0 for

other indices j. The action of di, di+1, . . . , di+l−1 is the identity and dj acts as zero if
the index j is different. The corresponding N-complex is concentrated in the segment
[i, i + l].

Note that the simple N-complexes are {M0
i }i∈Z and that each M l

i is uniserial,
which means that M l

i has a unique filtration

0 ⊂ M0
i+l ⊂ · · · ⊂ M l−2

i+2 ⊂ M l−1
i+1 ⊂ M l

i

such that each submodule is maximal in the following one.

Summarizing the preceding discussion, we have the following

Proposition 2.2. Let M be an N-complex of finite dimensional vector spaces.
Then

M ≃
⊕

i∈Z, 0≤l≤N−1

nl
iM

l
i

for a unique finite set of positive integers nl
i.

Indecomposable projective and injective LN-modules are also well known, we now
recall them briefly. Note from [17] that projective functors are direct sums of repre-
sentable functors. Clearly −(LN)i = MN−1

i .

In order to study injectives notice first that for a locally bounded k-category, right
and left modules are in duality: the dual of a left module is a right module which has
the dual vector spaces at each object, the right actions are obtained by dualising the
left actions. Projectives and injectives correspond under this duality. Right projective
modules are direct sums of i(LN)− as above, clearly (i(LN)−)∗ ≃ MN−1

i .

This way we have provided the main steps of the proof of the following

Proposition 2.3. Let M l
i be an indecomposable N-complex, i ∈ Z and l ≤ N − 1.

Then M l
i is projective if and only if l = N − 1, which in turn is equivalent for M l

i

to be injective.

Corollary 2.4. Let M =
⊕

i∈Z,0≤l≤N−1 nl
iM

l
i be an N-complex. Then M is pro-

jective if and only if nl
i = 0 for l ≤ N − 2, which in turn is equivalent for M to be

injective.
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3 Amplitude cohomology

Let M be an N-complex. For each amplitude a between 1 and N− 1, at each object i
we have Im dN−a ⊆ Kerda. More precisely we define as in [19]

(AH)i
a(M) := Ker(di+a−1 ◦ · · · ◦ di)/ Im(di−1 ◦ · · · ◦ di−N+a)

and we call this bi-graded vector space the amplitude cohomology of the N-complex.
As remarked in the Introduction, M. Dubois-Violette in [9] has shown the depth of this
theory, he calls it generalised cohomology.

As a fundamental example we compute amplitude cohomology for indecomposable
N-complexes M l

i . In the following picture the amplitude is to be read vertically while the
degree of the cohomology is to be read horizontally. A black dot means one dimensional
cohomology, while an empty dot stands for zero cohomology.

a a

N-1

0

N-1

0

l+1

l

i

k k

i+1

k

i+l

k

i+l-1

N-l

(N-1)-l

11

k

j

(N-1)-(j-i)

(l+1)-(j-i)

From this easy computation we notice that for a non-projective (equivalently non-
injective) indecomposable module M l

i (0 ≤ l ≤ N − 2) and any amplitude a there
exists a degree j such that (AH)j

a(M l
i ) 6= 0. Concerning projective or injective inde-

composable modules MN−1
i we notice that (AH)j

a(MN−1
i ) = 0 for any degree j and
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any amplitude a. These facts are summarized as follows:

Proposition 3.1. Let M be an indecomposable N-complex. Then M is projective
(or equivalently injective) in the category of N-complexes if and only if its amplitude
cohomology vanishes at some amplitude a which in turn is equivalent to its vanishing
at any amplitude.

Remark 3.2. From the very definition of amplitude cohomology one can check that
for a fixed amplitude a we obtain a linear functor (AH)∗a from modLN to the category
of graded vector spaces.

Moreover (AH)∗a is additive, in particular:

(AH)∗a(M ⊕ M ′) = (AH)∗a(M) ⊕ (AH)∗a(M ′)

This leads to the following result, which provides a larger frame to the aciclicity
result of M. Kapranov [19]. See also the short proof of Kapranov’s aciclicity result by
M. Dubois-Violette in Lemma 3 of [9] obtained as a direct consequence of a key result
of this paper, namely the exactitude of amplitude cohomology hexagons.

Theorem 3.3. Let M be an N-complex of finite dimensional vector spaces. Then
(AH)∗a(M) = 0 for some a if and only if M is projective (or equivalently injective).
Moreover, in this case (AH)∗a(M) = 0 for any amplitude a ∈ [1, N − 1].

In order to understand the preceding result in a more conceptual framework we
will consider the stable category of N-complexes, modLN. More precisely, let I be the
ideal of modLN consisting of morphisms which factor through a projective N-complex.
The quotient category modLN/I is denoted modLN. Clearly all projectives become
isomorphic to zero in modLN. Of course this construction is well known and applies
for any module category. We have in fact proven the following

Theorem 3.4. For any amplitude a there is a well-defined functor

(AH)∗a : modLN → gr(k)

where gr(k) is the category of graded k-vector spaces.

Our next purpose is to investigate how far amplitude cohomology distinguishes N-
complexes. First we recall that in the classical case (N = 2), cohomology is a complete
invariant of the stable category.

Proposition 3.5. Let M and M ′ be 2-complexes of finite dimensional vector spaces
without projective direct summands. If H∗(M) ≃ H∗(M ′), then M ≃ M ′.

Proof. Indecomposable 2-complexes are either simple or projective. We assume that M
has no projective direct summands, this is equivalent for M to be semisimple, in other
words M is a graded vector space with zero differentials. Consequently Hi(M) = iM
for all i. �

The following example shows that the favorable situation for N = 2 is no longer
valid for N ≥ 3.
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Example 3.6. Consider M the 3-complex which is the direct sum of all simple mod-
ules, in other words, iM = k and di = 0. Then for any degree i we have

(AH)i
1(M) = k and (AH)i

2(M) = k.

Let M ′ be the direct sum of all the length one indecomposable 3-complexes,

M ′ =
⊕

i∈Z

M1
i

Recall that the amplitude cohomology of M1
i is given by

(AH)i
2(M

1
i ) = k and (AH)i+1

1 (M1
i ) = k

while all other amplitude cohomologies vanish. Summing up provides (AH)i
2(M

′) = k
and (AH)i

1(M
′) = k, for all i. However it is clear that M and M ′ are not isomorphic.

Notice that both M and M ′ are free of projective direct summands.

As quoted in the introduction the preceding example confirms that amplitude co-
homology is a theory with different behaviour than the classical one. This fact has
been previously noticed by M. Dubois-Violette in [9], for instance when dealing with
non classical exact hexagons of amplitude cohomologies.

At the opposite, we will obtain in the following that for either left or right truncated
N-complexes amplitude cohomology is a complete invariant up to projectives. More
precisely, let M be an N-complex which is zero at small enough objects, namely iM = 0
for i ≤ b, for some b which may depend on M . Of course this is equivalent to the fact
that for the Krull-Schmidt decomposition

M =
⊕

i∈Z

N−1
⊕

l=0

nl
iM

l
i

there exists a minimal i0, in the sense that nl
i = 0 if i < i0 and nl

i0
6= 0 for some l.

Proposition 3.7. Let M be a non-projective N-complex which is zero at small
enough objects. Let l0 be the smallest length of an indecomposable factor of M
starting at the minimal starting object i0. Then (AH)i

a(M) = 0 for all i ≤ i0 − 1
and (AH)i0

a (M) = 0 for a ≤ l0. Moreover dimk(AH)i0
l0+1(M) = nl0

i0
.

Proof. The fundamental computation we made of amplitude cohomology for indecom-
posable N-complexes shows the following: the smallest degree affording non vanishing
amplitude cohomology provides the starting vertex of an indecomposable non projective
module. Moreover, at this degree the smallest value of the amplitude affording non
zero cohomology is l + 1, where l is the length of the indecomposable.

In other words amplitude cohomology determines the multiplicity of the smallest

indecomposable direct summand of a left-truncated N-complex. Of course smallest

concerns the lexicographical order between indecomposables, namely M l
i ≤ M r

j in case
i < j or in case i = j and l ≤ r. �
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Theorem 3.8. Let M be an N-complex which is zero at small enough objects and
which does not have projective direct summands. The dimensions of its amplitude
cohomology determine the multiplicities of each indecomposable direct summand.

Proof. The Proposition above shows that the multiplicity of the smallest indecom-
posable direct summand is determined by the amplitude cohomology (essentially this
multiplicity is provided by the smallest non-zero amplitude cohomology, where ampli-
tude cohomology is also ordered by lexicographical order).

We factor out this smallest direct summand X from M and we notice that the mul-
tiplicities of other indecomposable factors remain unchanged. Moreover, factoring out
the amplitude cohomology of X provides the amplitude cohomology of the new module.
It’s smallest indecomposable summand comes strictly after X in the lexicographical or-
der. Through this inductive procedure, multiplicities of indecomposable summands can
be determined completely. In other words: if two left-truncated N-complexes of finite
dimensional vector spaces share the same amplitude cohomology, then the multiplicities
of their indecomposable direct factors coincide for each couple (i, n). �

Remark 3.9. Clearly the above Theorem is also true for N-complexes which are zero
for large enough objects, that is right-truncated N-complexes.

4 Amplitude cohomology is Ext

An N-complex M is called positive in case iM = 0 for i ≤ −1. In this section we will
prove that amplitude cohomology of positive N-complexes of finite dimensional vector
spaces coincides with an Ext functor in this category.

First we provide a description of injective positive N-complexes as modules. Notice
that positive N-complexes are functors on the full subcategory L>0

N
of LN provided by

the positive integer objects. Alternatively, L>0
N

is the quotient of the free k-category
generated by the quiver having positive integer vertices and an arrow from i to i + 1
for each object, by the truncation ideal given by morphisms of length greater than N.

Theorem 4.1. The complete list up to isomorphism of injective positive indecom-
posable N-complexes is

{M l
0}l=0,...,N−1 ⊔ {MN−1

i }i≥1

Proof. As we stated before, injective modules are duals of projective right modules.
The indecomposable ones are representable functors i0(L

>0
N

)−, for i0 ≥ 0.

Clearly for each i0 we have (i0L
>0
N −

)∗ = M i0
0 if i0 ≤ N − 1 while (i0L

>0
N −

)∗ =

MN−1
i0−(N−1) otherwise.

In order to show that amplitude cohomology is an instance of an Ext, we need to
have functors sending short exact sequences of positive N-complexes into long exact
sequences: this will enable to use the axiomatic characterization of Ext. For this purpose

9



we recall the following standard consideration about N-complexes which provides several
classical 2-complexes associated to a given N-complex, by contraction. More precisely
fix an integer e as an initial condition and an amplitude of contraction a (which provides
also a coamplitude of contraction b = N − a).

The contraction Ce,aM of an N-complex is the following 2-complex, which has eM
in degree 0 and alternating a-th and b-th composition differentials:

· · · → e−bM
db

→ eM
da

→ e+aM
db

→ e+NM
da

→ . . .

Of course usual cohomology of this complex provides amplitude cohomology:

Lemma 4.2. In the above situation,

H2i(Ce,aM) = (AH)e+iN
a (M) and H2i+1(Ce,aM) = (AH)e+iN+a

b (M).

Notice that in order to avoid repetitions and in order to set H0 as the first positive
degree amplitude cohomology, we must restrict the range of the initial condition. More
precisely, for a given amplitude contraction a the initial condition e verifies 0 ≤ e < b,
where b is the coamplitude verifying a + b = N. Indeed, if e ≥ b, set e′ = e − b and
a′ = b. Then b′ = a and 0 ≤ e′ < b′.

Remark 4.3. An exact sequence of N-complexes provides an exact sequence of con-
tracted complexes at any initial condition e and any amplitude a.

We focus now on the functor H∗(Ce,a−), which for simplicity we shall denote H∗
e,a

from now on. We already know that H∗
e,a sends a short exact sequence of N-complexes

into a long exact sequence, since H∗
e,a is usual cohomology. Our next purpose is two-

fold. First we assert that H∗
e,a vanishes in positive degrees when evaluated on injectives

of the category of positive N-complexes. Then we will show that it is representable in
degree 0.

Proposition 4.4. In positive degrees we have:

H∗
e,a(M l

0) = 0 for l ≤ N − 1, and H∗
e,a(MN−1

i ) = 0 for i ≥ 1.

Proof. Concerning indecomposable modules of length N − 1, they are already injec-
tive in the entire category of N-complexes. We have noticed that all their amplitude
cohomologies vanish.

Consider now M l
0, with l ≤ N − 1. In non-zero even degree 2i the amplitude

cohomology to be considered is in degree e+ iN , which is larger than l since i 6= 0 and
N > l. Hence H2i

e,a(M l
0) = 0.

In odd degree 2i + 1 the amplitude cohomology to be considered is in degree
e + iN + a. As before, in case i 6= 0 this degree is larger than l, then H2i+1

e,a (M l
0) = 0

for i 6= 0. It remains to consider the case i = 0, namely H1
e,a(M l

0) = (AH)e+a
N−a(M l

0).
From the picture we have drawn for amplitude cohomology in the previous section, we
infer that in degree e + a the cohomology is not zero only for amplitudes inside the
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closed interval [l + 1− (e + a), N− 1− (e + a)]. We are concerned by the amplitude
N − a which is larger than N − a − e − 1, hence H1

e,a(M l
0) = 0. �

Proposition 4.5. Let a ∈ [1, N − 1] be an amplitude and let e ∈ [0, N − 1 − a] be
an initial condition. Then H0

e,a(−) = (AH)e
a(−) is a representable functor given by

the indecomposable N-complex Ma−1
e . More precisely,

(AH)e
a(X) = Hom

L
>0

N

(Ma−1
e , X).

Proof. We will verify this formula for an arbitrary indecomposable positive N-complex
X = M l

i . The morphism spaces between indecomposable N-complexes are easy to

determine using diagrams through the defining quiver of L>0
N

. Non-zero morphisms
from an indecomposable M to an indecomposable M ′ exist if and only if M starts
during M ′ and M ends together with or after M ′. Then we have:

Hom
L

>0

N

(Ma−1
e , M l

i ) =

{

k if e ∈ [i, i + l] and e + a − 1 ≥ i + l

0 otherwise

Considering amplitude cohomology and the fundamental computation we have
made, we first notice that (AH)e

a(M l
i ) has a chance to be non-zero only when the

degree e belongs to the indecomposable, namely e ∈ [i, i + l]. This situation already
coincides with the first condition for non-vanishing of Hom. Next, for a given e as
before, the precise conditions that the amplitude a must verify in order to obtain k as
amplitude cohomology is

(l + 1) − (e − i) ≤ a ≤ (N − 1) − (e − i).

The second inequality holds since the initial condition e belongs to [0, N − 1 − a]
and i ≥ 0. The first inequality is precisely e + a − 1 ≥ i + l. �

As we wrote before it is well known (see for instance [21]) that a functor sending
naturally short exact sequences into long exact sequences, vanishing on injectives and
being representable in degree 0 is isomorphic to the corresponding Ext functor. Then
we have the following:

Theorem 4.6. Let L>0
N

be the category of positive N-complexes of finite dimen-
sional vector spaces and let AHj

a(M) be the amplitude cohomology of an N-module
M with amplitude a in degree j. Let b = N − a be the coamplitude.

Let j = qN + e be the euclidean division with 0 ≤ e ≤ N − 1.

Then for e < b we have:

AHj
a(M) = Ext2q

L
>0

N

(Ma−1
e , M).

and for e ≥ b we have:

11



AHj
a(M) = Ext2q+1

L
>0

N

(M b−1
e−b , M).

5 Monoidal structure and Clebsch-Gordan formula

The k-category LN is the universal cover of the associative algebra U+
q (sl2) where q is

a non-trivial N-th root of unity, see [5] and also [7]. More precisely, let C =< t > be
the infinite cyclic group and let C act on (LN)0 = Z by t.i = i + N . This is a free
action on the objects while the action on morphisms is obtained by translation: namely
the action of t on the generator of i+1Vi is the generator of i+1+NVi+N.

Since the action of C is free on the objects, the categorical quotient exists, see for
instance [6]. The category LN/C has set of objects Z/N. This category LN/C has a
finite number of objects, hence we may consider its matrix algebra a(LN/C) obtained
as the direct sum of all its morphism spaces equipped with matrix multiplication. In
other words, a(LN/C) is the path algebra of the crown quiver having Z/N as set of
vertices and an arrow form ī to ī + 1 for each ī ∈ Z/N, truncated by the two-sided
ideal of paths of length greater or equal to N.

As described in [5] this truncated path algebra bears a comultiplication, an antipode
and a counit providing a Hopf algebra isomorphic to the Taft algebra, also known as the
positive part U+

q (sl2) of the quantum group Uq(sl2). The monoidal structure obtained
for the U+

q (sl2)-modules can be lifted to LN-modules providing the monoidal structure
on N-complexes introduced by M. Kapranov [19] and studied by J. Bichon [3] and A.
Tikaradze [27].

We recall the formula: let M and M ′ be N-complexes. Then M ⊗ M ′ is the
N-complex given by

i(M ⊗ M ′) =
⊕

j+r=i

(jM ⊗ rM
′)

and

di(mj ⊗ m′
r) = mj ⊗ drm

′
r + qrdjmj ⊗ m′

r.

Notice that in general i(M ⊗ M ′) is not finite dimensional.

Proposition 5.1. Let M and M ′ be N-complexes of finite dimensional vector
spaces. Then M ⊗ M ′ is a direct sum of indecomposable N-complexes of finite
dimensional vector spaces, each indecomposable appearing a finite number of times.

Proof. Using Krull-Schmidt Theorem we have

M =
⊕

i∈Z, 0≤l≤N−1

nl
iM

l
i and M ′ =

⊕

i∈Z, 0≤l≤N−1

n′l
i M l

i .

12



The tensor product M l
i ⊗M r

j consists of a finite number of non-zero vector spaces
which are finite dimensional. It follows from the Clebsch-Gordan formula that we prove
below that for a given indecomposable N-complex Mu

l , there is only a finite number
of couples of indecomposable modules sharing Mu

l as an indecomposable factor. Then
each indecomposable appears a finite number of times in M ⊗ M ′. �

The following result is a Clebsch-Gordan formula for indecomposable N-complexes,
see also the work by R. Boltje, chap. III [4]. The fusion rules, i.e. the positive coef-
ficients arising from the decomposition of the tensor product of two indecomposables,
can be determined as follows.

Theorem 5.2. Let q be a non-trivial Nth root of unity and Mu
i and let Mv

j be
indecomposable N-complexes. Then,
if u + v ≤ N − 1 we have

Mu
i ⊗ Mv

j =

min(u,v)
⊕

l=0

Mu+v−2l
i+j+l ,

if u + v = e + N − 1 with e ≥ 0 we have

Mu
i ⊗ Mv

j =

e
⊕

l=0

MN−1
i+j+l ⊕

min(u,v)
⊕

l=e+1

Mu+v−2l
i+j+l .

Proof. Using Gunnlaugsdottir’s axiomatization [18] p.188, it is enough to prove the
following:

M0
i ⊗ M0

j = M0
i+j

M1
0 ⊗ Mu

j = Mu+1
j ⊕ Mu−1

j+1 for u < N − 1

M1
0 ⊗ MN−1

j = MN−1
j ⊕ MN−1

j+1 .

The first fact is trivial. The second can be worked out using amplitude cohomology,
which characterizes truncated N-complexes. Indeed the algorithm we have described
in 3.8 enables us first to determine the fusion rule for M1

0 ⊗ Mu
j (u < N − 1), that

is to determine the non-projective indecomposable direct summands. More precisely,
since u < N − 1, the smallest non vanishing amplitude cohomology degree is j, with
smallest amplitude u + 2, providing Mu+1

j as a direct factor. The remaining amplitude

cohomology corresponds to Mu−1
j+1 . A dimension computation shows that in this case

there are no remaining projective summands.

On the converse, the third case is an example of vanishing cohomology. In fact,
since MN−1

j is projective, it is known at the Hopf algebra level that X ⊗ MN−1
j is

projective. A direct dimension computation between projectives shows that the formula
holds. �
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