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Abstract 

The parameters to be controlled to coat metallic walls by VOx/TiO2 catalysts 

which are used in the mild oxidation of hydrocarbons and NOx abatement are studied. 

Stainless steel (316 L) was chosen because of its large application in industrial catalytic 

reactors. TiO2 films on stainless steel were obtained by dip-coating in two steps. 

Superficially oxidized plates were first dipped in Ti-alkoxide sol-gel to be coated by a 

very thin layer of TiO2. On this anchoring layer was then deposited a porous film of 

titania by dipping plates in an aqueous suspension of TiO2 particles. After calcination, 

VOx species were grafted to TiO2/SS plates and their loading was determined by means 

of X-ray Photoelectron Spectroscopy. The chemical and mechanical resistances of films 

were controlled by several tests. Laser Raman Spectroscopy, X-Ray Diffraction and 

Scanning Electron Microscopy were used to characterize the samples after each step of 

preparation. The porous texture was determined using a thermobalance. The dispersion 

and the nature of VOx species and the value of theoretical monolayer of VOx on 
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TiO2/stainless steel are shown to depend on the surface V/Ti ratio, in the same manner 

as  for VOx/TiO2 coating anodised aluminum plates and as for VOx/TiO2 powders, . 

Therefore, we have demonstrated that the shaping of TiO2 has no influence on the 

characteristics of the active phase, which is of prime importance for catalytic 

applications in structured reactors. 

Keywords: structured reactors, catalytic wall reactors, stainless steel, dip-coating, 

V2O5/TiO2 catalyst, XPS.
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1. Introduction 

Heat exchanger type reactors are studied till recently because of their potential 

applications in highly exothermic reactions [1, 2] like, for example, the oxidative 

dehydrogenation of C2-C4 alkanes [3-6]. Compared to fixed bed reactors in which 

heterogeneous catalytic reactions are most often carried out, structured reactors could be 

profitably used because the heat transfer between the poorly conducting oxidic material 

and the metallic wall would be better controlled [7]. In such cases, the catalytic active 

phase must be deposited onto the metallic plates that constitute the reactor walls, or 

directly onto the walls, according to the reactor design. Obviously, this assembly must 

be mechanically and thermally stable, chemically resistant to the reactants, while the 

coating must retain its specific textural and catalytic properties. Once the active oxidic 

material is chosen, the coating procedure must be adapted case by case according to the 

nature of the metallic substrate (e.g., aluminum or stainless steel) and, eventually, its 

shape. 

We have recently studied the coating of aluminum plates with VOx/TiO2 catalyst 

[8]. This catalyst is well-known to be active and selective in several types of reactions 

like the mild oxidation of hydrocarbons (o-xylene oxidation to phthalic anhydride, 

oxidative dehydrogenation of propane, etc.) as well as in pollution abatement (selective 

catalytic reduction of NOx by ammonia). Aluminum is a good thermal conductor (237 

W.m-1.K-1). Its surface is naturally covered by a layer of alumina which may serve as an 

anchoring layer for other oxides [9]. As its porosity can be increased by anodization, 

high surface area coatings are expected. Among other V/Ti compositions we studied, a 

monolayer of VOx onto anatase, itself coating anodized Al, was deposited by dip-

coating of the plates in a sol-gel of Ti-alkoxide precursor. Dipping in sol-gel medium is 
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one of the most appropriate ways to prepare thin oxide coatings because of several 

advantages, among which a high homogeneity, an easy control of composition and a 

low processing temperature. After grafting TiO2 onto alumina, we thought that a high 

amount of porous titania layers could be deposited on plates, in particular by using a 

porogenic agent. However, we have demonstrated by varying several parameters [8], 

that it is not possible to obtain films with well defined porous structures because of a 

demixtion phenomenon occuring at the solution-plate interface. This work illustrated 

the difficulties encountered when transposing technologies initially developed for 

powders to plate-supported catalysts. 

The coating of stainless steel plates with VOx supported on titanium dioxide 

(anatase) is presented here. Even if its thermal conductivity (46 W.m-1.K-1) is lower than 

that of aluminum, stainless steel stands high temperatures and is the preferred material 

of most industrial reactors. Obviously this metal cannot be anodised, and consequently 

it is not easy to get a porous oxide layer onto which TiO2 films could be anchored. 

Therefore, we have adapted the method elaborated to make TiO2/Al2O3/Al by using a 

suspension of TiO2 powder to coat stainless steel once a thin layer of titanium dioxide 

has been grafted. The hypothesis is that, after deposition, the titanium dioxide film will 

present the same properties than the initial corresponding powder. Such suspensions of 

TiO2 (generally TiO2-P25 from DEGUSSA) have already been proposed for the coating 

of glass plates [10-13]. Two main applications are photocatalysis for the decomposition 

of organic compounds in waste water [14, 15], and optical thin films because of the high 

refractive index and the chemical stability of TiO2 [16, 17]. Fernandez et al. [18] and 

Byrne et al. [19] have used the electrophoretic method for such coating on stainless steel 

but, up to our knowledge, there is no paper concerning the deposition of anatase on 

stainless steel by dip-coating in suspensions of TiO2. The anatase form is preferred for 
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catalytic applications because its strong interaction with vanadium oxide allows to 

generate a molecular dispersion of VOx oxide layer, which exhibits the best activity and 

selectivity in most reactions [20]. 

In this paper we report on the grafting of VOx monolayer on TiO2-anatase coated 

stainless steel plates. The characterization of the deposits at the various stages of the 

preparation suffers from several difficulties because of the large contribution of the 

metallic plate, whereas most of the experimental equipments used in the field of 

catalysis are designed for powders. As developed in a previous paper [8], we have used 

X-ray Photoelectron Spectroscopy (XPS) which allows to control and to quantify the 

amount of active phase VOx as well as of TiO2 deposited on metallic plates. The 

structural properties of coated plates have been studied by Scanning Electron 

Microscopy (SEM), Laser Raman Spectroscopy (LRS), and their texture has been 

analysed using the Brunauer-Emmet-Teller (BET) method. Results will be compared to 

those obtained in [8] for VOx/TiO2/Al2O3/Al as well as with powders of VOx/TiO2

which have also been prepared. 

2. Experimental procedure 

2.1. Physicochemical analyses 

The specific surface area and the porosity of the film on plates at various stages of 

coating were determined from the nitrogen adsorption and desorption isotherms, to 

which the BET method was applied. The partial pressure of nitrogen varied from 104 to 

105 Pa at 77 K. All samples were first degassed at 150°C for 4 h in vacuum. Because of 

the large weight and size of the metal plate as compared to that of the coating, these 
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isotherms were obtained using a thermobalance (Sartorius GmBH, model S3D-V), the 

reference being a bare stainless steel plate of the same size. For the same reason, it is 

more appropriate to consider the developed surface area – as compared to the geometric 

surface area of the plate – instead of the specific surface area. 

Laser Raman spectra were recorded on a LabRAM Infinity spectrometer (Jobin 

Yvon) equipped with a liquid nitrogen detector and a frequency-doubled Nd:YAG laser 

supplying the excitation line at 532 nm. The power on the sample was less than 5 mW. 

The spectrometer was calibrated daily using the silicon line at 521 cm-1.

After grafting or coating, VOx and TiO2 deposits were analyzed by XPS using 

Leybold VG Escalab spectrometer. The residual pressure in the ultra-high vacuum 

chamber was about 10-9 Pa. Al Kα  X-ray source was used to study VOx/TiO2/stainless 

steel plates. The spectra were referenced to O1s photopeak (from TiO2) with binding 

energy BE = 530 eV. 

Surface images were obtained by means of Hitachi 4100 S scanning electron 

microscope equipped with a Field Emission Gun, with numerical image acquisition. 

X-Ray Diffractograms (XRD) were obtained by reflection with a Siemens D5000 

diffractometer (Cu Kα1 line, λ  = 154.2 ppm). The Kα2 line contribution was eliminated 

by mathematic treatment with the software Eva ver. 9.0 (Brucker Advanced X-Ray 

Solutions). 

The mechanical and chemical resistances of the films were studied according to 

two qualitative tests: 

- Test 1: The adhesion of coatings was investigated by means of a piece of 

adhesive tape (Scotch 3M) sticked onto the surface. The tape was firmly rubbed with 
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finger tip and removed. Only oxide coatings with no particles left on the adhesive tape 

were further processed [21]. 

 - Test 2: Plates were introduced in the thermobalance after a precise weighing. 

Temperature cycles (10°C/min) were successively performed under different 

atmospheres (air, nitrogen, hydrogen). The temperature was held at 200°C during 12 h, 

then decreased to room temperature and again increased up to 500°C (12 h). .  

2.2. Preparation of plates before the film deposition 

Stainless steel 316L is an austenitic alloy containing 18% of chromium, 13% of 

nickel and 2.5% of molybdenum (Table 1), the later being used to decrease the 

sensitivity to corrosion. Passivation oxides like (Fe,Cr)2O3 are present on the surface 

(Figure 1), but their developed surface area (m2 per geometrical m2 of plate) is 

practically the same than the geometric surface area of stainless steel.  

Plates (5 cm × 2 cm × 0.5 mm) of 316L were chemically treated by a sulphuric 

acid solution (30 wt%) during 2 h in order to increase the roughness of the surface 

oxides [22-24]. In order to eliminate acidic traces before the anatase film deposition, 

plates were sonicated two times in water during 30 minutes and left standing at room 

temperature during 3h. On the resulting plate (noted SSH) examined by SEM (Figure 

2), the rugosity was seen to increase after treatment, the passivation film being mainly 

developed on the grains and not on grain boundaries. XPS experiments confirmed the 

increased thickness of the passivation film. From the metallic ratio ( =
i

i
i

M%

M%
X , 

where Mi is the atomic percentage of the metal “i” = Fe, Cr, Mo), it is clearly seen on 

Table 2 that XFe decreases from 0.8 to 0.5 after the acidic treatment, while XCr increases 

from 0.15 to 0.5. The binding energy (BE) at 711.0 eV for Fe 2p , 577.1 eV for Cr 2p 
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and 233.0 eV for Mo 3d correspond to Fe3+, Cr3+ and Mo6+ in their respective oxides 

[25, 26]. 

Before and after the acidic treatment, the XRD patterns of SSH remained 

unchanged, confirming the fact that the corrosion affected only the surface of the 

samples.  

2.3. Coating of plates 

1
rst

 step: Deposition by sol-gel  

The precursor solutions were prepared according to Giornelli et al. [8]: 17.2 ml of 

tetrabuthylorthotitanate Ti(OBu)4 97% and 4.8 ml of diethanolamine 99% (both 

SIGMA-ALDRICH) were dissolved in dry ethanol (67.28 ml) (FLUKA). The solution 

was stirred vigorously at room temperature for 2 h. 2.7 ml of water and 10 ml of ethanol 

(Ti(OBu)4:C2H5OH:H2O:NH(C2H4OH)2 = 1:25.5:3:1, molar ratio) were added dropwise 

to the solution under stirring. The resultant alkoxide sols were left standing at room 

temperature for two hours for the hydrolysis reaction to proceed. TiO2 films were 

prepared by dipping (20 s) and withdrawing the SSH plates at 6 mm.s
-1

. The resulting 

plates, noted SSHT, were calcined in a furnace in air flow at 80°C.h-1, up to 100°C 

during 1 h and then at 900°C for 2 h.  

2
nd

 step: Deposition of a porous film of TiO2 by suspension on SSHT

In order for a film of TiO2 to be homogeneous, the size distribution of oxide 

particles in suspension must be as narrow as possible. Several commercial samples of 

TiO2-anatase powders were analysed by a granulometer (LS Coulter). Hombikat-T 

particles of TiO2 (50 m²/g, size 50 µm) flocculated in the beaker and the sample was 

discarded. The particle size distribution of TiO2-Aldrich (10 m²/g) being more narrow 
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(size range 0-250 µm) than that of TiO2-Alfa-Aesar (52 m²/g, 0-1500 µm),TiO2-Aldrich 

powder was chosen for the suspension. 

Several tries were realized on the basis of those described in the literature [27-29], 

by varying numerous parameters like the medium (water, diluted nitric acid, surfactant 

addition), the amount of TiO2 in suspension, the time of immersion [30]. In most cases, 

the films were less than 1 µm thick and/or did not stand the stability tests. Finally, the 

following procedure led to stable and thick enough deposits: SSHT samples were 

dipped under stirring 5 min in 60 wt% of TiO2 particles suspended in water, and 

withdrawn at 6 mm.s-1. Plates were calcined 1 h up to 110°C, and then 2 h at 900°C 

(80°C/min) in air flow. The latter temperature was chosen after dilatometric 

experiments (see below). The resulting samples are noted T/SSHT.

3rd step: Grafting of VOx specie on T/SSHT

Vanadium(V)-oxytripropoxide VO(OPr)3 98% (SIGMA-ALDRICH) was used as 

precursor. Solutions containing different amounts (C = wt% of VO(OPr)3 in dry 

ethanol) of precursor were prepared. T/SSHT plates were dipped under stirring during 1 

h, and then withdrawn (6 mm.s
-1
) from the solution. The plates were then heated in a 

furnace (30°C.h-1) at 450°C for 4 h in air flow. Resulting samples were noted 

VT/SSHT. 

3. Results and discussion 

3.1. Stainless steel plates (SSHT) 

SEM micrographs of SSHT plates show clearly that the surface of SSH is 
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modified after the grafting of Ti alkoxide and calcination, which is in favour of the 

presence of an anchoring titania layer on the surface of SSH (Figure 3). 

The BE of  Fe 2p, Ti 2p, Mo 3d, Cr 2p, Mn 2p photopeaks was measured by XPS 

and the metallic ratios Xi were calculated for the stainless steel plates after acidic 

treatment (SSH) and after sol-gel deposition (SSHT) (Table 3). Most elements 

constituting stainless steel (Fe, Mo, Mn) are still observed on SSHT. Iron oxide is the 

major compound in the ~10 nm depth analysed. As expected, the surface composition 

has been strongly modified by the coating of TiO2 as well as by the calcination step. 

Indeed, the amount of Fe
3+

 on SSHT is greater (×1.5), while that of Mo
6+

 is divided by 

10, and some Mn2+ also occurs. The Cr 2p photopeak has disappeared because CrO3,

which is formed by oxidation of Cr2O3, is a very volatile compound escaping during 

calcination [31]. The Ti 2p photopeak at 458.3 eV corresponds to that of titanium oxide, 

and the corresponding XTi is equal to 15 %. Therefore, the surface of SSHT is better 

described as constituted by Fe3+ and Ti4+ oxides, and not only by TiO2 as expected.  

This finding was confirmed by XRD on SSH and SSHT plates. On SSHT 

diffractogram (Figure 4) the lines of the austenitic phase of stainless steel [32] are 

superimposed to those of α−Fe2O3 [33] and of pseudobrookite Fe2TiO5 in small 

amounts.  Only Fe2O3 spectrum was observed when SSHT plates were examined by 

Raman spectroscopy.  

In conclusion, the immersion of SSH plates in the titania sol-gel followed by 

calcination at 900°C did not result only in the formation of an anchoring layer of TiO2,

as expected. A mixture of iron oxide and Fe2TiO5, the latter being certainly formed by 

the high temperature reaction between  Fe2O3 and TiO2, was also present. 
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3.2. TiO2/stainless steel plates (T/SSHT) 

Once dip-coated in the suspension of TiO2, T/SSHT plates were calcined up to 

900°C. This temperature was chosen after dilatometric experiments performed on the 

Aldrich powder of TiO2-anatase. The powder was pressed (1 t/cm²) in order to obtain a 

cylinder (diameter: 5mm, L0 = 4.95 mm), which was placed in a furnace and gradually 

compressed while the temperature increased at 5°C/min rate. 

Figure 5 shows that the cylinder expanded little between 200 and 850°C. When 

calcination of plates was performed at temperatures between 450 and 800°C, the 

resulting films did not satisfy the mechanical and chemical tests. The sintering begins 

ca. 900°C, temperature at which TiO2 cylinder loses 0.6 % length. We assume that at 

this temperature the interactions plates/powders are strong enough, so that the strength 

of adhesion increases.  

To show that little modification of the physicochemical properties (specific 

surface area, crystallographic structure) of TiO2-anatase occurred during calcination, 

both TiO2 powder and T/SSHT plates were analysed by several techniques and their 

properties were compared. 

A thermobalance was used to determine the texture of the film on T/SSHT. 

Several plates were prepared, and cut in 6 cm² pieces. Results showed that the 

development factor (m²/ m² geometric surface) was equal to 300 m²/m². The specific 

surface area of the TiO2 film was determined on the resulting powder (about 30 mg) 

after that the film had been scratched on both sides of the plates. The specific surface 

area was found similar to that obtained for the genuine powder, ca. 10 m²/g. 

Furthermore, ten T/SSHT plates were prepared and their titania films were scratched 

successively and collected. The average weight of anatase on each plate was found to be 
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29 ± 1 mg, which confirms that the deposition method is reproducible.

Aldrich powder initially contains potassium and phosphorus impurities, as shown 

by XPS. The BE of K 2p (293.2 eV) and P 2p (133.4 eV) photopeaks (Table 4) 

corresponds to K+ in potassium oxide and P5+ in P2O5, respectively. These oxides are 

still present in T/SSHT plate but in lesser amounts. The K/Ti and P/Ti ratios have 

slightly decreased, probably because the corresponding oxides have been partly 

dissolved in water during the suspension step [34]. The other elements like Fe, Cr…, 

constituting stainless steel plates were not observed, which means that the thickness of 

the TiO2 film is higher than 10 nm. The SEM micrograph of T/SSHT confirmed that 

TiO2 film was 15 µm thick (Figure 6).  

Finally, Raman spectroscopy carried out on T/SSHT after calcination showed that 

anatase was still present. XRD pattern of the scratched powder exhibited mostly the 

lines of anatase, although a small amount of rutile was detected (approximate 

anatase/rutile ratio = 97/3). Therefore, the high temperature (900°C) at which the plates 

were calcined so as to get stable films did not strongly modify the crystallographic 

structure and the porous texture of TiO2 (Aldrich). 

3.3. VOx/TiO2/stainless steel plates (VT/SSHT). 

Due to the shape of the plates, the traditionnal impregnation techniques used for 

deositing VOx  on powder catalytic supports (such as incipient wetness technique) 

cannot be considered. The reaction between the surface TiO2 hydroxyl groups with 

vanadia precursor molecules is therefore the best route to obtain well defined surface 

concentrations of vanadium. Here, two cases are possible: i) a very reactive precursor 

will react with all surface hydroxyls leading to monolayer coverage, or ii) a less reactive 

precursor will lead to an equilibrated reaction allowing the control of the surface 
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concentration of VOx specie, up to the monolayer. The latter option was choosed in this 

work. The difficulty met for determining the number of hydroxyl specie at the surface 

of the catalyst was overcome by an extensive use of XPS characterization. Indeed, XPS 

was used to determine at which concentration (0.5 < C < 4 wt%) of the VOx precursor 

in ethanol the “theoretical monolayer” is reached on VT/SSHT plates. The binding 

energy and Full Width at Half Maximum (FWHM) of V 2p3/2 and Ti 2p3/2 photopeaks 

(Table 5) were in good agreement with the literature data for the V2O5/TiO2 system 

[35], and were practically unchanged compared to those of pure V2O5 and TiO2 oxides. 

The small differences observed for FWHMs came from the fact that TiO2 (Aldrich) 

contains potassium. Potassium oxide is known to modify the redox properties of 

vanadium in VOx species, because it increases the stability of V5+ [36]. Other values in 

Table 5 stand for VOx/TiO2 powders (prepared with TiO2 Alfa-Aesar) and 

VOx/TiO2/Al2O3/Al plates [8] for comparison. 

In all cases, the variation of V/Ti ratio depends on the range of VOx precursor 

concentration C. V/Ti increases steadily with 0.5 < C < 2.0, and reaches a plateau at 

V/Ti = 0.2 as shown on Figure 7. A further increase of C (C ≥ 3.5) leads to a sharp 

increase of V/Ti corresponding to the precipitation of V2O5, which is not represented in 

Figure 7 for the sake of clarity. The same plateau at V/Ti = 0.2 ratio was found when 

VOx was grafted on TiO2 films coating anodised aluminum plates [8](also reported in 

Table 5 and Figure 7).    

Such a V/Ti (0.2) value is also reported in the literature for powders when a 

monolayer of VOx is reached. Bond et al. [37, 38] have demonstrated that, as the V 

loading increases, the formation of the polyvanadate monolayer is followed by the 

building of a disordered VOx phase in the one-to-four monolayers equivalent range, and 
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then by paracrystalline V2O5 exposing mainly planes perpendicular to the basal [010] 

plane. These blocks, which grow into microcrystalline “towers”, cover only a limited 

part of the surface resulting in a change in the slope of the V/Ti curve vs loading at the 

monolayer. Bond et al. [37-39] and Mendialdua et al. [40] observed such an inflexion 

point at V/Ti = 0.2 and 0.3, respectively. For the sake of comparison, we have prepared 

several samples of VOx/TiO2 varying by the V2O5/TiO2 weight ratio. TiO2 powder (Alfa 

Aesar, 50 m²/g) was impregnated by various amounts of NH4VO3 in oxalic acid solution 

and calcined under air flow at 450°C in the same conditions as plates. In this case, the 

theoretical monolayer should be reached for V2O5/TiO2 = 3.5 wt%. By XPS (Table 5 

and Figure 7), we observe indeed that V/Ti increases linearly up to 0.2 for V2O5/TiO2

below 3.5 wt% , after which value the slope is far smaller. 

We may therefore deduce that the plateau observed for plate samples at V/Ti = 0.2 

indeed corresponds to the monolayer and that the ratio characterizing VOx monolayers 

when supported by TiO2 is independent from the shaping of the anatase support 

(powder or plate). The grafting method thus allows a better control of the amount and 

dispersion of the VOx specie on the TiO2 surface up to the monolayer. This is a very 

important point, as the control of the amount of vanadium oxide deposited on TiO2 is 

crucial for the catalytic properties of the material. 

4. Conclusion 

In a previous paper, we had exposed the difficulties we faced when trying to 

deposit a porous film of TiO2 on anodised aluminum plate because titania did not enter 

the pores. Another method has been adopted to coat stainless steel, which is the 

preferred material of industrial catalytic reactors, by taking advantage of its excellent 

thermal resistance as compared to aluminum. An anchoring layer of TiO2 was grafted 
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by dip-coating of passivated plates in Ti alkoxide sol-gel and further consolidated by 

calcination at 900°C. The SSHT plates were dipped in an aqueous suspension of 

Aldrich TiO2 powder which was selected because of its narrow granulometric range. 

After optimisation of the conditions of coating and assessing the chemical and 

mechanical stability, a stable TiO2 film of 15 µm thickness was reproducibly obtained. 

The physicochemical properties of the initial commercial powder were retained in the 

final film, among which the specific surface area (10 m2/g). Finally, VOx specie were 

grafted onto T/SSHT using vanadyl-alkoxy sol-gel medium, followed by calcination at 

450°C. We have therefore demonstrated that the dip-coating technique using metallic 

alcoholates and titania suspension is a valuable method for the coating of VOx/TiO2 on 

flat stainless steel plates. Although more complicated geometric shapes of the metallic 

support may affect the properties of the porous layer of TiO2 (thickness, adhesion) and 

are worth to be further investigated, we do not expect that it may affect the grafting of 

the active phase. We have also emphasized that  catalytic deposits on metallic plates are 

not straightforwardly realized nor characterized as compared to the well characterized 

powders of VOx/TiO2 catalyst. Whereas on powder catalysts the surface V/Ti 

composition is directly determined by the stoichiometry of the impregnation solution, 

this is not the case when using metallic carriers. This difficulty was overcome here by 

the extensive use of XPS at every stage of the process. Finally, most physico-chemical 

properties of the VOx/TiO2 system were retained. The composition corresponding to the 

formation of VOx monolayers on anatase is in good agreement with that found in the 

literature for powders, as well as with that obtained for VOx/TiO2/Al2O3/Al plates, 

demonstrating thereby that the shaping of anatase (powder or plate) has not modified 

the properties of the VOx/TiO2-anatase system. The catalytic properties of these systems 

in the oxidative dehydrogenation of propane to propene [30] will be the matter of a 
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forthcoming paper. 
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Figure captions: 

Figure 1: Bi-layer model of the passive film on stainless steel 

Figure 2: SEM micrographs (× 5000) : stainless steel surfaces before (a) and after (b) 

acidic treatment 

Figure 3: SEM micrographs (× 2500) : stainless steel surfaces of SSH after acidic 

treatment (a) and SSHT after grafting of TiOx (b) 

Figure 4: Diffractograms of SSH (a) and SSHT (b) plates: austenite ( ), Fe2O3 (*) , 

Fe2TiO5 (•)

Figure 5: Dilatometric analysis of TiO2-Aldrich powder 

Figure 6: SEM micrograph of T/SSHT showing the film of TiO2

Figure 7: XPS experiments on VOx/TiO2 coated on plates or as powder. V/Ti intensity 

ratio vs. concentration of the grafting solution for plates (bottom X axis: VO(OPr)3 wt% 

in ethanol; ∆: VT/SST; :VOx/TiO2/Al2O3/Al plates [8]) and vs VOx loading for 

powders (top X axis: V2O5/TiO2 wt%) ( ). 
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Table captions: 

Table 1 : Chemical composition of the stainless steel 316L. 

Table 2 : XPS analysis of stainless steel plates before and after acidic treatment. 

Binding energy (BE) of Fe 2p, Cr 2p, Mo 3d and metallic ratios Xi.

Table 3: Binding energy (BE) of Fe, Ti, Mo, Cr, Mn and metallic ratio Xi for the 

stainless steel plates after the acidic treatment (SSH) and after the sol-gel deposition 

(SSHT). 

Table 4: XPS analysis of TiO2 powder and of T/SSHT plates. Binding energy (BE) of 

Ti 2p, P 2p, K 2p photopeaks and atomic ratio M/Ti. 

Table 5: XPS analysis of VT/SSHT plates and comparison with VOx/TiO2/Al plates and 

VOx/TiO2 powders. Binding energy (BE ± 0.2 eV) and Full Width at Half Maximum 

(FWHM) (eV) of V 2p3/2 and Ti 2p3/2. V/Ti is the ratio of intensity of V 2p3/2 to Ti 

2p3/2 photopeaks. (C= VO(OPr)3 wt% in ethanol; F= V2O5/TiO2 wt%) 
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Table 1  

Elements C Mn P S Si Ni Cr Mo 

Maximum 

content (%) 

0.03 2.00 0.04 0.03 1.00 13.00 18.00 2.50 

Table 2 

 Before H2SO4 After H2SO4

Photopeaks BE(eV) Xi BE(eV) Xi

Fe 2p 711.0 0.80 711.0 0.47 

Mo 3d 233.0 0.03 232.8 0.06 

Cr 2p 577.1 0.15 577.4 0.47 
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Table 3 

SSH SSHT 
Photopeaks 

BE (eV) Xi BE (eV) Xi

Fe 2p 711.0 0.50 711.1 0.75 

Ti 2p - - 458.3 0.15 

Mo 3d 232.8 0.06 232.4   0.005 

Cr 2p 577.4 0.50 - - 

Mn 2p - - 641.5  0.07 

Table 4 

TiO2 (Aldrich) T/SSHT 

Photopeaks BE (eV) 

± 0,1 

Atomic ratio 

M/Ti 

BE (eV) 

± 0,1 

Atomic ratio 

M/Ti 

Ti 2p 458.7 1 458.8 1 

P 2p 133.4 0.1 133.4 0.07 

K 2p 293.2 0.1 293.2 0.08 
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Table 5 

V 2p3/2 Ti 2p3/2 O 1s 
Catalysts 

BE FWHM BE FWHM BE FWHM 

V/Ti 

VT/SSHT plates      

C = 0.5-3.0 517.4 1.5 458.9 1.2 530.0 1.8 0.05-0.195 

C = 3.5-4.0 517.5 1.5 458.9 1.2 530.0 1.8 0.28-0.41 

VOx/TiO2/Al plates [8]      

C = 0.5-2.2 517.0 2.0 458.8 1.6 530.0 1.8 0.1 -0.2 

C = 2.4-8 517.2 1.8 458.9 1.6 530.0 1.8 0.3 -8.0 

VOx/TiO2 powder       

F = 0.5-3.5 517.3 1.9 458.6 1.2 530.0 1.8 0.1 -0.2 

F = 6.25-20 517.4 1.4 458.6 1.2 530.0 1.8 0.31-0.62 

TiO2     [35] -  458.7 1.3 529.9 1.6 - 

V2O5    [35] 

            [40] 
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