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[1] Long-term bedrock incision is driven by daily discharge events of variable magnitude
and frequency, with ineffective events below an incision threshold. We explore
theoretically how this short-term stochastic behavior controls long-term steady state
incision rates and bedrock channel profiles, combining a realistic frequency-magnitude
distribution of discharge with a deterministic, detachment-limited incision model in which
incision rate is a power function of basal shear stress above a critical shear stress. Our
model predicts a power law relationship between steady state slope and drainage area
consistent with observations. The exponent of this power law is independent of discharge
mean and variability, while the amplitude factor, which controls mountain belt relief, is a
power law function of mean runoff (with an exponent of �0.5) and a complex function
of runoff variability. In accordance with evidence that incision occurs between 6 and
20% of time in rapidly incising rivers (>1 mm/yr) our model predicts that channel
steepness is virtually insensitive to runoff variability. Runoff variability can only decrease
channel steepness for very slow incision rates and/or weak lithologies. The relationship
between channel steepness and incision rate is always a power law whose exponent
depends on the channel cross-sectional geometry and runoff variability. This contradicts
models neglecting discharge stochasticity in which the steepness-incision scaling is set
by the incision law exponent. Our results suggest that changes in climate variability
cannot explain an increase in bedrock incision rates during the Late Cenozoic within the
context of a detachment limited model.

Citation: Lague, D., N. Hovius, and P. Davy (2005), Discharge, discharge variability, and the bedrock channel profile, J. Geophys.

Res., 110, F04006, doi:10.1029/2004JF000259.

1. Motivation

[2] Changes in global climate affect the mean water
discharge in rivers, and its temporal distribution between
rare extreme events (floods and droughts) and frequent
normal events [Ely, 1997]. This is likely to have an impact
on long-term river incision [Molnar, 2001; Tucker and Bras,
2000; Tucker and Slingerland, 1997] and landscape lower-
ing. Climate-driven changes in erosion modify the flux of
sediment to depositional basins [Clift et al., 2002; Harris
and Mix, 2002; Zhang et al., 2001], the weathering draw-
down of atmospheric CO2 [Millot et al., 2002] and the
sequestration of organic carbon [France-Lanord and
Derry, 1997], with feedbacks to global climate [Raymo
and Ruddiman, 1992; Ruddiman and Preil, 1997]. These
changes also govern landscape morphology at local
[Rinaldo et al., 1995; Tucker and Bras, 2000; Tucker and
Slingerland, 1997; Whipple et al., 1999] and continental

scales, and can potentially change exhumation and tectonic
deformation of mountain belts [Hilley and Strecker, 2004;
Molnar and England, 1990; Whipple and Meade, 2004].
Progress in our understanding of the feedbacks between
atmospheric and lithospheric processes, as well as the
stratigraphic signature of past climate changes critically
depends on our quantitative understanding of the role of
discharge and discharge variability in continental erosion.
[3] Bedrock rivers are central to this problem. They incise

the substrate, drive mass wasting, and remove the erosion
products. Many studies have modeled the dynamics and
geometry of bedrock river channels with incision laws
assuming a simple relation between the rate of vertical
incision, channel slope and discharge [Braun and Sambridge,
1997; Crave and Davy, 2001; Howard, 1994; Kooi and
Beaumont, 1996; Lague et al., 2000; Tucker and Slingerland,
1994;Willgoose et al., 1991]. In these studies, fluvial incision
is commonly scaled with the mean annual discharge or an
effective discharge with a given recurrence time, and these
parameters are thought to reflect the long-term integration
of discharges of different magnitude and frequency. This
approach would be valid if, for example, the effective
discharge were identical for all incision rates and/or
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discharge probability distributions. However, this is unlikely
when the chosen incision law is nonlinear with respect to
discharge, and climate change is characterized by shifts in the
relative frequencies of large and small events. This problem
has been addressed by using simplified frequency-magnitude
distributions of discharge [Molnar, 2001; Snyder et al.,
2003b; Tucker, 2004; Tucker and Bras, 2000], and it has
emerged that the constant effective discharge model is indeed
inappropriate when the threshold of erosion is nonnegligible.
Then, its application would result, for example, in an erro-
neous prediction of the scaling of channel slope with rock
uplift rate. Various authors have independently argued that
thresholds of detachment or entrainment cannot be neglected
[Lague et al., 2003; Lague and Davy, 2003; Snyder et al.,
2003b; Tucker, 2004] and that these thresholds have a
profound impact on landscape geometry and dynamics
[Baldwin et al., 2003; Lague et al., 2003; Molnar, 2001;
Tucker, 2004]. If correct, these findings compel a fuller
investigation of the impact of discharge variability on longi-
tudinal channel geometry.
[4] Building on the work by Snyder et al. [2003b], Tucker

and Bras [2000], and Tucker [2004], we use a realistic,
stochastic distribution of daily discharge coupled with a
deterministic incision law to derive approximate analytical
solutions that predict the theoretical scaling between chan-
nel slope, drainage area, long-term incision rate and dis-
charge characteristics (mean and variability) at steady state.
We focus on detachment-limited models in which channel
dynamics are set by the rate of bedrock incision. This rate is
a power function of the basal shear stress, above a critical
value required to entrain bed load or detach bedrock
[Howard, 1994; Howard and Kerby, 1983]. This choice is
justified by the finding that incision proportional to basal
shear stress can reasonably predict incision rates in rapidly
cutting rivers [Lavé and Avouac, 2001]. Moreover, it
remains to date the most widely used model of mountain
channel evolution [Finlayson et al., 2002; Howard, 1994;
Roe et al., 2003; Snyder et al., 2003b; Sobel et al., 2003;
Whipple and Meade, 2004], and as such deserves a thorough
study of the importance of runoff variability. We do not
restrict our study to a particular set of incision law param-
eters, but rather explore predictions for various parameter
combinations.
[5] We start by introducing the stochastic model of daily

discharge, the incision law and the derivation of the long-
term incision rate. Then, we calculate the steady state
channel slope-drainage area relationship and its dependency
with (1) the nonlinearity of the incision law (possibly
reflecting the type of bedrock incision process [Whipple et
al., 2000]), (2) the value of the critical shear stress, (3) the
cross-sectional geometry of the channel (the principle
control on the variation of flow width with discharge),
and (4) the incision rate, mean runoff, and runoff variability.
Finally, we explore the relative importance of mean runoff
and runoff variability in setting the steady state geometry of
bedrock channels.

2. Runoff Distribution and Incision Law

2.1. Frequency-Magnitude Distribution of Discharge

[6] Rivers have a natural variability of discharges at daily
timescale, with rare extremes (droughts and floods) punc-

tuating common flow conditions. Discharge fluctuations are
mainly due to variability of precipitation, and filtered by
(climate-governed) watershed processes such as evapotrans-
piration, infiltration, and snow accumulation and melt. The
variability of river discharge at a given location can be
characterized by the frequency-magnitude distribution of
mean daily discharge (Figure 1). This distribution generally
consists of two trends: (1) at low flow, the frequency of a
given event increases with discharge (meaning that droughts
are relatively rare), and (2) at intermediate and high flow,
the frequency of events decreases with increasing discharge
(Figure 1). Most importantly, the probability distribution of
large floods can often be fit with a power law [Turcotte and
Greene, 1993]. In an analysis of 20 gauging stations in the
United States, the power law exponent was found to vary
between �2.1 and �4.3 [Turcotte and Greene, 1993]
(Figure 1). Note that the frequency of extreme floods
decreases with the absolute value of the exponent.
[7] Previous work on the impact of discharge variability

on channel erosion has used stochastic models of rainfall
with simplified catchment hydrology [Snyder et al., 2003b;
Tucker, 2004; Tucker and Bras, 2000; Tucker and
Slingerland, 1997], or stochastic models of discharge [Crave
and Davy, 2001; Molnar, 2001]. For example, pioneering
work by Tucker and Bras [2000] was based on a Poisson
pulse rainfall model coupled with a simple Hortonian and
uniform runoff assumption for which the probability distri-
bution of finite discharges has an exponential distribution.
This is not consistent with the observed power law tailing of

Figure 1. Frequency-magnitude distribution of daily
discharge for 30 years of records in the Hoping River of
Taiwan (data publicly available from http://gweb.wra.
gov.tw/wrweb/) and calculated using the averaging method
of Davy [1993]. Examples of (1) exponential distribution as
used by Tucker and Bras [2000], (2) best fit for the C¼ros
distribution model used in this study (least squares
regression weighted by errors bars) [Crave and Davy,
2001], and (3) asymptotic power law distribution of flood as
used by Molnar [2001] are also shown. Another C¼ros
distribution with the same mean discharge but a variability
parameter k = 3 is shown, illustrating the fact that as k
increases, the probability of extreme events (large and
small) decreases compared to frequent events. See color
version of this figure in the HTML.
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discharge distributions, and causes underestimation of the
frequency of extreme events (Figure 1). Moreover, the
rainfall intensity probability distribution of convective pre-
cipitation systems, for which the rainfall variability is largest,
tends to display power law rather than exponential tailing
[Olsson and Burlando, 2002; Svensson et al., 1996]. In
agreement with this, Molnar [2001] used a simple power
law frequency-magnitude distribution of discharges, but
neglected the rollover at low flow, arguing that incision
(and sediment transport) only occurs at very large discharges
for which power law scaling is dominant. This assumption
bars the evaluation of cases for which the erosion threshold is
negligible or small and outside the power law domain.
[8] We use the two-parameter frequency-magnitude dis-

tribution of daily discharge events of the landscape evolu-
tion model C¼ros [Crave and Davy, 2001; Davy and Crave,
2000]. This simple model overcomes the limitations of
previous studies. The probability density function of daily
discharge Q is given by (Figure 1)

pdf�Q;k Qð Þ ¼
�Qkð Þkþ1

G k þ 1ð Þ exp �k
�Q

Q

� �
Q� 2þkð ÞdQ; ð1Þ

where �Q is the mean discharge and k is a parameter setting
the discharge variability (note that the variability is
greatest for small values of k) (Figure 1)). The gamma
function G(k + 1) equals k! when k is an integer. It is useful
to normalize discharge:

Q* ¼ Q=�Q: ð2Þ

The normalized discharge is independent of drainage area,
provided that mean runoff �R is spatially uniform. Using
equation (2), equation (1) becomes

pdf�Q;k Q*ð Þ ¼ kkþ1

G k þ 1ð Þ exp � k

Q*

� �
Q*� 2þkð ÞdQ*: ð3Þ

Equation (3) has two main components (Figure 1): (1) an
inverse exponential tail that represents the lesser probability
of very small discharges compared to the most probable
daily discharge and (2) an asymptotic power law tail for
floods (with an exponent �(2 + k)), consistent with
observations by Turcotte and Greene [1993]. Figure 1
shows that this model fits the two trends observed in daily
discharge data from the Hoping river in Taiwan, especially
the asymptotic power law distribution. To validate the
discharge model, we have analyzed long time series
(�30 yr) of daily discharge measurements from 22
hydrometric stations in Taiwan (http://gweb.wra.gov.tw/
wrweb/) and 8 in the United States [Slack et al., 1993]. We
found that the variability parameter k is between 0.08 and
1.1 in Taiwan, and between 0.9 and 1.85 in the United
States [Slack et al., 1993]. This is consistent with values of
0.1–2.23 obtained by Turcotte and Greene using a power
law model to fit the distribution of maximal annual floods in
the U.S. Using published values of the ratio between the
median daily discharge and the mean annual discharge
(which uniquely depends on k), for 59 hydrometric stations
around the world with at least 3 years of records [Meybeck
et al., 2003], yields estimates of k from 0.15 to 3, with most

values around 1. Here, we assume that the present-day range
of k is from 0.1 to 3. Quantitative estimates of the discharge
variability of past climates are not available, and we assume
that the range of k values has not changed with time.
[9] For a discharge distribution of parameters �Q and k, a

convenient measure of the probability of occurrence of a
given discharge Q*c is its return time tr(Q*c):

tr Qc*ð Þ ¼ P Q* � Qc*ð Þ�1: ð4Þ

where P(Q* � Q*c) is the probability that Q* is greater than
Q*c. Using, equation (3), P(Q* � Q*c) is equal to

P Q* � Qc*ð Þ ¼
Z þ1

Qc*
pdf�Q;k Q*ð ÞdQ* ¼ G k=Qc*; k þ 1ð Þ ð5Þ

where G(x, a) is the incomplete Gamma function G(x, a) =
1

G að Þ
R x
0
ya�1e�ydy, increasing from 0 to 1 with x, for any a > 0.

Hence the return time of discharge Q*c, for any combination
of k and �Q is equal to

tr Qc*ð Þ ¼ G k=Qc*; k þ 1ð Þ�1 ð6Þ

2.2. Instantaneous Incision Law

[10] The incision of rivers into bedrock results from the
summation of elementary wear events, typically lasting
hours to days, over thousands of year. Many incision laws
have been devised empirically to be effective at geological
timescales: they do not necessarily work at hydrological
timescales [Beaumont et al., 1992; Braun and Sambridge,
1997]. In contrast, recent mechanistic models [Sklar and
Dietrich, 2004] are defined at short timescales, and their
upscaled formulation at geological timescales remains to be
determined. Our goal is to proceed in that direction, by
studying the long-term predictions obtained from the
stream power family of bedrock incision models applied
at daily timescales. The stream power model was first
formulated by Howard and Kerby [1983]. It has been used
in a large number of studies [Finlayson et al., 2002;
Howard, 1994; Lavé and Avouac, 2001; Seidl and Dietrich,
1992; Snyder et al., 2000; Sobel et al., 2003; Stock and
Montgomery, 1999; Tucker and Bras, 2000; Tucker and
Slingerland, 1994; Whipple, 2001; Whipple and Meade,
2004; Whipple and Tucker, 1999]. Empirically, it is written
as [Howard and Kerby, 1983]

I ¼ ke t� tcð Þa; t > tc; ð7Þ

where I is the vertical incision rate, ke is an erosion
efficiency coefficient, a is an exponent expected to be
dependent on the principal incision process [Whipple et al.,
2000], t is the basal shear stress and tc is a critical shear
stress above which incision starts. Given the uncertainty on
the formulation of the incision rate, we use a modified
version [Baldwin et al., 2003; Snyder et al., 2003b; Tucker,
2004] for ease

I ¼ ke ta � tac
� �

; t > tc: ð8Þ

Note that equations (7) and (8) differ significantly in their
prediction of the incision rate when t is close to tc and a > 1.
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[11] The hydraulics of bedrock channels are poorly un-
derstood and the applicability of empirical flow resistance
equations such as Manning or Darcy-Weisbach used for
alluvial rivers has not been systematically checked. As a
consequence, the calculation of basal shear stress as a
function of discharge remains empirical. We choose to
follow the derivation commonly used in channel incision
studies [Howard, 1994; Tucker and Bras, 2000; Whipple et
al., 1999], assuming steady uniform flow in a wide channel
(for which the hydraulic radius can be approximated by
flow depth), and using resistance equations such as Man-
ning or Darcy-Weisbach to express basal shear stress as a
function of channel bed gradient S (taken, for small values,
as the tangent of the angle of the channel bed with the
horizontal), water discharge, and flow width w:

t ¼ kt
Q

w

� �a

Sb; ð9Þ

where kt is an hydraulic factor encompassing water density,
gravity acceleration and a friction factor. Parameters a and b
are equal to 3/5, and 7/10 for Manning, and 2/3, and 2/3 for
Darcy-Weisbach (see Howard [1994] for a complete
derivation).
[12] As shown in equation (9) the variation of flow

width with discharge at a given location (which is a
characteristic of the at-a-station hydraulic geometry of
channels [Leopold and Maddock, 1953]) partly controls
the scaling of basal shear stress with discharge. The smaller
is the variation of flow width with discharge, the larger is
the increase of shear stress (and incision rate) with dis-
charge. A rectangular channel cross section gives the
greatest shear stress rise for a given discharge increase.
In alluvial rivers, the relationship between flow width and
discharge tends to have the form of a power law [Leopold
and Maddock, 1953] with an exponent ranging from 0.04
to 0.26 [Knighton, 1998]. This exponent is largely con-
trolled by the channel cross-section geometry, and modu-
lated by changes in the flow resistance of the channel bed
and walls with discharge. In the absence of empirical data
for bedrock channels, we use the same power law model.
This is convenient because it allows for representation of a
range of cross-sectional shapes, including a rectangle,
simply by varying the exponent. We assume that the
variation of flow width with discharge is no greater in
bedrock channels than in alluvial channels (this is reason-
able because the flow is always contained within valley
walls). Hence we consider values of the exponent between
0 and 0.25.
[13] In uniform lithological and tectonic settings, the

mean channel width increases downstream with discharge
[Leopold and Maddock, 1953; Montgomery and Gran,
2001; Snyder et al., 2003a] according to a power law. In
alluvial rivers, bank-full discharge is generally used as a
reference flow for measurement of channel width. Bedrock
channels are contained between valley walls that make the
definition of a bank-full width difficult. Therefore we define
the local channel width as the flow width wa at mean
discharge �Q:

wa ¼ kw �Q
wa ; ð10Þ

where kw is an amplitude factor depending on lithology,
incision rate, and, arguably, discharge variability, and wa is a
scaling exponent pertaining to the downstream variation of
flow width. The local, at-a-station variation of flow width w
with discharge is described as a function of wa:

w

wa

¼ Q

�Q

� �ws

; ð11Þ

where ws is a scaling exponent reflecting the temporal
variations of local flow width. Combining equations (8), (9)
and (2) gives the following general expression of flow
width:

w ¼ kwQ*
ws �Qwa : ð12Þ

Substitution of equations (9) and (12) in equation (8) then
gives a ‘‘daily’’ incision law whose general expression is

I �Q;Q; Sð Þ ¼ K �QmQ*gSn � yc ð13Þ

with, K = kekt
akw

�aa, m = aa(1 � wa) the downstream
discharge exponent, g = aa(1 � ws) the local discharge
exponent, and n = ab the slope exponent. We define the
threshold parameter yc as

yc ¼ ketac : ð14Þ

[14] The daily incision law in equation (13) resembles
the traditionally used stream power incision law with
threshold (for example, the expressions of m and n are
the same [see Whipple and Tucker, 1999]), except for the
daily discharge term raised to the power g. The two would
be equal in the case ws = wa, for which equation (13)
transforms into

I ¼ KQmSn � yc: ð15Þ

However ws (0–0.25) is generally smaller than wa (	0.5),
and this causes m to be smaller than g (Table 1). As g

captures the impact of discharge variability on long-term
incision, it is clear that the ‘‘long-term’’ form of the stream
power incision law shown in equation (15) does not permit
investigation of the impact of discharge variability: the
exponent m does not fully represent the degree of
nonlinearity of incision rate with daily discharge. For
example, m is predicted to range from 0.3 to 0.83,
depending on the incision model (Table 1), g spans a wider
range from 0.45 to 1.67. In the simple case of a negligible
incision threshold and for a = 5/2, equation (13) would
predict an important impact of large and infrequent
events on long-term incision, while frequent, small events
would dominate the long-term incision rate according to
equation (15). In the next section, we explore the impact of
g on the contribution of large events to long-term fluvial
incision in more detail.

2.3. Long-Term Incision Rate

[15] The mean long-term incision rate �I is obtained
by integrating the action of all erosive discharge events
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given by equation (13) weighted by their probability of
occurrence:

I ¼
Z Qm*

Qc*
I �Q;Q*; Sð Þ pdf�Q;k Q*ð Þ dQ*; ð16Þ

where Q*c is the minimum discharge for which the critical
shear stress tc in equation (8) is overcome and Q*m is the
maximum discharge at the timescale considered – this is
statistically equal to the return time of Q*m. We solve this
integral assuming that the 3D geometry of the channel
(cross section and longitudinal slope), the parameters of the
incision law and the parameters of the frequency-magnitude
distribution of discharge are stationary over tr(Q*m).
Introducing equation (13) and (3) in equation (16) and
solving gives

�I ¼ K
G k þ 1� gð Þkg

G k þ 1ð Þ G k
.
Qc*; k þ 1� g

� 	h
� G k

.
Qm*; k þ 1� g

� 	i
�QmSn ; for g < k þ 1 ð17Þ

� G k
.
Qc*; k þ 1

� 	
� G k

.
Qm*; k þ 1

� 	h i
yc

[16] In the case of a negligible threshold, and infinite
maximum discharge Q*m (though we always expect a
physical discharge limit even for infinite time), the long-
term incision rate (here termed the reference incision rate
�I ref) is equal to

I
ref ¼ K

G k þ 1� gð Þkg
G k þ 1ð Þ

�QmSn: ð18Þ

Equation (18) is close to the general form of the stream
power incision law [Seidl and Dietrich, 1992; Snyder et al.,
2000; Stock andMontgomery, 1999; Tucker and Slingerland,
1994;Whipple andMeade, 2004;Whipple and Tucker, 1999]
except for the explicit formulation of the role of discharge
variability. It shows that the downstream discharge exponent
m sets the dependency of incision rate on mean discharge,
while its dependency on discharge variability is a complex
function of k and g (set by the incision law and the local
hydraulic geometry). The variation of �I ref with discharge
variability k is shown in Figure 2 for various values of g.
For g < 1, �I ref systematically decreases with increasing
discharge variability (i.e., decreasing k). We observe the
opposite for g > 1. These two regimes have also been found

by Tucker and Bras [2000]. For g = 1, discharge variability
does not affect incision rates. The differences in sensitivity
highlight the importance of the incision law exponent a and
the local channel geometry (i.e., ws), due to their control on
the local discharge exponent g.
[17] For very long return times of Q*m (>1000 years), the

second term in each of the square brackets in equation (17)
becomes negligible. Combining equation (18) and
equation (17) then gives an expression of the long-term
mean incision rate �I :

I ¼ G k
.
Qc*; k þ 1� g

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2 0;1½ �

I
ref � G k

.
Qc*; k þ 1

� 	
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

2 0;1½ �

yc: ð19Þ

Equation (19) shows that an erosion threshold reduces the
long-term incision rate because (1) not all discharge events
cause erosion and (2) each erosive action is diminished by
the erosion threshold. Of these two effects, the first is the
most important. It is illustrated in Figure 3. It can be seen
that reducing the range of erosive events (i.e., increasing
Q*c) can cancel (case g = 0.5 and Q*c = 0.1 in Figure 3) or
reverse the dependency of incision rate on discharge
variability for g � 1 (all cases in Figure 3). As Q*c and g

increase, �I becomes progressively more dependent on
discharge variability, a result consistent with findings by
Tucker and Bras [2000].
[18] Equation (17) is the exact solution of equation (16)

for any value of Q*c and Q*m, but it is not easy to handle

Table 1. Values of Parameters g, m, and n for Various Incision Laws, Channel Cross-Sectional Geometry, and Flow Resistance Equationa

Shear Stress
Exponent a

Theoretical Model and
Example of Field
Evidence (If Any)

Local Discharge Exponent g

Downstream
Discharge
Exponent m

Slope Exponent
n

ws = 0:
Rectangular
Cross Section

ws = 0.25:
Concave Cross

Section

M DW M DW M DW M DW

1 shear stress modelb,c 0.6 0.67 0.45 0.5 0.3 0.33 0.67 0.7
3/2 unit stream power, pluckingd 0.9 1 0.67 0.75 0.45 0.5 1 1.05
5/2 suspended load abrasiond 1.5 1.67 1.13 1.25 0.75 0.83 1.67 1.75

aDW, Darcy-Weisbach; M, Manning; wa = 0.5.
bHoward and Kerby [1983].
cLavé and Avouac [2001].
dWhipple et al. [2000].

Figure 2. Variation of long-term incision rate with
variability coefficient k for different values of g.
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analytically due to the incomplete gamma functions. More-
over, it is only valid for g < k + 1. This is the case for any
incision law exponent a � 3/2, but could not be verified for
all values of k for a > 3/2 (see Table 1). A simpler
approximation can be obtained for cases where the erosive
impact of low-flow events (corresponding to the exponen-
tial tail of the discharge frequency-magnitude distribution,
Figure 1) is negligible. This is true when Q*c is large, or
when the long-term incision rate is dominated by the largest
events (g � k + 1, for all Q*c). Then the frequency-
magnitude distribution of erosive discharges (equation (3))
collapses to a power law distribution:

pdf�Q;k Q*ð Þ ’ kkþ1

G k þ 1ð ÞQ
*� 2þkð ÞdQ*: ð20Þ

Introducing equation (20) in equation (16) gives the
following expressions for the long-term incision rate:

�I ’ kkþ1

G k þ 1ð Þ
K �QmSn

g� k � 1ð Þ Qm*
g�k�1ð Þ

��
� Qc*

g�k�1ð Þ
	

þ yc

k þ 1
Qm*

� kþ1ð Þ � Qc*
� kþ1ð Þ

� 	�
; for g 6¼ k þ 1: ð21Þ

�I ’ g� 1ð Þg

G gð Þ K �QmSn lnQm*� lnQc*ð Þ½ þyc

g
Qm*

�g � Qc*
�gð Þ
�
;

for g ¼ k þ 1

ð22Þ

Equations (21) and (22) show that convergence of the
incision rate on a constant value with increasing Q*m

depends on the sign of g � k + 1. If g < k + 1, then any
dependency with Q*m in equation (21) rapidly vanishes with
increasing time, and �I converges on a constant whose
approximate expression is:

�I ’ kkþ1

G k þ 1ð Þ
K �QmSn

k þ 1� gð ÞQc*
� kþ1�gð Þ

�
� yc

k þ 1
Qc*

� kþ1ð Þ
�
;

for g < k þ 1:

ð23Þ

Figure 4 shows that if k = 0.1 and Q*c = 1, then equation (23)
is a correct approximation at timescales longer than 100 yr
for g = 0.5, and 1000 yr for g = 0.9. From Figure 4 it is also
clear that incision measured over 5 to 10 years permits
reasonable approximation of the longer term incision rate
(provided that climate and tectonics are stationary). As
values of g between 0.45 and 0.6 are typical of the shear
stress model, the incision model favored by us for the
purpose of this treatment (see section 4), our results
highlight the utility of in situ surveys of bedrock river
incision [Hartshorn et al., 2002].
[19] If g � k + 1, then for increasing Q*m, the terms in Q*c

become negligible in equations (21) and (22), as is the term
with exponent �(k + 1), and we obtain the following
expressions:

�I ’ kkþ1

G k þ 1ð Þ
K �QmSn

g� k � 1ð ÞQm*
g�k�1ð Þ; for g > k þ 1; ð24Þ

�I ’ g� 1ð Þg

G gð Þ K �QmSn lnQm*; for g ¼ k þ 1: ð25Þ

Figure 3. Mean incision rate in the case of nonnegligible
threshold (equation (19)) and very large Q*m, normalized by
mean incision rate without threshold �I ref. Figure 3 shows
that if the range of erosive events is reduced, the decrease
of long-term incision rate with discharge variability
observed for negligible threshold (Figure 2) is progressively
reversed. For any g < 1, there is a particular range of Q*c for
which the incision rate is almost independent on discharge
variability, except for very high variability (for instance, g =
0.5 and Q*c = 0.1).

Figure 4. Evolution of mean incision rate with maximum
recorded discharge Q*m for various local discharge exponent
g. Circles are obtained by numerically integrating equation
(17). The return time tr of Q*m gives an order of magnitude
of the timescale over which incision rate is measured. When
g < k + 1, the incision rate converges toward a constant
value as Q*m increases. When g > k + 1, the long-term mean
incision rate increases approximately as a power function of
Q*m (equation (24)) with an exponent g � k � 1. See color
version of this figure in the HTML.
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Equations (24) and (25) show that the mean incision rate
increases as a power law with the maximum discharge
(Figure 4). For any climate, there is a meteorological limit to
this predicted increase, and averaged over timescales much
longer than the return time of the maximum flood, the mean
incision rate reaches a steady value (provided that channel
geometry and discharge distribution are steady). For shorter
timescales the mean incision rate increases with time
(Figure 4). As a consequence, short-term measurements of
bedrock incision are likely to be lower than the true long-
term incision rate.

3. Climatic and Tectonic Controls on Steady
State Slope-Area Relationship

[20] In the previous section we have derived new for-
mulations of a long-term incision law that takes into account
the stochasticity of discharge. We have shown that g

controls the sensitivity of incision to discharge variability,
and that, depending on its value, the long-term incision rate
is governed by Q*c (convergent case), or Q*m (nonconvergent
case). In the following we use this model to explore the
longitudinal geometry of bedrock channels, focusing on the
long-term steady state in which the discharge regime and
the channel geometry remain unchanged for long periods of
time. For this condition, the long-term incision rate is
constant in time and equal to the rock uplift rate. Whether
steady state conditions are likely in natural systems is
difficult to assess [Whipple, 2001], but in theory the controls
(internal and external) on channel geometry can best be
identified at steady state. In this study, we consider the
convergent case (g � k + 1) and discuss the nonconvergent

case (g � k + 1) only briefly, as steady state conditions
cannot be attained in this regime (i.e., incision rate can be
steady, but the slope has to decrease with time to compen-
sate for the increase of Q*m).

3.1. Steady State Slope and Critical Discharge
Solution for the Convergent Case

[21] Previous studies have used a simple stream power
law model to predict the steady state slope Sss of bedrock
channels [Whipple and Tucker, 1999]. In addition to this,
our model also requires the steady state critical discharge Q*c
(which is a free parameter in our problem). For this we need
two equations (for two unknowns). The first constraint
comes from the long-term steady state condition. Assuming
a very large maximum discharge Q*m, and reformulating
equation (17), gives

Snss ¼
1

K

G k þ 1ð Þk�g

G k þ 1� gð ÞG
k
.
Qc*; k þ 1� g

� 	�1

� �I þ G k
.
Qc*; k þ 1

� 	
yc

h i
�Q�m; ð26Þ

where �I is the steady state incision rate. The dependency of
Sss on Q*c predicted by equation (26) is characterized by a
unique minimum solution (Figure 5). Below this minimum,
when Q*c decreases, the slope increases to be just at the
threshold condition for Q* = Q*c. This effect increases with
yc (Figure 5). Above the minimum, Sss increases with Q*c to
compensate for the reduced range of erosive events, at a rate
that depends on k.
[22] A second relationship between Sss and Q*c derives

from the requirement that the instantaneous incision rate for
Sss is zero when Q* = Q*c. Using equation (13) this
condition is expressed as

Snss ¼
yc

K

� 	
�Q�mQc*

�g: ð27Þ

[23] There are no analytical solutions for Q*c and Sss
derived from equations (26) and (27), but a graphical
analysis shows a unique intercept of these equations
(Figure 5) that seems to coincide with the minimum of
equation (26). Deriving equation (26) for Q*c and equating it
to zero gives the following constraint on Q*c

Qc*
g ¼ kg yc

G k þ 1� gð Þ
G k þ 1ð Þ

G k

Qc*
; k þ 1� g

� 	
�I þ ycG

k

Qc*
; k þ 1

� 	 ; ð28Þ

which can also be found by equating the second terms of
equations (26) and (27). This shows that the steady state
slope solution is always the unique minimum of
equation (26). Hence a river incising at a steady rate is
characterized by a unique steady state slope, and a unique
normalized critical discharge. This provides a basis for an
exploration of the dependency of steady state channel slope
and critical discharge on drainage area, incision rate,
discharge distribution and incision law parameters. Two
approaches are taken: (1) numerical solutions for the general
case calculated as the minimum of equation (26) (Figure 5)
and (2) approximation using equation (23) when possible to
obtain analytical solutions.

Figure 5. Graphical solution for steady state slope Sss and
normalized critical discharge Q*c. The first constraint given
by equation (26) shows pairs of Sss and Q*c of identical long-
term incision rate. The second constraint is given by
equation (27) and represents values of Sss for which the
instantaneous incision rate is zero for Q* = Q*c. These two
constraints give a unique solution for Sss and Q*c. With these
parameters (g = 0.9, m = 0.5, n = 1, K = 1), Sss and Q*c
increase with the threshold yc (for constant k). For larger
discharge variability (and constant yc), Sss decreases and Q*c
increases. See color version of this figure in the HTML.
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3.2. Scaling of Channel Slope With Drainage Area

[24] The relationship between local channel slope and
upstream drainage area has been measured in various
tectonoclimatic settings [Hack, 1957; Kirby and Whipple,
2001; Lague and Davy, 2003; Montgomery and Foufoula-
Georgiou, 1993; Seidl and Dietrich, 1992; Sklar and
Dietrich, 1998; Snyder et al., 2000]. It can be modeled by
a power law relationship:

S ¼ ksA
�q; ð29Þ

where A is the drainage area. The amplitude factor ks is
often called the steepness index (or channel steepness), and
q is called the channel concavity index (or slope-area
exponent). The slope-area relationship has become a
fundamental measure of the channel longitudinal geometry.
It has been used to calibrate incision laws [Lague et al.,
2003; Lague and Davy, 2003; Seidl and Dietrich, 1992;
Snyder et al., 2000, 2003b], estimate uplift rates [Kirby and
Whipple, 2001; Lague et al., 2000], and validate numerical
simulations and theoretical models [Tucker and Whipple,
2002; Willgoose, 1994]. In particular, prediction of equation
(29) is a necessary condition for any incision model.
[25] While the slope-area exponent always falls within a

relatively narrow range of values (between 0.4 and 0.6 with
some rare measurements down to 0.3 and up to 1; see
Tucker and Whipple [2002] for a review), the steepness
index ks is known to vary systematically with uplift rate
[Lague et al., 2000, 2003; Snyder et al., 2000] and lithology
[Lague et al., 2000]. It controls the total channel relief and,
to a large extent, the overall relief of fluvially dominated
mountain belts [Lague et al., 2003; Whipple et al., 1999].
Understanding and predicting the dependency of ks with the
discharge regime (mean and variability) at steady state thus
provides vital information on the link between climate and
mountain relief. To our knowledge, this dependency has
never received systematic, empirical or theoretical attention.
Nevertheless, it is generally believed that most fluvial
incision occurs during infrequent large floods [Baker and
Kale, 1998], and the consensus is that a more variable
discharge regime has a greater erosion efficiency. If this
were true, then, the steepness of the steady state channel bed
ought to be inversely proportional to discharge variability,
giving steeper channels for less variable discharge, with
incision rate, mean discharge, and all other parameters being
equal. In the following, we explore the scaling of channel
bed slope and discharge in the context of our incision
model.
[26] First, we assume that the daily runoff rate is spatially

uniform. This gives the following relationship:

Q ¼ RA; ð30Þ

where R is the runoff rate. More specifically, the mean
runoff rate �R is defined as the ratio of mean discharge and
drainage area. It is assumed to be spatially uniform, as are
the discharge variability parameter k and all erosion
parameters in equation (13). More complex relationships
between discharge variability, runoff and drainage area may
occur, and would affect the dependency of channel bed
slope and drainage area, but we do not consider such cases

here. Equation (28) shows that the normalized critical
discharge Q*c is independent of K, m, and n. If �I , yc, g, k and
�R are spatially uniform, then Q*c is independent of drainage
area. This being the case, and using equation (27) and
equation (30), we obtain the following expression for the
slope-area relationship:

Sss / A�m
n : ð31Þ

[27] Our stochastic incision model with threshold predicts
a power law relationship between channel bed slope and
drainage area that is consistent with observations (equation
(29)). The predicted slope-area exponent is the same than
for effective discharge models (see, e.g., Whipple and
Tucker [1999] for yc = 0 and Lague and Davy [2003] for
yc > 0) and depends mainly on the scaling of channel width
with mean discharge. Note that any systematic spatial
variation of incision rate [Kirby and Whipple, 2001; Snyder
et al., 2003b], mean runoff or runoff variability (related to
orographic effects or basin hydrology) [Roe et al., 2002] or
any parameter of the incision law (such as the critical shear
stress related to downstream changes in the sediment load
and caliber) could cause a difference between the measured
slope-area exponent in equation (29) and the theoretical
prediction of equation (31).

3.3. Runoff Control on Channel Steepness

[28] While the slope-area exponent is independent of
discharge conditions (mean and variability) and incision
rate, the steepness index depends on these factors in a
complex and, in the case of discharge variability, analyti-
cally intractable way (equations (26) and (27)). To circum-
vent this problem, we use numerical solutions to study the
impact of discharge variability on channel steepness. In
addition, we derive approximate solutions for asymptotic
conditions when Q*c is either very large or negligible, and
the maximum discharge Q*m is very large (as is expected for
long-term steady state conditions). We assess the conditions
for which these expressions are valid, and finally we
explore the influence of incision law parameters on channel
steepness in the context of a stochastic discharge model.
3.3.1. Impact of Runoff Variability and Mean Runoff
on Channel Steepness
[29] We have used numerical solutions to study the

impact of runoff variability on channel steepness in the
convergent case. Results for the shear stress (a = 1) and unit
stream power (a = 3/2) incision models are presented in
Figure 6. Three tendencies can be observed depending on
the value of the return time of Q*c. When tr(Q*c) = 1 day,
channel steepness decreases with decreasing discharge var-
iability, as does the erosion efficiency. The opposite is
observed when tr(Q*c) � 7 days. Then, the steepness index
increases with increasing discharge variability, and the rate
of increase is faster for longer return times of Q*c. Between
these two regimes where tr(Q*c) is of the order of a week, the
steepness index depends only weakly on runoff variability.
In this particular case the decrease of erosion efficiency with
increasing discharge variability, as found for short return
time of Q*c, is almost perfectly compensated by the increase
of erosion efficiency due to the reduced range of erosive
events.
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[30] Figure 6 also shows that increasing the local dis-
charge-width exponent ws (i.e., increasing the concavity of
the channel cross section) decreases the sensitivity of the
steepness index to discharge variability. For example, the
steepness index is predicted to vary by a maximum of 57%
for ws = 0 and a = 1 (84% for ws = 0 and a = 3/2), and 38%
for ws = 0.5 and a = 1 (32% for ws = 0 and a = 3/2). The
only exception is for the case of the unit stream power
model with tr(Q*c) = 1 day, where the steepness index is
constant for a rectangular channel cross section (ws = 0), and
increases with discharge variability if ws > 0. These results
highlight the importance of the local hydraulic geometry
which controls the relationship between discharge variabil-
ity and shear stress variability at the base of the channel.
[31] Because Q*c is independent of mean runoff,

equation (26) predicts that the steepness index decreases
with mean runoff according to:

ks / �R�q; ð32Þ

where q is the slope-area exponent. For the same reason,
mean runoff does not affect the dependency of ks with
discharge variability (this is also the case for the downstream
discharge exponent m, and the erodibility coefficient K).
Figure 6 shows that while the magnitude of the steepness
index responds to changes in mean runoff according to
equation (32), the variation of the steepness index with
runoff variability remains unaffected by such changes.
[32] Theoretical predictions (Table 1) [Whipple and

Tucker, 1999] and surveys of bedrock channels [Tucker
and Whipple, 2002] give values of q around 0.5. Hence to
first order the effect of mean runoff on channel geometry
outweighs the impact of runoff variability for almost all
cases where k > 1, or return times of the critical discharge

are less than about a month (Figure 6). Only when tr(Q*c) >
1 month and k < 1, both mean runoff and runoff
variability affect the steepness of channel. Thus tr(Q*c) at
steady state largely determines the control of runoff
variability on channel steepness. Accordingly, we
have derived an approximation of tr(Q*c) for large Q*c
(Appendix A):

tr Qc*ð Þ ’ g

1þ k � g

yc

�I
: ð33Þ

Testing various combinations of parameters, we have found
equation (33) to be a good approximation of equation (6) at
steady state for tr(Q*c) � 7 days (Figure 7).
[33] Equation (33) illustrates the relative importance of

incision rate, incision law parameters (ke, tc and a through
yc) and the local discharge exponent in setting the sensi-
tivity of channel steepness to discharge variability. Specif-
ically, tr(Q*c) is proportional to the ratio of the incision
threshold parameter over incision rate. Hence factors in-
creasing the sensitivity of channel steepness to runoff
variability at steady state (for tr(Q*c) � 7 days) are low
incision rates, large critical shear stress, weak rocks, and
nonlinearity of the shear stress incision law (through the
dependency of yc and g with the incision exponent a). We
note that channel steepness is expected to be more sensitive
to runoff variability in rivers incising weak rocks, than in
rivers incising strong rocks, for the same critical shear stress
and incision rate. This is because the steady state slope is
comparatively larger for stronger, less erodible rocks, caus-
ing the critical shear stress to be overcome more often than
in less steep channels in weaker rocks. Equation (33) also
illustrates the impact of the cross-sectional channel geom-

Figure 6. Variations of channel steepness with runoff variability for (left) a = 1 and (right) a = 3/2.
Results are presented for different return times of the critical discharge tr(Q*c) (obtained by increasing the
threshold parameter yc with a constant incision rate). Note that the value of tr(Q*c) varies with k (see
equation (33)), and the value for k = 0.5 is given for reference. Curves with different exponent g are
normalized by the steepness value at k = 2.5 for comparison. The general tendency is toward greater
dependency with discharge variability when tr(Q*c) increases. A rectangular channel cross section (ws = 0)
induces the largest dependency of steepness with variability compared to more concave shapes (ws > 0).
Fivefold increase or decrease of mean runoff does not affect the variation of steepness with discharge
variability. See color version of this figure in the HTML.
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etry on the sensitivity of channel steepness to discharge
variability (Figure 6). A rectangular channel cross section
maximizes g and increases tr(Q*c) compared to a concave
cross section. Consequently, rectangular channels are more
sensitive to runoff variability than concave ones (Figure 6).
3.3.2. Scaling of Channel Steepness With Incision Rate
and Discharge Variability
[34] Next, we look for asymptotic solutions of ks for

tr(Q*c) 	 1 day, and for very large tr(Q*c), in order to
determine the expected relationship between channel steep-
ness, steady state incision rate, and discharge variability.
This relationship is of fundamental importance, because it
determines the topographic signature of spatially varying
incision rates, and its sensitivity to runoff variability. It has
been defined for nonstochastic models with threshold
[Lague et al., 2003; Snyder et al., 2003a], and explored
numerically in a stochastic discharge context by Tucker
[2004]. However, we are not aware of an analytical solution
for a realistic stochastic discharge model.
[35] When Q*c is negligible (tr(Q*c) 	 1 day, i.e., the

equivalent of an effective discharge model), the incomplete
gamma functions in equation (26) are equal to unity, and
equation (26) gives the following expression for ks:

ks ¼ K�1
n�R�m

n � G k þ 1ð Þk�g

G k þ 1� gð Þ

� �1
n

yc þ �Ið Þ
1
n: ð34Þ

In contrast, when Q*c is very large the assumption of a power
law frequency-magnitude distribution discharge holds, and
this allows the use equation (23) as an approximation of the
incision rate. By introducing the expression of Q*c derived
from equation (27) we obtain the following expression for
ks:

ks ’ K�1
n�R�m

n � k þ 1ð Þ k þ 1� gð ÞG k þ 1ð Þ
kkþ1g

� � g

n kþ1ð Þ

y
kþ1�g

n kþ1ð Þ
c

�I
g

n kþ1ð Þ:

ð35Þ

This is only valid for tr(Q*c)� 1 days and g < k + 1. Figure 8
shows the quality of the two approximations as a function of

tr(Q*c). Equation (34) is satisfactory for critical discharge
return times of up to 1.5 days. Equation (35) is always
satisfactory for return times greater than 100 days, and
down to 10 days or less for very variable discharges (small
k) and/or small local discharge exponent g.
[36] Equations (34) and (35) show that there is a signif-

icant difference in the relation between channel steepness,
discharge variability and incision rate between cases with
large tr(Q*c) and cases with negligible tr(Q*c). Equation (34)
is similar to the prediction obtained by others [Lague et al.,
2003; Snyder et al., 2003a] using a constant discharge
model with threshold, but it includes explicitly both runoff
variability and mean runoff. It predicts that for very large
incision rates, the steepness index should scale approxi-
mately with incision rate to the power 1/n (and exactly if the
critical shear stress is zero [Lague et al., 2003; Snyder et al.,
2000]). This can be compared with the prediction from
equation (35) for the case of relatively large tr(Q*c):

ks / �If; ð36Þ

where the steepness-incision exponent f is

f ¼ g

1þ kð Þ
1

n
; for tr Qc*ð Þ � 1 days: ð37Þ

Figure 9 summarizes some numerical solutions of equa-
tions (26) and (27) for steepness index versus incision rate
relationships that show the transition between asymptotic
regimes for various discharge variabilities. Because the
return time of Q*c is roughly inversely proportional to
incision rate (equation (33)), the power law behavior in
equation (35) is fully developed at low incision rates
(relative to the threshold parameter). Figure 9 illustrates the
three regimes observed in Figure 6. At low incision rates
relative to the threshold parameter, ks decreases with runoff
variability, but it increases with decreasing runoff varia-
bility at high incision rates when the threshold parameter is
negligible. Between these two regimes, there is a small

Figure 7. Comparison of numerical solution for the return
time of the critical discharge Q*c (calculated from the
minima of equation (26)) and the approximation given by
equation (33). See color version of this figure in the HTML.

Figure 8. Comparison of the quality of the asymptotic
approximation of the steepness index using equations (34)
(constant discharge model) and (35) (asymptotic discharge
model for large Q*c) as a function of the return time of Q*c for
various incision and discharge condition parameters.
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range of incision rates (roughly 0.1 to 0.2 times the
threshold parameter) for which channel steepness is only
weakly dependent on discharge variability.
[37] Snyder et al. [2003b] and Tucker [2004] have first

recognized the deviation from ‘‘constant discharge’’ scaling
of steepness index with uplift rate, when a significant
proportion of runoff events are not erosive. Our results
show that this deviation takes the form of a power law
relationship between steepness and uplift rate (equation (35)
and Figure 9). Equation (37) shows that the channel
steepness-incision exponent f is strongly dependent on
discharge variability and systematically smaller than the
asymptotic value for constant discharge models (as g < k +
1 in the present case). An important consequence is that the
steady state steepness of channels with variable discharge
becomes increasingly dependent on incision rate with in-
creasing runoff variability (Figure 9).

3.4. Nonconvergent Case

[38] Assuming that the maximum value of a is 5/2
[Whipple et al., 2000], and that the channel cross section is
slightly concave (ws = 0.25), the nonconvergent regime
should only occur for the rare case of k < 0.13–0.25 (see
Table 1). Nevertheless, we pursue this case for the sake of
completeness. In this regime, the long-term incision rate
is heavily dependent on the maximum discharge Q*m
(equations (24) and (25)) and increases with time for steady
state discharge conditions (Figure 4). This precludes a steady
state incision rate, unless channel slope decreases with time

to compensate for the increased probability of very large
discharges, which in turn precludes topographic steady state.
Thus we cannot predict the steady state slope-area relation-
ship in this regime. However, because of their dependency on
Q*m, the incision rate and the channel steepness are very
sensitive to changes in discharge variability. Specifically, we
expect an increase in discharge variability to increase incision
rates, and decrease channel steepness. These conditions are
similar to those studied by Molnar [2001] for bed load
transport, in which mean runoff has a minimal control on
incision rates compared to runoff variability.

4. Discussion

[39] We have used a stochastic approach to upscale
bedrock incision from daily to geological timescales in
order to study the impact of runoff variability on bedrock
river incision and steady state channel steepness. In the
following, we discuss similarities and differences of our
results with the work of Snyder et al. [2003b], Tucker
[2004], and Tucker and Bras [2000], review the limitations
of our approach, and seek to improve constraints on the
effect of runoff variability on incision in natural systems.
Finally, we consider the scaling between channel steepness
and incision rate, and the response of bedrock channels to
change in mean runoff and runoff variability, and its impact
on the coupling of climate and crustal deformation.

4.1. Comparison With Previous Work

[40] Although we have used a different discharge magni-
tude-frequency distribution, most of our results are qualita-
tively consistent with the findings of Tucker and Bras
[2000] and Tucker [2004]. We confirm that the efficiency
of channel incision can increase with runoff variability if the
incision threshold is high compared to the incision rate (a �
3/2), and/or if the incision law is very nonlinear with respect
to shear stress (a > 3/2) [Tucker and Bras, 2000]. We also
predict the same slope-area exponent and demonstrate that
the combination of a nonnegligible threshold of erosion and
a stochastic discharge distribution significantly alters the
relationship between channel steepness and incision rate
predicted by effective discharge models [Snyder et al.,
2003b; Tucker, 2004]. However, we use a frequency-mag-
nitude distribution of discharge characterized by a ‘‘heavy’’
tail, with power law scaling of the pdf of floods, as opposed
to an ‘‘exponential’’ tail (Figure 1), making it possible to
explore regimes in which the extreme floods have a greater
importance than in a Poisson model. Use of discharge
distributions with an exponential tail would not lead to
prediction of a nonconvergent case when g > k + 1. An
additional, unexpected outcome of the use of discharge
distributions with a power law tail is that analytical
solutions for the long-term incision rate and the slope-area
relationship are easier to obtain (provided that tr(Q*c) �
7 days). To our knowledge, such solutions cannot be obtained
with a Poisson model for runoff, and demand a numerical
treatment instead (G. Tucker, personal communication,
2005). Finally, we demonstrate that the relationship between
channel steepness and incision rate is always a power law for
large enough tr(Q*c). This is also the case for the Poisson
model with large threshold [Snyder et al., 2003b]. However,
we demonstrate that the power law exponent is independent

Figure 9. Numerical solutions for the relationship
between channel steepness and steady state incision rate for
three discharge variability coefficient k. Insert is a log-log
plot of the same data focusing on small incision rates and
highlighting the power law relationship predicted by
equation (35). Units are arbitrary. For low incision rates the
steepness-uplift power law exponent f increases with the
runoff variability (see equation (37)). For large incision rate
(compared to the threshold parameter yc) the relationship
corresponds to the predictions of a constant effective
discharge model (tr(Q*c) = 1 day). In this regime (and for
g � 1) the steady state steepness increases with runoff
variability for a given incision rate. This is the opposite for
low incision rates. See color version of this figure in the
HTML.
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of the incision law exponent a, and depends only on runoff
variability and the at-a-station hydraulic geometry of the
channel (see equation (38)). It remains to be seen if such
result is predicted with a Poisson model.

4.2. Limits to the Approach

[41] We have simplified aspects of the climate-incision
system at two different levels: the discharge distribution
model and the hydraulic geometry of the channel. Inherent in
our stochastic modeling approach is the assumption that
runoff events are uncorrelated, or more precisely, that
temporal correlations (such as seasonality of flow) do not
change the long-term incision rate. This is true as long as the
erosion parameters (ke, tc and a) are independent of the
runoff history. It could be argued that the assumption does
not hold when sediment supply is a significant control on
incision rate. For example, a large flood could result in the
alluviation of the channel and stop incision until the sedi-
ment cover has been removed by subsequent discharge
events. However, we postulate that these mantling events
are likely to be short-lived compared to the geological
timescale of our study [Benda and Dunne, 1997a, 1997b].
Temporary mantling may contribute significantly to high-
frequency variations of incision rates [Pratt et al., 2004], but
its effects are probably smoothed out over longer timescales
(provided that climate is steady). The discharge frequency-
magnitude distribution model we have used is one of the
most complete, but further work is required to quantify the
range of possible values for the variability parameter k and to
assess its applicability to various climate settings.
[42] Our analysis has underlined the importance of the

hydraulic geometry of bedrock channels: the downstream
variation of channel width is a first-order control on the
scaling of steady state channel steepness with mean runoff,
and the local variation of flow width with discharge controls
the scaling of channel steepness with runoff variability and
incision rate. The variation of the local flow width with
discharge has a previously unsuspected importance due to
its strong influence on the scaling of mean basal shear stress
and daily discharge. Our analysis relies on an under-
constrained empirical expression for the local (i.e., at-a-
station) hydraulic geometry (equation (11)), but it is
sufficiently general to encompass cases where channel
width is constant (vertical walls) or variable with discharge
(concave up walls). Adopting an alternative expression
would obviously affect our analysis, but not change our
conclusions. We point out that as mean channel width is
specified as a function of discharge (equation (10)), it does
change for a given drainage area when the mean runoff is
changed. However, the proportionality coefficient kw might
depends on the rock resistance and possibly on the incision
rate and/or sediment supply in a way that is not yet
understood [Duvall et al., 2004; Lavé and Avouac, 2001].
The same is true for the local discharge exponent which
depends on the flow variability (this sets the variation of
flow stage and thus controls the vertical extent of lateral
erosion and the resulting wall shape and cross-sectional
geometry), and potentially on rock resistance, incision rate
and sediment supply. Importantly, we have assumed that a
steady state cross-sectional geometry is attained. It is likely
that this is appropriate for the downstream hydraulic geom-
etry as is indicated by several studies which have reported

power law relationships similar to equation (10) with an
exponent wa � 0.5 [Montgomery and Gran, 2001; Snyder et
al., 2003a]. However, this assumption remains to be con-
firmed for the cross-sectional geometry. We conclude that
there is an urgent need for precise documentation of the
hydraulic geometry of bedrock channels in the context of
forcing parameters to improve our modeling ability.

4.3. Estimates of tr(Q*c) in Mountain Channels

[43] Incision of bedrock channels is not a continuous
process. Most of the mechanisms thought to be important in
bedrock incision operate only above a discharge threshold.
Although dissolution can occur in the full range of flow
conditions in bedrock channels, plucking and impact abra-
sion by saltating bed load require a minimum shear stress to
detach blocks of rock or transport bed load that is not
achieved in low-flow conditions [Snyder et al., 2003b], and
cavitation requires very high discharges [Whipple et al.,
2000]. Accordingly, we do not expect that the asymptotic
predictions for critical discharge with a return time of 1 day
(equation (34)) are likely to apply in natural systems.
However, they may be relevant to small-scale laboratory
experiments in which runoff has a limited variability. In
such experiments, the steepness-incision relationship pre-
dicted by equation (34) has in fact been observed [Lague et
al., 2003].
[44] There is evidence that in areas with high rock uplift

rate (>1 mm yr�1) incision does occur frequently (return
times less than a month). The first line of evidence comes
from direct in-situ measurement of bedrock incision in a
Taiwanese river. In a companion paper (D. Lague et al.,
Calibration of a bedrock incision model in Li-Wu River,
Taiwan, manuscript in preparation, 2005), we use incision
measurements across the river channel taken at 6-month
intervals (see Hartshorn et al. [2002] for details) and daily
measurements of water discharge to estimate Q*c. In this
area, the long-term exhumation rate is high (3–6 mm yr�1)
and the short-term incision rate is approximately the same
[Hartshorn et al., 2002]. The frequency-magnitude distri-
bution of discharges at the study site is well described by
equation (1), with k = 0.5 and �Q = 34 m3 s�1. We estimate
tr(Q*c) to be of the order of 20 days for a bedrock rib
protruding 1 m above the lowest point in the channel, with
incision occurring mainly during the summer typhoon
season period. We have extrapolated this result to the river
thalweg, where we do not have measurements of wear, and
found that tr(Q*c) = 7–10 days. In this river, thalweg
lowering occurs 	10–15% of all days.
[45] The second constraint comes from [Snyder et al.,

2003b] who have used a calibrated frequency-magnitude
distribution of daily rainfall paired with a shear-stress
incision law identical to equation (8) to estimate ke and tc
from the variation of bedrock channel steepness with uplift
rate in the Mendocino Triple Junction area. With these
parameters, they have estimated that tr(Q*c) 	 5.3–14.3 days
when �I 	 4 mm yr�1, and tr(Q*c) 	 50–333 days when �I 	
0.5 mm yr�1. Uncertainties in the estimate of tr(Q*c) are due
to the lack of constraint on the exponent a on shear stress in
the incision law (equation (7)) that can be either 1 or 3/2
[Snyder et al., 2003b].
[46] These two independent constraints shows that rapid

fluvial incision of bedrock could occur very frequently, say
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every 6 to 15 days. Consequently, the constant discharge
model cannot be used to model bedrock incision (see
Figure 8) [Snyder et al., 2003b]. An effective discharge
can be defined, but it varies with incision rate, discharge
variability and the threshold parameter. This has, so far, not
been taken into account in modeling studies. The short
return time of the critical discharge does not imply that rare
and extreme events do not contribute significantly to long-
term incision: their importance relative to more common
discharges is set by the value of a.

4.4. Calibration of Incision Laws and Estimation of
Uplift Rates

[47] At the scale of individual tectonic structures, rivers
tend to evolve naturally toward a steady state in which, on
longer timescales, incision and rock uplift are equal but
opposite. For example, Lavé and Avouac [2000] have
documented steady state at timescales of 104 years in rivers
incising sandstones at rates of 5 to 15 mm yr�1. Such
settings have received considerable attention because they
can be used to validate and calibrate incision laws [Duvall et
al., 2004; Kirby and Whipple, 2001; Lague and Davy, 2003;
Snyder et al., 2000, 2003b] that can then be applied to other
steady state rivers to estimate local rock uplift rates.
Assuming that equation (35) applies (i.e., tr(Q*c) is at least
of the order of a week and the incision law exponent a is
small), we predict that the channel steepness-rock uplift
relationship is a power law (equation (36)) whose exponent
f is given by equation (37). This can be simplified to

f ¼ a 1� wsð Þ
b 1þ kð Þ : ð38Þ

Contrary to what is predicted by a ‘‘constant discharge’’
model (f = 1/ba) [Lague and Davy, 2003; Snyder et al.,
2000; Whipple et al., 1999], equation (38) shows that f is
independent of the incision law exponent a, and depends
only on runoff variability and the at-a-station hydraulic
geometry of the channel (a and b being approximately
equal). Using values of k between 0.1 and 2.5 and values of
ws between 0 and 0.5, we find that f is between 0.15 and
0.9. This is consistent with estimates by Snyder et al. [2000]
(f = 0.26) for bedrock channels and by Lague and Davy
[2003] (f = 0.32) for colluvial channels, even though the
flow resistance equations and hydraulic geometry differ
from those in bedrock channels. Note that for very variable
discharge conditions and a concave channel cross section,
mean runoff is more important than incision rate in
controlling channel steepness (see equation (32)).
[48] Importantly, it is not possible to calibrate the expo-

nent of a shear-stress incision law of the type of equation (8)
using the relationship between channel steepness and rock
uplift rate as by Duvall et al. [2004], Lague and Davy
[2003], and Snyder et al. [2000, 2003b]. However casting
equation (35) in terms of a long-term incision rate gives

�I ¼ aa 1� wsð Þketact
� kþ1ð Þ

a 1�wsð Þ
c

kt

kaw

� � kþ1
a 1�wsð Þ

� kkþ1G k þ 1ð Þ�1

k þ 1ð Þ k þ 1� aa 1� wsð Þð Þ

 !
�Q

1�wað Þ kþ1ð Þ
1�wsð Þ S

b kþ1ð Þ
a 1�wsð Þ: ð39Þ

In equation (39) the incision exponent a no longer applies to
the channel slope, the amplitude factor of the channel width
(kw), and the mean runoff. Although a, ke and tc remain
underconstrained, it is possible in theory to estimate the
spatial variations of the steady state incision rate provided
that (1) the spatial distributions of �Q, S, kt and kw (or the
flow width corresponding to the mean discharge) are known
(or only �Q and S are variable), (2) the other parameters
(including the flow variability) are spatially uniform, (3) the
steady state holds and (iv) tr(Q*c) is greater than 1 week (i.e.,
equation (35) is valid). Using a method similar to the one
proposed by Lague et al. [2000], it should be possible to
calculate the spatial distribution of incision rates if the
incision rate is known at one location along the river. If a
value for a is assumed, then spatial variations in runoff
variability can be fully taken into account, avoiding the
choice of an ‘‘effective discharge’’ [Lavé and Avouac,
2001]. If tr(Q*c) and the incision rate are known, yc can also
be calibrated using equation (33).
[49] Equation (39) is a generalized version of the stream

power law model of bedrock incision in the case of steady
state incision. It is the first expression to fully take into
account a threshold of erosion and the frequency-magnitude
distribution of runoff. The traditional discharge exponent m
and slope exponent n are independent of the incision law,
but strongly dependent on the runoff variability and the
hydraulic geometry of the channel. Typical values for m and
n in a very variable climate would be around 1 and 2,
respectively (wa = 0.5, ws = 0.25, k = 0.5, a = b), and in an
steady climate (k = 1.5) around 1.67 and 3.33, respectively.
These values are significantly larger than those normally
used (Table 1), underlining the nonlinearity introduced by
an erosion threshold and a reduced range of erosive events.
Equation (39) also provides an alternative explanation for
the increase in the erosion efficiency with incision rate
observed by various authors [Duvall et al., 2004; Snyder et
al., 2000] (i.e., a deviation from theoretical predictions
using a constant effective discharge model). This result is
expected within the context of a stochastic discharge model
with threshold [see also Snyder et al., 2003b; Tucker, 2004],
but we note that it could also be attributed to a decrease of
channel width with incision rate [cf. Duvall et al., 2004].

4.5. Climate and Incision Efficiency of Mountain
Channels

[50] Using the shear stress incision model of equation (8),
we have shown that the introduction of discharge variability
can significantly increase the erosion efficiency of bedrock
channels, but only when the incision threshold is very
high relative to the incision rate (i.e., tr(Q*c) > 1 month,
see Figure 6). Discharge variability is also important in the
nonconvergent regime, but this covers only a very limited
range of extremely variable climates and incision laws,
unlikely to apply in many bedrock rivers. While the exact
formulation of incision laws such as the one we used is
subject to debate, Lavé and Avouac [2001] have demon-
strated that equation (8) with a = 1 and ke inversely
proportional to the grain size transported in the river predicts
precisely the pattern of river incision over 104 years,
along Himalayan rivers incising at rates between 5 and
17 mm yr�1. In Appendix B, we show how the model of
bedrock incision by saltating bed load proposed by Sklar
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and Dietrich [2004] can be rewritten as a simple shear-stress
incision model with a = 1 and ke a complex function of grain
size, rock mass properties and the ratio of sediment supply to
sediment transport capacity.
[51] If a = 1 and ke are independent of runoff conditions,

and assuming that tr(Q*c) is about 4 to 15 days in rapidly
incising bedrock rivers, we predict that runoff variability
has probably no measurable impact on the steady state
steepness of bedrock channels. Hence the main ‘‘climatic’’
control on channel steepness and incision efficiency is mean
runoff. Its effect on longitudinal channel geometry is given
by equation (32). This expression suggests that if climate
were to evolve toward drier but more variable conditions,
the river incision rate would decrease, and with it the
catchment-wide long-term denudation rate in fluvially dom-
inated areas, and channel steepness would increase. Such a
climate change has been invoked as a possible explanation
for the observed increase in global sedimentation rates
during the Late Cenozoic [Molnar, 2001; Zhang et al.,
2001]. Our analysis is not consistent with this postulate.
Whether this is due to misestimation of the return time of
the critical discharge required for fluvial bedrock incision,
inadequacy of the bedrock incision model or the climate
model, or indeed an argument in favor of glacial erosion
remains to be determined.

5. Conclusion

[52] We have coupled a realistic stochastic distribution of
discharge with a deterministic incision law to predict the
influence of mean runoff and runoff variability on long-term
incision rates and steady state channel steepness. Our ap-
proach improves on earlier attempts by using a frequency-
magnitude distribution of discharge that encompasses
the entire range of discharges, and, most importantly,
reproduces the power law tailing of rare and extreme events.
Calculating long-term incision rates by integrating the
action of all discharge events weighted by their probability
of occurrence, we predict fluvial incision rates to converge
rapidly (	102–103 years) toward a constant value for
all cases except the rare situation in which discharge is
extremely variable (k < 0.1–0.25) and the incision law very
nonlinear (a = 5/2). Our model predicts a power law scaling
between slope and drainage area whose exponent is inde-
pendent of the runoff conditions (mean and variability), and
consistent with observations. The predicted steady state
channel steepness decreases approximately as the inverse
of the square root of mean runoff. Runoff variability has a
more complex effect, characterized by three regimes with
different return times of the critical discharge required for
fluvial incision: if the return time is 	1 day, the channel
steepness increases with runoff variability; for return times
between 1 day and about 1 month, the channel steepness
depends weakly on runoff variability; for longer return
times, the channel steepness decreases with runoff variabil-
ity. We have found that the return time of the critical
discharge is about a week in rapidly incising bedrock rivers
(�4 mm yr�1), so that their steepness is likely to be
controlled by the mean runoff rather than the runoff vari-
ability. Because the return time of the critical discharge is
proportional to the ratio of the incision threshold term over
the uplift rate, runoff variability could be important in

bedrock rivers incising at slow rates (<1 mm yr�1?) and/
or into weaker substrates. We have also demonstrated that a
stochastic model with incision threshold predicts a power
law relationship between channel steepness and incision
rate whose exponent is independent of the incision law
exponent on shear stress. This highlights a fundamental
difference with effective discharge models in which the
incision law exponent is thought to controls the scaling of
channel steepness with incision rate at steady state. Recog-
nizing this difference, we have presented a new expression
for the long-term incision rate at steady state that has the
form of a stream power law without threshold, but whose
exponent on slope and discharge are independent of the
incision law exponent a, and larger than in the case of an
effective discharge model.
[53] Possibly our most surprising prediction is that mean

runoff, rather than runoff variability and incision rate, could
be the dominant control on channel steepness, although this
result remains to be tested. Our results highlight the neces-
sity of a stochastic discharge approach to the modeling of
bedrock incision, and the importance of the incision thresh-
old as a fundamental parameter of incision laws [Davy and
Crave, 2000; Molnar, 2001; Snyder et al., 2003b; Tucker,
2004; Tucker and Bras, 2000]. Our analysis also stresses the
importance of the local discharge exponent for the scaling
of channel steepness with runoff variability and incision
rate. It depends largely on the cross-sectional shape of
bedrock rivers, an aspect of river geometry that has rarely
been documented. In bedrock channels incising cohesive
rocks, the cross-sectional shape results from the competition
between uplift and abrasion processes by bouncing blocks
and suspended particles. On longer timescales, this compe-
tition is modulated by the probability of occurrence of
high discharge events during which lateral erosion occurs
[Hartshorn et al., 2002]. Full documentation of lateral
channel dynamics is a critical requirement for progress in
the understanding of river erosion and landscape evolution.

Appendix A: Approximation of tr(Q*c)
at Steady State

[54] When the critical discharge is large enough, the
frequency-magnitude distribution of erosive discharges
can be approximated by a power law according to
equation (20). Then according to equations (4) and (20),

tr Qc*ð Þ ¼
Z þ1

Qc*

kkþ1

G k þ 1ð ÞQ*
� 2þkð ÞdQ*

� ��1

: ðA1Þ

Equation (A1) simplifies into

tr Qc*ð Þ ¼ k þ 1ð ÞG k þ 1ð Þ
kkþ1

Qc*
1þkð Þ: ðA2Þ

Using the expression of Q*c derived from equation (27)
and the expression of steady state slope derived from
equation (35), we obtain the following expression of Q*c:

Qc* ¼ gkkþ1

k þ 1ð Þ k þ 1� gð ÞG k þ 1ð Þ
yc

�I

� � 1
kþ1

; ðA3Þ
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that gives

tr Qc*ð Þ ’ g

1þ k � g

yc

�I
ðA4Þ

Appendix B: Simplification of the Sklar and
Dietrich Model Into a Simple Shear-Stress Model

[55] We use the general expression for bedrock incision
by saltating bed load derived from equation (24b) of Sklar
and Dietrich [2004]:

I ¼ 0:08RbgY

kvs2t
qs

t*
tc*

� 1

� ��0:52

1� qs

qt

� �
ðB1Þ

where Rb is the nondimensional buoyant density [(rs � r)/r],
Y is Young’s modulus of elasticity [Mpa], kv is a rock
resistance coefficient (empirically calibrated), st is the rock
tensile strength [Mpa], qs is the unit sediment supply, qt is the
unit sediment transport capacity, t* is the Shield’s stress and
t*c is the critical Shield’s stress. Following Sklar and Dietrich
[2004], we have neglected the suspension term that is
originally in their equation (24b).
[56] The difficulty when upscaling equation (B1) to

longer timescales is to define how sediment supply scales
with shear stress. We assume that the daily unit sediment
supply is a fixed proportion of the daily sediment transport
capacity:

qs ¼ fqt; ðB2Þ

where f varies between 0 and 1. It means that the daily unit
sediment supply rate has the same scaling with shear stress
than the sediment transport capacity. This makes sense if the
contribution from the local hillslopes is negligible compared
to the bed load supply from upstream. Equation (B2) insures
that the long-term ratio between sediment supply and
sediment transport capacity is f. In the modeling
framework of Sklar and Dietrich, it also means that
sediment cover is identical for all discharge stages. The
unit sediment transport capacity law used by Sklar and
Dietrich [2004] is

qt ¼ 5:7rs RbgD
3
s

� �1=2
t*� tc*ð Þ3=2 ¼ 5:7

rs
r rs � rð Þg t� tcð Þ3=2

ðB3Þ

and using equation (B2) in equation (B1), we obtain the
following expression for the daily incision rate:

I ¼ 0:456
Y

kvs2t

rs
r2
t

1
�
2

c t� tcð Þf 1� fð Þ: ðB4Þ

Equation (B4) is a simple shear stress incision law
(a = 1).

Notation

Q daily discharge.
�Q mean daily discharge.
k variability parameter.

Q* normalized daily discharge.
R daily runoff.
�R mean daily runoff.

tr(Q*) return time of discharge Q*.
Qc* normalized critical discharge for incipient

incision.
Qm* maximum normalized discharge.

�I mean long term incision rate.
�I mean long term incision rate without threshold.
I daily incision rate.
ke incision efficiency coefficient.
t basal shear stress.
tc critical shear stress for incision.
a incision law exponent.
kt hydraulic friction factor.
W flow width.
S channel slope.
A drainage area.
ks steepness index.
q concavity index.
f steepness/incision scaling exponent.

a, b exponents of the flow resistance equation.
ws local (at-a-station) scaling exponent between flow

width and discharge.
wa downstream scaling exponent between channel

width and discharge.
wa flow width corresponding to the mean discharge.
kw amplitude factor of the channel width/mean

discharge relationship.
K erodibility factor.
m downstream discharge exponent.
g local discharge exponent.
n slope exponent.

yc threshold parameter.
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