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Abstract

In this study, we consider acoustic operators in a random quantum waveguide.
Precisely we deal with the acoustic operator of the form −∇̺∇ on a random strip.
We prove that the integrated density of states of the relevant operator exhibits
Lifshitz behavior at the bottom of the spectrum. This result could be used to prove
localization of acoustic waves at the bottom of the spectrum.

2000 Mathematics Subject Classification :81Q10, 35P05, 37A30,47F05.

Keywords and phrases :spectral theory, random operators, integrated density of states, Lifshitz tails,

localization. waveguide

1 Introduction

The study of quantum waves on quantum waveguide has gained much interest and has

been intensively studied during the last years for their important physical consequences.

The main reason is that they represent an interesting physical effect with important

applications in nanophysical devices, but also in flat electromagnetic waveguides [28].

Exner, and his research team have done many works in this field. They have obtained

results in different contexts [8, 9, 10, 11]. Also in [17, 24] we have research conducted in

this area; the first is given for the discrete case.

We notice that originally studied in the context of quantum mechanical electrons. In the

1Département de Mathématiques Physiques I.P.E.I. Monastir, 5000 Monastir Tunisie.
Researches partially supported by DGRSRT-CNRS 06/R 15-04 and the Research Unity 01/UR/ 15-01
projects.
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present work we are inspired from the model given in Kleespies and Stollmann work [24],

for the Laplacian operator to extend this in the context of classical waves in random

quantum wave-guides. We consider the acoustic operator of the following form,

H = −∇̺(x) · ∇ = −
2∑

i=1

∂xi
̺(x1, x2)∂xi

. (1.1)

Here ̺(x1, x2) is a bounded measurable function which represents the density of the

medium where the wave propagates. The great interest of this operator, both from the

physical and the mathematical point of view, is quite obvious and known [36]. Below we

give a brief description of the origin of this operator.

1.1 The acoustic operator

An acoustic wave is governed by the following system:

(S1)

{
κ∂p

∂t
= −∇.u

̺∂u
∂t

= −∇p.
Here at time t and position x, p = p(x, t) represents the pressure, while u(x, t) represents

the velocity, κ = κ(x) is the compressibility and ̺(x) is the mass density of the media at

point x. From (S1) one deduces that p satisfies the equation

κ
∂2p

∂t2
= ∇ · 1

̺
∇p. (1.2)

We define the momentum potential ψ = ψ(x, t) by ̺u = −∇ψ. So, it follows from (S1)

that ψ satisfies,

κ
∂p

∂t
= ∇ · 1

̺
∇ψ; and

∂ψ

∂t
= p. (1.3)

Therefore ψ obeys the following second order partial differential equation

κ
∂2ψ

∂t2
= ∇ · 1

̺
∇ψ. (1.4)

Motivated by equations (1.2), (1.3) and (1.4), we set

H = −∇ · 1

̺
· ∇ =

d∑

i=1

∂xi

1

̺(x)
∂xi
. (1.5)

H is called the acoustic operator. It is a partial differential operator which is elliptic under

more assumptions on ̺.
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1.2 The Integrated density of states

As this paper is devoted to the study of the behavior of the integrated density of states,

we recall that it is defined as follows: We note by HΛ the restriction of H to Λ with

self-adjoint boundary conditions. As Hω is elliptic, the resolvent of HΛ is compact and

consequently, the spectrum of HΛ is discrete and made of isolated eigenvalues of finite

multiplicity [35]. We define

NΛ(E) =
1

| Λ | · #{eigenvalues of HΛ ≤ E}. (1.6)

Here | Λ | is the volume of Λ in the Lebesgue sense and #E is the cardinal of E.

It is shown that the limit of NΛ(E) when Λ tends to R
d exists and is independent of the

boundary conditions. It is called the integrated density of states of Hω (IDS as an

acronym). See [20, 34].

The question we are interested in here deals with the behavior of N at the bottom of the

spectrum of H . Let us give a brief history of this subject. In 1964, Lifshitz [29] argued

that, for a Schrödinger operator of the form H = −∆ + Vω, there exists c1, c2, α > 0 such

that N(E) satisfies the asymptotic :

N(E) ≃ c1 exp(−c2(E − E0)
−α), E → E0. (1.7)

Here E0 is the bottom of the spectrum of H . The behavior (1.7) is known as Lifshitz

tails (for more details see part IV.9.A of [34]), and α is the Lifshits exponent. Usually

such an exponent is of the form −d
2
, where d is the dimension. We notice that the Lifshitz

behavior is among the properties characterizing random operators.

Lifshitz also expected (1.7) at fluctuating edges inside the spectrum. We refer to this

asymptotic by “internal Lifshitz tails”.

The principal results known about Lifshitz tails are mainly shown for Schrödinger op-

erators on the whole space (for continuous and discrete cases). (See [2, 20, 26, 34] and

references therein).

Lifshitz tails for an operator of type (1.1), were the subject of previous works [30, 31],

where we obtain the behavior of N at the internal band edges of the spectrum of (1.1).

For the bottom of the spectrum it is known that when the operator (1.1), acts on the

whole space, the IDS has a weyl and decreases only polynomially [32].

In [18], the authors derive regularity properties for the density of states in the Anderson
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model on a one-dimensional strip for potentials with singular continuous distributions and

show that the density of states is infinitely differentiable.

An investigation of a family of Dirichlet Laplacians on randomly dented strips in R
2; is

considered in [24]. They prove dense point spectrum with exponentially localized eigen-

functions near its fluctuation boundary at the bottom of the spectrum. The proof is related

to the Lifshitz tails on this region of the spectrum.

1.3 Results and discussion

1.3.1 The model

Let D0 be the strip R× (0, Dmax). Let (ωγ)γ∈Z be a family of independent and identically

distributed random variables taking value in [0, d] for 0 < d < Dmax. We denote by

(P,F ,Ω) the corresponding probability space and assume that

(A.1)

lim
εto0

log log(P{ω0 ∈ (0, ε)})
log ε

= 0, (1.8)

and the main value m = E(ω0) =

∫
xdP > 0.

The random strip is defined as follows: The deviation of the width of the random strip

from Dmax is given by the γ-th coordinate ωγ of ω ∈ Ω. For the family of points in R
2;

{(γ, (Dmax − ωγ))γ∈Z} we consider p(ω) : R → [Dmin, Dmax] as a polygon joining these

points. Let

Dω = {(x1, x2) ∈ R
2; 0 < x2 < p(ω)(x1)}.

This domain is drawn in the picture 1:
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Picture 1.

Let H(̺) be the following quadratic form defined as follow: for u ∈ C∞
0 (Dω) = D(H(̺))

H(̺)[u, u] =

∫

Dω

̺(x)∇u(x)∇u(x)dx.

Notice that here we have a family of quadratic forms acting on different domains. There

is a family of random maps (ϕω) that transform these different domains Dω to the non-

random domain, D0 by dilatation (a change of variables). This transforms the randomness

from the domain say to ̺ which we denote by ̺ω. Thus a random medium will be modeled

by an ergodic random self-adjoint operator. Indeed the family of maps yield an equivalent

quadratic form

H(̺ω)[u, u] =

∫

D0

̺ω(x)∇u(x)∇u(x)dx.

H(̺ω) is a symmetrical, closed and positive quadratic form. Let Hω be the restriction of

the operator given by (1.1) to the domain Dω with Dirichlet boundary conditions. Hω is

defined to be the self-adjoint operator associated to H(̺ω) [35]. Notice that ̺ω = ̺(ϕ−1
ω ),

consequently if we consider τγ the shift function i.e (τγu)(x1, x2) = u(x1 − γ, x2) we get

that

τγ̺ωτ−γ = ̺τγω.

This ensures that Hω is a measurable family of self-adjoint operators and ergodic [20, 34].

Indeed, (τγ)γ∈Z is a group of unitary operators on L2(D0) and for γ ∈ Z we have

τγHωτ−γ = Hτγω.

According to [20, 34] we know that there exists Σ,Σpp,Σac and Σsc closed and non-random

sets of R such that Σ is the spectrum of Hω with probability one and such that if σpp

(respectively σac and σsc) design the pure point spectrum (respectively the absolutely

continuous and singular continuous spectrum) of Hω, then Σpp = σpp,Σac = σac and

Σsc = σsc with probability one.

2 Results and discussions

2.1 The result

We notice that as P{ω0 ∈ (0, ε)} 6= 0, one gets that Dω contains rectangular boxes of

length k in the x1 direction and width Dmax − ε for any d > ε > 0 and k large P-almost

5



surely. Using the fact that
1

̺1
≤ ̺ ≤ ̺1 and the min-max principle by a comparison to

the Laplacian one gets that there exists a constant ̺0 such that
1

̺1

≤ ̺0 ≤ ̺1 such that

for P almost every ω ∈ Ω.

inf(Σ) = E0 =
π2

̺0D2
max

. (2.9)

Our study is in a neighborhood of this point.

Theorem 2.1 Under the assumption (A.1), the integrated density of states of Hω satis-

fies:

lim
ε→0

log(| log(N(E0 + ε)) |)
log ε

= −1

2
.

Remark 2.2 By considering perturbation of a periodic medium (See picture below) with

̺ is Z-periodic in the x1-direction one can get a spectrum with open gaps. Under adequate

assumptions, the result is still true for internal band edges. This could be done using the

periodic approximations and the reduction procedure [26, 30, 31].
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Dper

Outline of the proof: To prove Theorem 2.1, we prove a lower and an upper bounds on

N(E0 +ε). The upper and lower bounds are proven separately and based on the following

result ( Theorem 5.25 p. 110 of [34]).

1

2k + 1
E{N(HD

Λk
(ω), E0 + ε)} ≤ N(E0 + ε) ≤ 1

2k + 1
E{N(HN

Λk
(ω), E0 + ε}. (2.10)

Here HD
Λk

(ω) is the operator defined by (1.1) restricted to Λk × (0, Dmax) ∩ D(ω) with

Dirichlet boundary condition also on the verticals parts , while HN
Λk

(ω) when we consider
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Neumann boundary condition on the vertical parts. We notice that (2.10) yields that we

have to estimate an upper bound of

1

2k + 1
N(HN

Λk
(ω), E) · P(E0(H

N
Λk

(ω) ≤ E0 + ε).

The first factor can easily estimated by the weyl estimation (C(E0 + ε)
1
2 ), while for the

second we follow the standard perturbation domain arguments laid down in [16, 24].

To estimate the probability from above it is sufficient to use the fact that eigenvalues near

E0 are due to the littleness of random variables, which yields to the estimation of this

rare event.

2.2 Application

Theorem 2.1 can be considered as a first step toward physically-motivated applications.

One of them is the study of the so-called localization. This could be done under some

additional assumptions on the behavior of the random variables in the vicinity of 0 or d.

We note that localization was initially given a spectral interpretation: pure point spectrum

with exponentially decaying eigenfunctions (exponential localization). Intuitive physical

notion of localization has also dynamical interpretation: the moments of a wave packet,

initially localized both in space and in energy, should remain uniformly bounded under

time evolution.

All the proofs of localization, except in the discrete case [1, 17] for the multidimensional

case, use the method of the multiscale analysis. This method was used for the first time

by Fröhlich and Spencer [6] and Fröhlich, Martinalli, Spencer and Scoppolla [13], at the

beginning of the eighties and it knew many extensions and simplifications to lead to

the form described in [7]. This analysis makes it possible to obtain information on the

operator in the whole space, starting from information on the operator restricted to cubes

of finished size,( see (P1) and (P2) below) [7]. Although it originally only gave exponential

localization [2, 7, 21, 22], it was later shown to also yield dynamical localization by

Germinet and De Bièvre [14], strong dynamical localization for moments up to some

finite order is given in [3]. The bootstrap multiscale analysis of Germinet and Klein in

[15] yield strong dynamical localization up to all all orders in the Hilbert-Schmidt norm.

For the adoption of this technique to random strip see [24, 36]. For

7



Theorem 2.3 Let θ ∈ R
2 and E0 > 0 be the bottom of the spectrum of Hω. Assume

(A.1) hold. Then for any α > 1, integer p > 0, for k ∈ N sufficiently large, one has

(P1) P
({
dist

(
σ(Hθ

ω,Λkα
), E+

)
≤ 1

k

})
≤ 1

kp
.

Where Hθ
ω,Λk

is the operator Hω restricted to this box with θ-quasiperiodic boundary con-

dition i.e with boundary condition ϕ(x1 + γ, x2) = eiγ·θϕ(x1, x2) for any γ ∈ 2kZ.

Theorem 2.3 is a consequence of Theorem 2.1. Indeed, using the Combes-Thomas estimate

and the decomposition of resolvent we get (P1). We omit details and refer the reader to

[33, 37].

If we assume that Hω satisfies a Wegner estimate [12, 36] i.e for some α > 0 and n > 0

for E ∈ R for k ≥ 1 and 0 < ε < 1, there exists C(E) > 0 such that one has

(P2) P
({
dist(σ(Hθ

ω,Λk
), E) ≤ ε

})
≤ C(E) · |Λk|α · εn; (2.11)

then, for E0 using Theorem 2.3 for θ = 0, we obtain the initial estimate to start a

multi-scale analysis. This proves that the spectrum of Hω is exponentially localized in

some interval around the energy E+ i.e that in some neighborhood of E+ eigenfunctions

associated to energies in that interval are exponentially-localized. More precisely we have

Theorem 2.4 Let Hω defined by (1.1). We assume that (A.1) hold and the single site

is compactly supported. There exists ε0 > 0 such that

(i) Σ ∩ [E0, E0 + ε0] = Σpp ∩ [E0, E0 + ε0].

(ii) an eigenfunction corresponding to an eigenvalue in [E0, E0 + ε0] decays exponentially.

(iii) for all p > 0,

E

{
sup
t>0

∣∣∣
∣∣∣
∣∣∣X

∣∣∣
p

eitHωP[E0,E0+ε0](Hω)χK

∣∣∣
∣∣∣
}
< +∞.

Here PI(Hω) is the spectral projection on the interval I, χK is the characteristic function

of K, K is a compact of R
d and X is the position operator.

To comment upon Theorem 2.4, let us consider the wave equation :

∂2u

∂t2
= Hωu. (2.12)

The solution of (2.12) is given [36] by

u(t, ·) = cos(t
√
Hω)u0 + sin(t

√
Hω)u1,

8



where u0 = u(0, ·) and
√
Hωu1 = (∂tu)(0, ·) denote the initial data.

A localized acoustic wave should be a finite energy solution of (2.12) with the property

that almost all the wave’s energy remains in a fixed bounded region of space at all times.

Thus, if u0 and u1 are linear combinations of exponentially decaying eigenfunctions, u(t)

will be concentrated in some fixed ball for all times and the respective waves are localized.

The result of Theorem 2.3 and therefore that of Theorem 2.4 can be related to the be-

havior of the integrated density of states in the neighborhood of the so-called fluctuation

boundary E0[25, 34, 37].

3 Preliminary

Let us start this section by transforming the perturbation of the medium to a perturbation

on the operator.

For (2k + 1)N and γ ∈ Z, we set Λk(γ) = (γ − l
2
, γ + l

2
). Let f : Λk → [Dmin, Dmax]. For

0 ≤ t < inf
Λk

f be a measurable function. We consider the bounded domain of R
2;

Dt,k = {(x1, x2); x1 ∈ λk, 0 < x2 < f(x1) − t}.

Remark 3.1 By the notation given at the beginning of this section we have

Dω = D0,∞

for

fω : R → [Dmin, Dmax]

x1 7→
∑

γ∈Z

uγ

and uγ is the segment :

[γ, γ + 1] → [Dmin, Dmax]

x1 7→ (ωγ+1 − ωγ)x1 +Dmax − γωγ+1 − (1 + γ)ωγ

We restrict our operator defined by (1.1) to L2(Dt,k) with Dirichlet boundary conditions.

We denote it by Ht,k. It is a self-adjoint operator and is considered as the Friedrichs

extension associated to the following positive and symmetric quadratic form:

Ht,k[u, u] =

∫

Dt,k

̺∇u∇udx; u ∈ C∞
0 (Dt,k).
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As H is an elliptic operator, Ht,k is with compact resolvent hence, it has a purely-discrete

spectrum. Let us denote its eigenvalues by

0 < E0(t, k) ≤ E1(t, k) ≤ · · · ≤ En−1(t, k) ≤ En(t, k) ≤ · · · .

Notice that for any t ≥ 0 we have C∞
0 (Dt,k) ⊂ C∞

0 (D0,k) hence we have the following

relation for the forms in L2(D0,k); H0,k ≤ Ht,k. This entails that for any n ∈ N one gets

that En(0, k) ≤ En(t, k). The following Lemma gives a lower bound of distance between

those eigenvalues.

Lemma 3.2 For any (k ∈ (2N + 1) and n ∈ N, one has

En(t, k) − En(0, k) ≥ 2̺1 · t
D2

max

.

Proof: For λ << 1, we set D̃λ,k = {(x1, x2); x1 ∈ Λk, 0 < x2 < (1− λ)f(x1)}. We notice

that D0,k = D̃0,k. Let

ψλ : D0,k → D̃λ,k

(x1, x2) 7→ (x1, (1 − λ)x2).

Now consider the following eigenvalue problem on L2(D̃λ,k).

HD̃λ,k
ϕn,λ = Ẽn(λ, k)ϕn,λ; ϕn,λ ∈ H1

0 (D̃λ,k) (3.13)

and the quadratic form

Q̃λ =

∫

D̃λ,k

u(ψ−1
λ (x))v(ψ−1

λ (x))dx =

∫

D0

u(x)v(x)(1−λ)dx = (1−λ)〈u, v〉,with domain C∞
0 (D0).

(3.14)

This leads to a scalar product in C∞
0 (D̃λ,k). Let us consider the following form with domain

C∞
0 (D0) which corresponds to H restricted to D̃λ,k;

H̃λ =

∫

D̃λ,k

̺(ψ−1
λ (x))∇u(ψ−1

λ (x))∇v(ψ−1
λ (x))dx

=

∫

D0

̺(x)
(
∂x1u∂x1v +

1

(1 − λ)2
∂x2u∂x2v

)
(1 − λ)dx.

This results in the following operator

H̃λ = −(1 − λ)
(
∂x1̺∂x1 +

1

(1 − λ)2
∂x2̺∂x2

)

10



with domain C∞
0 (D0). This transform the equation (3.13) as follows

−(1 − λ)
(
∂x1̺∂x2 +

1

(1 − λ)2
∂x2̺∂x2

)
ϕn,λ = Ẽn(λ, k)(1 − λ)ϕn,λ; (3.15)

which it self yields the following equation

−
(
∂x1̺∂x2 +

1

(1 − λ)2
∂x2̺∂x2

)
ϕn,λ = Ẽn(λ, k)ϕn,λ. (3.16)

So, we deal with an analytic family of operators

Ḧλ = −
(
∂x1̺∂x1

)
− 1

(1 − λ)2
∂x2̺∂x2 ; |λ| << 1. (3.17)

With domain H1
0 (D0).

When we dervive both sides of the analogue of the equation (3.17) for the forms with

respect to λ, one entails that for any n ∈ N
∗

Ẽ ′
n(λ, k) = 〈Ḧ ′

λϕn,λ, ϕn,λ〉 (3.18)

≥ − 2̺1

(1 − λ)3
〈∂x2ϕn,λ, ∂x2ϕn,λ〉 (3.19)

=
2̺1

(1 − λ)3
‖∂x2ϕn,λ‖2, (3.20)

Using the Poincaré inequality [4], we obtain that

Ẽ ′
n(λ, k) ≥ 4 · ̺1

D2
max(1 − λ)3

; |λ| << 1. (3.21)

As Dt,k ⊂ D̃ t
Dmax

, we get

En(t, k) ≥ Ẽn(
t

Dmax

, k). (3.22)

Taking into account the fact that D0,k = D̃0,k we get that for any n ∈ N,

En(0, k) = Ẽ(0, k).

This and (3.22) yield that

En(t, k) − En(0, k) ≥ Ẽn(
t

Dmax

, k) − Ẽn(0, k)

≥
∫ t

Dmax

0

E ′
n(λ, k)dλ.

≥
∫ t

Dmax

0

4

̺1D2
max(1 − λ)3

dλ

=
2̺1

(Dmax − t)2
− 2̺1

D2
max

=
2̺1 · t
D2

max

.

2
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Theorem 3.3 (Feynman Hellman Theorem) Let H(s) be a one parameter family of self-

adjoint operators for s ∈ I, a neighborhood of zero supposes that H(s) has a simple

eigenvalue E(s) ∈ C1(I) with eigenfunction φ(s) ∈ C1(I). We the have

dE

ds
(s) = 〈φ(s),

(dH
ds

(s)
)
φ(s)〉.

Proof: Using the eigenfunction equation one gets that for any s ∈ I

〈φ(s),
(
E(s) −H(s)

)
φ(s)〉 = 0.

Differentiate each side of the last equation. This, with the fact that

〈dφ
ds

(s),
(
E(s) −H(s)

)
φ(s)〉 = 0,

and similarly for the conjugate term. As ‖φ‖ = 1 one gets the result from the term

involving
d

ds
(H(s) − E(s)). 2

Let

Db
λ,k = {(x1, x2); x1 ∈ Λk, 0 < x2 < Dmax − λb(x1)}.

With, b : Λk → [Dmin, Dmax] supported in Λk and once differentiable.

Let Hb
Λ,k, be the operator given by (1.1) restricted to Db

λ,k, with Neumann boundary con-

ditions on the part in ∂Λk× [0, Dmax] and Dirichlet boundary conditions for the remaining

part. Using an analogous map as ψλ, one transforms Db
λ,k to D0,k = Λk×[0, Dmax]. As done

previously, this produces a family of operators on L2(D0), having a sequence (Eb
n(λ, k))n∈N,

of purely-discrete spectra. The following result deals with the first eigenvalue.

Proposition 3.4

(Eb
0)

′(0, k) ≥ 2π2

̺1D3
max

· 1

|Λk|

∫

Λk

b(x1)dx1. (3.23)

Proof: Let us consider the trivial function

ϕλ(x1, x2) = (x1,
Dmax − λb(x1)

Dmax
x2);

which transforms D0,k to Db
λ,k. By an analogous way as we did previously for the proof of

Lemma 3.2 we get the following form on L2(D0,k)

Qλ[u, v] =

∫

D0,k

u(x)v(x)
Dmax − λb(x1)

Dmax
dx,
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and

Hλ[u, v] =

∫

Db
λ,k

1

̺(ϕ−1
λ )(x)

∇u(ϕ−1
λ (x))∇v(ϕ−1

λ (x))dx;

=

∫

D0,k

1

̺λ(x)

(
∂x1u(x)∂x1v(x) +

λb′(x1)x2

Dmax − λb(x1)
(∂x1u∂x2v + ∂x2u∂x1v)(x)

+ (
Dmax

Dmax − λb(x1)
)2∂x2u∂x2v(x)

)Dmax − λb(x1)

Dmax
dx

acting on H1(Λk) ⊗H1
0 (0, Dmax). The associated operator which we denote by Hλ has a

unique ground state, uλ satisfying

Hλuλ = E0(λ, k)Mλuλ, (3.24)

here Mλ is the multiplication by
Dmax − λb(x1)

Dmax

. We set vλ = M
1
2
λ uλ which transforms

(3.24) on

M
− 1

2
λ HλM

− 1
2 vλ = Eb

0(λ, k)vλ.

This gives a new eigenvalue problem for H̆λ ≡ M
− 1

2
λ HλM

− 1
2 . H̆λ can be seen as the

self-adjoint operator associated with the quadratic form

H̆λ[u, v] = Hλ[M
− 1

2
λ u,M

− 1
2

λ u].

Using Feynman Hellman Theorem, one gets that

E ′
0(0, k) = (H̆0)

′[u0, u0].

Here u0 is the unique normalized ground state of H̆0.

Using the min-max principle and the fact

Eb
0(λ, k) = inf{

u∈H1(Λk)⊗H1
0 (0,Dmax), ‖u‖=1

} H̆λ[u, u],

one gets that u0 has to minimize h[u, u] where h is the form associated with the Laplacian

on the domain D0,k. This gives that u0 is the ground state for the later operator which

itself is already known and given by

u0(x1, x2) =

√
2

Dmax|Λ|
sin

( πx2

Dmax

)
. (3.25)
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This yields that

E ′
0(0, k) =

∫

D0

1

̺ω

(b′(x1)

Dmax

u0∂x1u0(x) +
2b′(x1)x2

Dmax

(∂x1u0∂x2u0)(x) +
2b(x1)

Dmax

(∂x2u0)
2(x)

)
dx

≥ 1

̺1 ·Dmax

∫

D0

2b(x1)(∂x2u0)
2(x)dx

≥ 2π

̺1 ·D3
max|Λ|

∫

Λ

b(x1)dx1.

2

The following result sets out to estimate the remainder term in the Taylor expansion of

Eb
0(λ, k). This is related to the Taylor expansion of H̆λ. It is based on the study of an

analytic family of perturbation and given on a more general context in section VII of [16].

Proposition 3.5 [16, 24] Under our assumption there exits κ = κ(Dmax, b) and K > 0

such that for any Λk such k ≥ Dmax√
3

and 0 ≤ λ ≤ κ

k2
we have

∣∣∣Eb
0(λ, k) − E0 − λ(Eb

0)
′(0, k)

∣∣∣ ≤ Kπ2

4κ2
· k2 · λ2. (3.26)

Here E0 is the lowest eigenvalue of the operator Hω and given by (2.9)

The idea of the proof of the last proposition as it was said above is based on the Taylor

expansion of H̆λ, precisely of the n-th Taylor coefficient (H̆0)
(n) of H̆λ at 0, which is given

below

(H̆0)
(n)[u, u] =

∫

D0

(b′(x1)b
n−1

2Dn
max

∂x1(|u|2) +
(n− 1)(b′(x1))

2bn−2(x1)

4Dn
max

|u|2

+
b′(x1)x2b

n−1(x1)

2Dn
max

(∂x1u∂x2u+ ∂x2u∂x1u)(x)

+
(n− 1)(b′(x1))

2bn−2(x1)x2

2Dn
max

∂x2(uu)(x) +
(k + 1)bn(x1)

Dmax
|∂x2u|

)
dx

≤ K1(Dmax, b)‖u‖L2(D0) +K2(Dmax, b)‖∇u‖L2(D0).

4 The proof of Theorem 2.1

As is stated, this section is devoted to the proof of Theorem 2.1. Let us start by the lower

bound.
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4.1 The lower bound

For k ∈ (2N + 1) large enough let us suppose that for any γ ∈ [−k
2
− 1, k

2
+ 1] ∩ Z, we

have ωγ = 0 then we get

E0(H
D
Λk

(ω)) = inf Σ
(
HD

Λk
(ω)

)
.

We recall that we denote by HD
Λk

(ω) is the operator (1.1) restricted to Λk×(0, Dmax)∩D(ω)

with Dirichlet boundary condition also on the vertical part of the domain.

Let 0 < ε < d. We set Dε = (−k
2
,
k

2
) × (0, Dmax − ε) ⊂ D0. We have

inf Σ(HDε
) =

π2

̺0(Dmax − ε)2
+

π2

̺0k2
= E0(ε). (4.27)

Let us assume that for any γ ∈ [−k
2
− 1, k

2
+ 1] ∩ Z, ωγ ∈ (0, ε) then we have

Dε ⊂ D(Λk
ω) ⊂ D(ω).

So,

Hω ≤ HΛk
(ω)D ≤ HDε

and consequently we get

E0(Hω) ≤ E0(H
D
Λk

(ω)) ≤ E0(ε). (4.28)

If we take ε =
1

k2
, the equation (4.27) yields

E0(ε) ≤ E0 +
c

k2
.

Here c =
π2

̺0

(
1 +

2

D(D − 1)2

)
.

Using equation (2.10) one gets,

N(E0 + ε) ≥ 1

(2k + 1)
· P{E0(HΛk

(ω)) ≤ E0 + ε}

≥ 1

(2k + 1)
· P{E0(H

D
Λk

(ω)) ≤ E0(ε)}

=
1

(2k + 1)
· P{Λk(ω) ⊂ Dε}

=
1

(2k + 1)
· P{∀γ ∈ [−k

2
− 1,

k

2
+ 1] ∩ Z; ωγ ≤ ε} (4.29)

=
1

(2k + 1)
· P{ω0 ∈ (0, ε)}(k+2). (4.30)

The proof is ended by taking into account assumption (A.1) and computing the limit

when k go to the infinity. 2
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4.2 The upper bound

The proof of the upper bound is based on the use of tools stated on the previous section

and on a probabilistic technique known as the large deviation argument.

Let HN
Λk

(ω) be the operator defined by (1.1) restricted to Dω ∩ (Λk × (0, Dmax)) with

Neumann boundary conditions on the vertical parts ofDω∩(∂Λk×(0, Dmax)) and Dirichlet

boundary conditions for the remaining part. For the choosing boundary conditions one

has

HN
Λk

(ω) ≤ HΛk
(ω). (4.31)

Lemma 4.1 There exits c > 0, K2 > 0 such that for a > 0

P{E0(H
N
Λk

(ω)) ≤ E0 +
a

k2
} ≤ c · e−k

(m−K2
√

a)2

c

Proof: For ψ ∈ C1
0(−1

2
, 1

2
) such that ψ(0) = 1 and for any x ∈ (−1

2
, 1

2
) one has

0 ≤ ψ(x) ≤ 1 − |x|.

We set

bω(x1) =
∑

γ∈Λk

ωγψ(x1 − γ).

Taking the same notation as in section 3, we get that Dbω

λ,k having the same rate as D0,k

with smooth corners and with the property that Dbω

λ,k ⊂ Dλ,k. Indeed using the properties

of ωγ, we get that for x1 ∈ (0, 1
2
) we have

−ω0(1 − x1) − ω1x1 ≤ −ω0(1 − |x1|)

and for x1 ∈ (−1
2
, 0) we have

−ω0(1 + x1) + ω−1x1 ≤ −ω0(1 − |x1|).

So using the notation of remark 3.1 one gets

fω ≤ Dmax − bω.

Thus if we note by Ebω

0 (λ, k) the first eigenvalue of the operator (1.1) restricted to Dbω

λ,k

and take into account (4.31) one gets that

E0(H
N
Λk

(ω)) ≥ Ebω

0 (λ, k); ∀λ ∈ (0, 1). (4.32)
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Using (3.23), one gets that there exists K1 > 0 such that

dEbω

0

dλ
(λ, k)(0) ≥ 2π3

D3
max

∫ 1
2

− 1
2

ψ(x)dx ·
( 1

|Λk|
∑

γ∈Λk

ωγ

)
. (4.33)

= K1 ·
( 1

|Λk|
∑

γ∈Λk

ωγ

)
. (4.34)

We recall that from Proposition 3.5, we have

∣∣∣Ebω

0 (λ, k) − E0 − λ(Ebω

0 )′(0, k)
∣∣∣ ≤ Kπ2

4κ2
· k2 · λ2. (4.35)

So, if we assume that for a ≤ π2K

4
we have

Ebω

0 (λ, k) ≤ E0 +
a

k2
, (4.36)

then equations (4.34), (4.35) and (4.36) implies that

λ · (Ebω

0 )′(0, k) ≤ Kπ2

4κ2
· k2 · λ2 +

a

k2
.

Tacking, λ =
tκ

k2
, one gets

(Ebω

0 )′(0, k) ≤ Kπ2 · t
4κ

+
a

κt
; (4.37)

for any 0 ≤ t ≤ 1. Optimizing (4.37), with respect to t one gets that t0 =
2
√
a

π
√
K

< 1.

Taking into account (4.34) we get that for K3 =

√
Kπ

2κ

P{Ebω

0 (λ, k) ≤ E0 +
a

k2
} ≤ P{(Ebω

0 )′(0, k) ≤ K3

√
a}

≤ P{ 1

(2k + 1)

∑

γ∈Λk

ωγ ≤ K2K1

√
a}

≤ P{
∣∣∣

1

(2k + 1)

∑

γ∈Λk

ωγ −m
∣∣∣ ≥ m−K2K1

√
a}

≤ c · e−k·
(m−K2

√

a)2

c . (4.38)

The last estimation is due to a large deviation argument [5] where we take a small such

that 0 ≤
√
a ≤ m

K1 ·K2
.

The proof of Lemma 4.1 is now ended by taking into account (4.32) and (4.38). 2
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Let us recall the following properties from that from (2.10) one deduces

N(E0 + ε) ≤ 1

2k + 1
E(N(HN

Λk
(ω), E0 + ε)).

Using the Weyl estimate one gets that a lower bound on
1

2k + 1
· N(HΛN

k
(ω), E0 + ε) by

K = cd(E0 + ε)
1
2 . So,

N(E0 + ε) ≤ K

∫

{ω,E0(HN
Λk

(ω))≤E0+ε}

dP = K · P{E0(H
N
Λk

(ω)) ≤ E0 + ε}.

For ε =
a

k2
in Lemma 4.1, one gets

N(E0 + ε) = N(E0 +
a

k2
) ≤ c · e−

(m−K2
√

a)2
√

εc .

The proof of the upper bound is then ended by taking the double logarithm of the last

equation. 2
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