
HAL Id: hal-00069724
https://hal.science/hal-00069724

Preprint submitted on 22 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circle Formation of Weak Robots and Lyndon Words
Yoann Dieudonné, Franck Petit

To cite this version:
Yoann Dieudonné, Franck Petit. Circle Formation of Weak Robots and Lyndon Words. 2006. �hal-
00069724�

https://hal.science/hal-00069724
https://hal.archives-ouvertes.fr

cc
sd

-0
00

69
72

4,
 v

er
si

on
 1

 -
 2

2
M

ay
 2

00
6

LaRIA : Laboratoire de Recherche en Informatique d’Amiens
Université de Picardie Jules Verne – CNRS FRE 2733

33, rue Saint Leu, 80039 Amiens cedex 01, France
Tel : (+33)[0]3 22 82 88 77

Fax : (+33)[0]03 22 82 54 12
http://www.laria.u-picardie.fr

Circle Formation of Weak Robots
and

Lyndon Words

Yoann Dieudonnéa Franck Petita

LaRIA RESEARCH REPORT : LaRIA-2006-05
(May 2006)

a LaRIA, Université de Picardie Jules Verne, {Yoann.Dieudonne,Franck.Petit}@u-picardie.fr

Circle Formation of Weak Robots and Lyndon Words

Yoann Dieudonné Franck Petit

LaRIA, CNRS FRE 2733

Université de Picardie Jules Verne

Amiens, France

Abstract

A Lyndon word is a non-empty word strictly smaller in the lexicographic order than any of its
suffixes, except itself and the empty word. In this paper, we show how Lyndon words can be used
in the distributed control of a set of n weak mobile robots. By weak, we mean that the robots are
anonymous, memoryless, without any common sense of direction, and unable to communicate in
an other way than observation. An efficient and simple deterministic protocol to form a regular
n-gon is presented and proven for n prime.

1 Introduction

A Lyndon word is a non-empty word strictly smaller in the lexicographic order than any of its suffixes,
except itself and the empty word. Lyndon words have been widely studied in the combinatorics of
words area [Lot83]. However, only a few papers consider Lyndon words addressing issues in other
areas than word algebra, e.g., [Che04, DR04, SM90].

In this paper, we address the class of distributed systems where computing units are autonomous
mobile robots (or agents), i.e., devices equipped with sensors which do not depend on a central
scheduler and designed to move in a two-dimensional plane. Also, we assume that the robots cannot
remember any previous observation nor computation performed in any previous step. Such robots
are said to be oblivious (or memoryless). The robots are also uniform and anonymous, i.e, they all
have the same program using no local parameter (such that an identity) allowing to differentiate any
of them. Moreover, none of them share any kind of common coordinate mechanism or common sense
of direction, and they communicate only by observing the position of the others.

The motivation behind such a weak and unrealistic model is the study of the minimal level of
ability the robots are required to have in the accomplishment of some basic cooperative tasks in
a deterministic way [SS90, SY99, FPSW99, Pre02]. Among them, the Circle Formation Problem
(CFP) has received a particular attention. The CFP consists in the design of a protocol insuring
that starting from an initial arbitrary configuration, all n robots eventually form a circle with equal
spacing between any two adjacent robots. In other words, a regular n-gon must be formed when the
protocol terminated.

An informal CFP algorithm is presented in [Deb95] to show the relationship between the class
of pattern formation algorithms and the concept of self-stabilization in distributed systems [Dol00].
In [SS96], an algorithm based on heuristics is proposed for the formation of a cycle approximation.
A CFP protocol is given in [SY99] for non-oblivious robots with an unbounded memory. Two deter-
ministic algorithms are provided in [DK02, CMN04]. In the former work, the robots asymptotically

2

converge toward a configuration in which they are uniformly distributed on the boundary of a cir-
cle. This solution is based on an elegant Voronoi Diagram construction. The latter work avoid
this construction by making an extra assumption on the initial position of robots. All the above
solutions work in a semi-asynchronous model. The solution in [Kat05] works on a fully asynchronous
model, but when n is even, the robots may only achieve a biangular circle—the distance between
two adjacent robots is alternatively either α or β.

In this paper, we show a straight application of the properties of Lyndon words. They are used
to build and to prove an efficient and simple deterministic protocol solving the CFP for a prime
number of robots.

2 Preliminaries

In this section, we define the distributed system and the problem considered in this paper. Next,
the Lyndon words are introduced.

Distributed Model. We adopt the model of [SY96]. The distributed system considered in this pa-
per consists of n robots r1, r2, · · · , rn, where n is prime—the subscripts 1, . . . , n are used for notational
purpose only. Each robot ri, viewed as a point in the Euclidean plane, move on this two-dimensional
space unbounded and devoid of any landmark. When no ambiguity arises, ri also denotes the point
in the plane occupied by that robot. It is assumed that the robots never collide and that two or more
robots may simultaneously occupy the same physical location. Any robot can observe, compute and
move with infinite decimal precision. The robots are equipped with sensors allowing to detect the
instantaneous position of the other robots in the plane. Each robot has its own local coordinate
system and unit measure. The robots do not agree on the orientation of the axes of their local
coordinate system, nor on the unit measure. They are uniform and anonymous, i.e, they all have
the same program using no local parameter (such that an identity) allowing to differentiate any of
them. They communicate only by observing the position of the others and they are oblivious, i.e.,
none of them can remember any previous observation nor computation performed in any previous
step.

Time is represented as an infinite sequence of time instant t0, t1, . . . , tj , . . . The set of positions
in the plane occupied by the n robots at a given time instant tj (j ≥ 0) is called a configuration of
the distributed system. At each time instant tj (j ≥ 0), each robot ri is either active or inactive.
The former means that, during the computation step (tj , tj+1), using a given algorithm, ri computes
in its local coordinate system a position pi(tj+1) depending only on the system configuration at tj ,
and moves towards pi(tj+1)—pi(tj+1) can be equal to pi(tj), making the location of ri unchanged.
In the latter case, ri does not perform any local computation and remains at the same position.

The concurrent activation of robots is modeled by the interleaving model in which the robot
activations are driven by a fair scheduler. At each instant tj (j ≥ 0), the scheduler arbitrarily
activates a (non empty) set of robots. Fairness means that every robot is infinitely often activated
by the scheduler.

The Circle Formation Problem. Consider a configuration at time tk (k ≥ 0) in which the posi-
tions of the n robots are located at distinct positions on the circumference of a non degenerate circle
C—the radius of C is greater than zero. At time tk, the successor rj of any robot ri, i, j ∈ 1 . . . n

3

and i 6= j, is the unique robot such that no robot exists between ri and rj on C in the clockwise

direction. Given ri and its successor rj on C centered in O, r̂iOrj denotes the angle between ri and
rj , i.e., the angle centered in O and with sides the half-lines [O, ri) and [O, rj).

The problem considered in this paper consists in the design of a distributed protocol which
arranges a group of n (n ≥ 2) mobile robots with initial distinct positions into a non degenerate
regular n-gon in finite time , i.e., the robots eventually take place in a non degenerate circle C

centered in O such that for every pair ri, rj of robots, if rj is the successor of ri on C, then r̂iOrj = α,
where α = 2π

n
. Angle α is called the characteristic angle of the n-gon.

Lyndon Word. Let an ordered alphabet A be a finite set of letters. Denote ≺ an order on A. A
non empty word w over A is a finite sequence of letters a1, . . . , ai, . . . , al, l > 0. The concatenation of
two words u and v, denoted u◦v or simply uv, is equal to the word a1, . . . , ai, . . . , ak, b1, . . . , bj , . . . , bl

such that u = a1, . . . , ai, . . . , ak and v = b1, . . . , bj , . . . , bl. Let ǫ be the empty word such that for
every word w, wǫ = ǫw = w. The length of a word w, denoted by |w|, is equal to the number of
letters of w—|ǫ| = 0.

A word u is lexicographically smaller than or equal to a word v, denoted u � v, iff there exists
either a word w such that v = uw or three words r, s, t and two letters a, b such that u = ras, v = rbt,
and a ≺ b.

Let k and j be two positive integers. The kth power of a word w is the word denoted sk such
that s0 = ǫ, and sk = sk−1s. A word u is said to be primitive if and only if u = vk ⇒ k = 1. The
jth rotation of a word w, notation Rj(w), is defined by:

Rj(w)
def
=

{

ǫ if w = ǫ

aj, . . . , al, a1, . . . , aj−1 otherwise (w = a1, . . . , al, l ≥ 1)

Note that R1(w) = w. A word w is said to be minimal iff ∀j ∈ 1, . . . , l, w � Rj(w).

Definition 1 (Lyndon Word) A word w (|w| > 0) is a Lyndon word iff w is nonempty, primitive
and minimal, i.e., w 6= ǫ and ∀j ∈ 2, . . . , |w|, w ≺ Rj(w).

For instance, if A = {a, b}, then a, b, ab, aab, abb are Lyndon words, whereas aba, and abab are
not— aba is not minimal (aab � aba) and abab is not primitive (abab = (ab)2).

3 Algorithm

In this section, we present our main result based on Lyndon words for n robots, n being prime and
greater than or equal to 5. Note that if the system contains two robots only, then CFP is trivially
solved because they always form a 2-gon. If n = 3, then the three robots always form a triangle,
which must be equilateral to form a regular 3-gon. If the triangle is not equilateral, then either (1)
the three robots belongs to the same line, (2) they form an isosceles triangle, or (3) they form an
ordinary triangle. In all cases, it is always possible to elect a unique robot as the leader which moves
to the unique position making the triangle equilateral—a formal algorithm for n = 3 is given and
proved in the appendix.

The technique developed in this paper is based on a Leader Election using properties of Lyndon
words. The words we consider are made over the alphabet such that the letters are the angles
between neighboring robots located on the boundary of a unique non degenerate circle. So, we focus

4

only on configurations where the robots are either all or all but one on the boundary of the circle.
Thus, we integrate the first algorithm proposed in [DK02] in our solution, in the sequel refered to
Algorithm φcircle.

Theorem 2 ([DK02]) Starting from an arbitrary configuration where n robots are located at distinct
positions, Algorithm φcircle leads the robots into a configuration where the robots are located on the
boundary of a non degenerate circle.

In the rest of this section, we first present how Lyndon words are used to make a leader election
among n robots located on the boundary of a unique circle. Next, we define a particular type of
configurations called oriented configurations. We then give an algorithm to arrange the robots in
a regular n-gon starting from an oriented configuration. Finally, we provide our general scheme to
solve the Circle Formation Problem.

3.1 Leader Election

In this subsection, we use the subscript i in the notation of a robot ri, i ∈ 1 . . . n, to denote the order
of the robots in an arbitrary clockwise direction on C. We proceed as follows: A robot is arbitrarily
chosen as r1 on C. Next, for any i ∈ 1 . . . n−1, ri+1 denotes the successor of ri on C (in the clockwise
direction). Finally, the successor of rn is r1.

Let the alphabet A be the set of k (k ≤ n) strictly positive reals x1, x2, . . . , xk such that ∀i ∈

1 . . . n, there exists j ∈ 1 . . . k such that xj = ̂riOri+1, where O is the center of C. An example of
such an alphabet is shown in Figure 1—A = {x1, x2, x3, x4, x5, x6, x7, x8}.

The order on A is the natural order (<) on the reals. So, the lexicographic order � on the words
made over A is defined as follows:

u � v
def
≡ (∃w| v = uw) ∨ (∃r, s, t, ∃a, b ∈ A| (u = ras) ∧ (v = rbt) ∧ (a < b))

For instance, if A = {π
3
, π

2
}, then (π

3
) � (π

3
π
3
) � (π

3
π
2
) � (π

3
π
2

π
2
) � (π

2
).

For each robots ri, let us define the word SA(ri) (respectively, SA(ri)) over A (SA stands for
“string of angles” [CP02]) as follows:

SA(ri) = xixi+1 . . . xnx1 . . . xi−1

(resp. SA(ri) = xi−1 . . . x1xnxn−1 . . . xi)

An example showing a string of angle is given in Figure 1. Note that for every robot ri, |SA(ri)| =
|SA(ri)| = n. Moreover, if the configuration is a regular n-gon, then for every robot ri, SA(ri) =
SA(ri) = αn, where α = 2π

n
is the characteristic angle of the n-gon.

Lemma 3 If all the robots are at distinct positions on the boundary of a same circle C without
forming a regular n-gon, then there exists exactly one robot ri such that SA(ri) is a Lyndon Word.

Proof. We prove this in two steps. First, we show that ri always exists. Next, we show the
uniqueness of ri.

Existence. Let minSA be the string of angle such that ∀i ∈ 1 . . . n, minSA � SA(ri). Let us
show that minSA is a Lyndon word. By definition, minSA is minimal. Assume by contradiction
that minSA is not primitive. So, by definition, there exists a word u such as minSA = uk with

k > 1. By definition of the kth power of a word u, |minSA| = k ∗ |u|, |u| being a divisor of n. Since
|minSA| = n and n is prime, there are only two cases to consider:

5

r i

x1x1

O

C

x2
x1

x2 x3

x1

x4

x5

x6

x

x8

x1x1

7

Figure 1: SA(ri) = x1(x2)
2x3x1x4x5x6x7x1x8.

1. |u| = |minSA|. Since |minSA| = k ∗ |u|, this implies that k = 1, which contradicts k > 1.

2. |u| = 1. In this case, u is a letter (∈ A), and minSA = un. Since the letters are angles,
the angle between every pair of successive robots is equal to the value u. So, the robots form
a regular n-gon and u = α, the characteristic angle of the n-gon. This contradicts that the
configuration is not a regular n-gon.

Unicity. Assume by contradiction that there exists two different robots ri, rj (ri 6= rj) such that
SA(ri) and SA(rj) are Lyndon words. Since SA(rj) (respectively, SA(rj)) is a Lyndon word, by
Definition 1, ∀k ∈ 2 . . . n, SA(ri) ≺ Rk(SA(ri)) (resp. ∀k′ ∈ 2 . . . n, SA(rj) ≺ Rk(SA(rj))). Since
ri 6= rj , there exists k ∈ 2 . . . n such that SA(rj) = Rk(SA(ri)) (resp. there exists k′ ∈ 2 . . . n such
that SA(ri) = Rk′(SA(rj))). Hence, SA(ri) ≺ SA(rj) and SA(rj) ≺ SA(ri). A contradiction. 2

Clearly, following the reasoning as for Lemma 3:

Lemma 4 If all the robots are at distinct positions on the boundary of a same circle C without
forming a regular n-gon, then there exists exactly one robot ri such that SA(ri) is a Lyndon Word.

Let LWS be the set of robots ri such that SA(ri) or SA(ri) is a Lyndon word.

Lemma 5 If all the robots are at distinct positions on the boundary of a same circle C without
forming a regular n-gon, then |LWS| = 2.

Proof. From Lemmas 3 and 4, there exists exactly one robot ra such that SA(ra) is a Lyndon
word, and exactly one robot rb such that SA(rb) is a Lyndon word. However, ra can be the same
robot as rb. So, 1 ≤ |LWS| ≤ 2.

Let assume that |LWS| = 1, i.e., there exists a unique robot r such that both SA(r) = a1a2 . . . an

and SA(r) = anan−1 . . . a1 are Lyndon words. Since the robots do not form a regular n-gon, SA(r) 6=
an

1 . So, SA(r) contains at least two different letters. There are three cases to consider:

1. an ≺ a1. So, ana1a2 . . . an−1 ≺ a1 . . . an−1an, i.e., Rn(SA(r)) ≺ SA(r). This contradicts that
SA(r) is a Lyndon word—by Definition 1, SA(r) ≺ Rn(SA(r)).

2. a1 ≺ an. So, a1anan−1 . . . a2 ≺ anan−1 . . . a2a1, i.e., Rn(SA(r)) ≺ SA(r). This contradicts that
SA(r) is a Lyndon word—by Definition 1, SA(r) ≺ Rn(SA(r)).

6

3. a1 = an. Since SA(r) is a Lyndon word, by Definition 1, we have a1a2 . . . an−1an ≺ ana1a2 . . . an−1.
Since a1 = an, we have a2 . . . an−1an ≺ a1a2 . . . an−1. Since a1 = an again, we have also
a2 . . . an−1ana1 ≺ a1a2 . . . an−1an, i.e., R2(SA(r)) ≺ SA(r). This contradicts Definition 1,
SA(r) ≺ R2(SA(r)).

2

Now, consider the distributed computation of string of angles. We borrow Algorithm 1 from
[CP02] which describes a function called Function ComputeSA. Each robot ri arbitrarily determines
its own clockwise direction of C in its local coordinate system. Note that since the robots are uniform,
all of them apply the same algorithm to determine the clockwise direction. However, the robots do
not share a common coordinate system. So, for any pair ri, rj , the clockwise direction of ri (resp.,
rj) may be the counterclockwise of rj (resp., ri).

function ComputeSA(rj): word
SA := ǫ; r := rj ;
for (k = 1; k ≤ n; k := k + 1) do

r′ := Succ(r); SA := SA ◦ Angle(r, r′); r := r′;
done
return SA;

Algorithm 1: Function ComputeSA for any robot ri

Algorithm 1 uses two functions, Succ(r) and Angle(r, r′). The former returns the successor of
r in the local coordinate system of the robot executing Succ(r). The latter returns the absolute

value of r̂Or′, where O is the center of C. Using this algorithm, each robot ri computes SA(rj),

∀j ∈ 1 . . . n. Similarly, for each robot rj, SA(rj) can also be easily computed by any ri by either
computing the mirroring word of SA(rj) or following Algorithm 1 and replacing Function Succ(r)
by a function Pred(r), which returns the unique predecessor of r in the counterclockwise direction.

r a
r br b

r L

O

C1

C2

Figure 2: An example showing how the leader robot rL is computed (n = 11).

Let us now describe how the above results can be used to elect a leader. An example showing
our method is given in Figure 2 with n = 11. Following Lemmas 3, 4, and 5, when any robot
computes the set LWS, then LWS = {ra, rb} and ra and rb refer to the same robots for every robot.
Consider both half-lines [O, ra) and [O, rb). These two half-lines divide the circle C into two sides,

7

C1 and C2, where nC1 (resp. nC2) represent the number of robots inside C1 (resp C2). Note that
nC1 + nC2 = n − 2. Since n − 2 is odd (n is prime), there exists one side with an even number of
robots, and one side with an odd number of robots. Without lost of generality, let us assume that

nC1 is odd. Let rL be the unique robot which is the median robot on C1, i.e., the (⌊nC1

2
⌋ + 1)th

robot starting indifferently from ra or rb.
Let us define Function Elect() which returns the unique leader robot rL for every robot ri.

Lemma 6 If all the robots are at distinct positions on the boundary of a same circle C without
forming a regular n-gon, then for every robot ri, Function Elect() returns a unique leader robot rL

among the n robots.

3.2 Oriented Configuration

A configuration is said to be oriented if the following conditions hold:

1. All the robots are at distinct positions on the same circle CO, except only one of them, called
rO, located inside CO;

2. rO is not located at the center O of CO;

3. there is no robot on CO ∩ [O, rO).

r
OO

CO

O

Figure 3: An oriented configuration (n = 11).

An example of an oriented configuration is shown in Figure 3 with n = 11. Let us denote an
oriented configuration by the pair of its two main parameters, i.e., (CO, rO). Two oriented configu-

rations (Cα
O
, rα

O
) and (Cβ

O
, r

β
O
) are said to be equivalent if Cα

O
= C

β
O

and both rα
O

and r
β
O

are located
at the same position. In other words, the only possible difference between two equivalent oriented
configurations (Cα

O
, rα

O
) and (Cβ

O
, r

β
O
) is different positions of robots between Cα

O
and C

β
O
.

We now describe Procedure φO shown in Algorithm 2. This procedure assumes that the con-
figuration is oriented. In such a configuration, we will build a partial order among the robots to
eventually form an n-gon.

Let p1, . . . , pn be the final positions of the robots when the regular n-gon is formed. Let p1 =
CO ∩ [O, rO). Then, for each k ∈ 2 . . . n, pk is the point on CO such that p̂1Opk = 2kπ

n
. Clearly, while

the distributed system remains in an equivalent oriented configuration, all the final position remain
unchanged for every robot. A position pk, k ∈ 2 . . . n, is said to be free if no robot takes place at pk.

8

procedure φO

CO := circle where n − 1 robots are located;
O := center of CO;
rO := robot inside CO;
p1 := CO ∩ [O, rO);
PS := FindFinalPos(CO, p1);
FRS := set of robots which are not located on a position in PS, except rO;
if FRS = ∅
then // Every robot on CO is located on a final position (∈ PS).

if ri = rO then move to Position p1;
endif

else EFR := ElectFreeRobots(FRS);
if ri ∈ EFR then move to Position Associate(ri);

Algorithm 2: Procedure φO for any robot ri in an oriented configuration if n ≥ 5

Similarly, a robot ri on CO (i.e., ri 6= rO) is called a free robot if its current position does not belong
to {p2, . . . , pn}. Define Function FindFinalPos(CO, p1) which returns the set of final positions on
CO with respect to p1. Clearly, all the robots compute the same set of final positions, stored in PS.
Each robot also temporarily stores the set of free robots in the variable called FRS.

Basically, if FRS = ∅ while the n-gon is not formed, then it remains rO only to move from its
current position inside CO to p1. Otherwise, the robots move in waves to the final positions following
the order defined by Function ElectFreeRobots(). The elected robots are the closest free robots
from p1. Clearly, the result of Function ElectFreeRobots() return the same set of robots for every
robot. Also, the number of elected robots is at most equal to 2, one for each direction on CO with
respect to p1. Note that it can be equal to 1 when there is only one free robot, i.e., when only one
robot on CO did not reach the last free position.

Function Associate(r) assigns a unique free position to an elected robot as follows:
If ElectFreeRobots() returns only one robot r, then r is associated to the unique free remaining
position p. This allows r to move to p. If ElectFreeRobots() returns a pair of robots {ra, rb}
(ra 6= rb), then the closest robot to p1, in the clockwise (respectively, counterclockwise) is associated
with the closest position to p1 in the clockwise (resp., counterclockwise) direction. Note that, even
if the robots may have opposite clockwise directions, ra, rb, and their associated positions are the
same for every robot.

Lemma 7 If the robots are in an oriented configuration at time tj (j ≥ 0), then at time tj+1, either
the robots are in an equivalent oriented configuration or they form a regular n-gon.

Proof. By contradiction, assume that starting from an oriented configuration at time tj , the
robots are not in an equivalent oriented configuration and they do not form a regular n-gon at time
tj+1. By assumption, at each time instant tj, at least one robot is active. So, by fairness, starting
from an oriented configuration, at least one robot executes Procedure φO. Assume first that no robot
executing Procedure φO moves from tj to tj+1. In that case, since the robots are located on the same
positions at tj and at tj+1, the robots are in the same oriented configuration at tj+1. An oriented
configuration being equivalent to itself, this contradicts the assumption. So, at least one robot moves
from tj to tj+1. There are two cases to consider:

9

1. No final position is free at time t. So, every robots on CO (6= rO) is located on a final position
and no final position is free. Then, for every robot executing Procedure φO, FRS = ∅. In that
case, only rO is allowed to move. Since by assumption at least one robot moves from tj to tj+1,
rO moves from its current position to p1. Therefore, the robots form a regular n-gon at time
tj+1. A contradiction.

2. Final positions are free at time t. Then, for every robot executing Procedure φO, FRS 6= ∅. By
construction, there exists either one or two robots which belongs to the set EFR and rO is not
allowed to move. Therefore, at least one of them moves from its current position on CO to its
associated free position. Obviously, the robots are again in distinct positions from tj to tj+1.
Furthermore, since all the final positions are on CO and rO remains at the same position from
tj to tj+1, the robots are in an equivalent oriented configuration at tj+1. A contradiction.

2

Theorem 8 Starting from an oriented configuration, Algorithm φoriented solves the Circle Formation
Problem.

Proof. It follows from the proof of Lemma 7 that in a oriented configuration, there exists at least
one robot which can move to any final position. The theorem follows by fairness and Lemma 7. 2

3.3 Main Algorithm

The main part of our solution is presented in Algorithm 4. Using Algorithm φcircle [DK02], the robots
are first placed in a circle C. Then, a robot is pointed out as the leader rO—using Function Elect()
described in Subsection 3.1. Next, Robot rO moves inside the circle on the segment [O, rO], at a
position arbitrarily chosen at the middle of [O, rO]. Finally, following the partial order provided by
Procedure φO, the robots eventually take place in a regular n-gon.

if the robots do not take place in a regular n-gon
then if the robots are in an oriented configuration

then Execute Procedure φO

else if the robots take place in a circle C

then if ri = Elect() //Robot ri is the leader robot

then move to Position p such that p = Dist(ri,O)
2 , O being the center of C;

endif
else Execute Procedure φcircle;

Algorithm 3: Procedure φO for any robot ri in an oriented configuration if n ≥ 5

Algorithm 4: (φn-gon) Algorithm for any robot ri if n ≥ 5

Theorem 9 Algorithm φn-gon solves the problem of circle formation for n ≥ 5 robots.

Proof. From Algorithm 4, if the robots form an n-gon, then no robot moves and the the robots
form an n-gon forever. If the robots do not form an n-gon, then from Theorem 2, Algorithm 4 again,
Lemma 6, and Theorem 8, the robots eventually form an n-gon. 2

10

4 Conclusion

We showed how Lyndon words can be used in the distributed control of a set of n anonymous robots
being memoryless, without any common sense of direction, and unable to communicate in an other
way than observation. An efficient and simple deterministic protocol to form a regular n-gon was
presented for a prime number of robots. We believe that the new idea presented in this paper should
help in the design of the protocol for the Circle Formation Problem with any arbitrary number of
robots. That would be the main goal of our future research.

Acknowledgements

We are grateful to Gwénaël Richomme for the valuable discussions.

References

[Che04] M Chemillier. Periodic musical sequences and lyndon words. Soft Computing, 8(9):611–616, 2004.

[CMN04] I Chatzigiannakis, M Markou, and S Nikoletseas. Distributed circle formation for anonymous
oblivious robots. In 3rd Workshop on Efficient and Experimental Algorithms, pages 159–174,
2004.

[CP02] M Cieliebak and G Prencipe. Gathering autonomous mobile robots. In 9th International Col-
loquium on Structural Information and Communication Complexity (SIROCCO 9), pages 57–72,
2002.

[Deb95] X A Debest. Remark about self-stabilizing systems. Communications of the ACM, 38(2):115–117,
1995.

[DK02] X Defago and A Konagaya. Circle formation for oblivious anonymous mobile robots with no
common sense of orientation. In 2nd ACM International Annual Workshop on Principles of Mobile
Computing (POMC 2002), pages 97–104, 2002.

[Dol00] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[DR04] O Delgrange and E Rivals. Star: an algorithm to search for tandem approximate repeats. Bioin-
formatics, 20(16):2812–2820, 2004.

[FPSW99] P Flocchini, G Prencipe, N Santoro, and P Widmayer. Hard tasks for weak robots: The role of com-
mon knowledge in pattern formation by autonomous mobile robots. In 10th Annual International
Symposium on Algorithms and Computation (ISAAC 99), pages 93–102, 1999.

[Kat05] B Katreniak. Biangular circle formation by asynchronous mobile robots. In 12th International
Colloquium on Structural Information and Communication Complexity (SIROCCO 2005), pages
185–199, 2005.

[Lot83] M Lothaire. Combinatorics on words. Addison-Wesley, 1983.

[Pre02] G Prencipe. Distributed coordination of a set of autonomous mobile robots. Technical Report
TD-4/02, Dipartimento di Informatica, University of Pisa, 2002.

[SM90] R Siromoney and L Mathew. A public key cryptosystem based on lyndon words. Information
Processing Letters, 35(1):33–36, 1990.

[SS90] K Sugihara and I Suzuki. Distributed motion coordination of multiple mobile robots. In IEEE
International Symosium on Intelligence Control, pages 138–143, 1990.

11

[SS96] K Sugihara and I Suzuki. Distributed algorithms for formation of geometric patterns with many
mobile robots. Journal of Robotic Systems, 3(13):127–139, 1996.

[SY96] I Suzuki and M Yamashita. Agreement on a common x-y coordinate system by a group of mobile
robots. Intelligent Robots: Sensing, Modeling and Planning, pages 305–321, 1996.

[SY99] I Suzuki and M Yamashita. Distributed anonymous mobile robots - formation of geometric pat-
terns. SIAM Journal of Computing, 28(4):1347–1363, 1999.

12

A Appendix : Circle Formation for 3 Robots

The aim of the algorithm, shown in Algorithm 5, is to lead the 3 robots to eventually take place in
a regular 3-gon, i.e., an equilateral triangle. The correctness proof of Algorithm 5 is based on the
following lemma:

Lemma 10 If the three robots {r1, r2, r3} do not form an equilateral triangle, then it is possible to
elect only one robot among them.

Proof. If {r1, r2, r3} do not form an equilateral triangle, then either (Case 1) they belongs to the
same line, (Case 2) they form an isosceles triangle, or (Case 3) they form an ordinary triangle. In
the first case, the elected robot is the median one, which is unique. In Case 2, the elected robot is
the one placed at the unique angle different from the two others. In Case 3, there exists a unique
angle which is strictly smallest than the others. The elected robots is the one placed at this unique
angle. 2

Lemma 10 allows to define the Boolean function Elect(), which can be executed by any robots
ri. Elect() returns the unique leader robot according to Lemma 10.

if the robots do not take place in a regular 3-gon
then if ri = Elect()

then (rj , rk) denotes the two other robots than myself;
move to Position p such that {p, rj , rk} form a regular 3-gon;

Algorithm 5: (φ3-gon) Algorithm for any robot ri if n = 3

Theorem 11 Algorithm φ3-gon solves the problem of circle formation for three robots.

Proof. From Lemma 10, we can distinguish a unique robot, called the leader. According to
Algorithm 5, if the robots do not form an equilateral triangle at time t, then only the leader is
allowed to move. Since by assumption at least one robot is activated at each instant time, at time
t + 1 the robots form an equilateral triangle. 2

13

