N
N

N

HAL

open science

Using genetic algorithms for robot motion planning

Juan-Manuel Ahuactzin, El-Ghazali Talbi, Pierre Bessiere, Emmanuel Mazer

» To cite this version:

Juan-Manuel Ahuactzin, El-Ghazali Talbi, Pierre Bessiere, Emmanuel Mazer. Using genetic algo-
rithms for robot motion planning. 1992, 5 p. hal-00069064

HAL Id: hal-00069064
https://hal.science/hal-00069064
Submitted on 10 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00069064
https://hal.archives-ouvertes.fr

Using genetic algorithms for robot motion planning

Juan Manuel Ahuactzin(i)*, El-Ghazali Talbi(ii) **,
Pierre Bessiere(ii), Emmanuel Mazer(i) ™
Institut National Polytechnique de Grenoble
46, Avenue Féliz Viallet, 38031 Grenoble cedex - France
Tel: (38) 76.57.48.18 Fax: (33) 76.57.46.02

Abstract. We present an ongoing research work on
robot motion planning using genetic algorithms. Our
goal is to use this technique to build fast motion plan-
ners for robot with six or more degree of freedom.
After a short review of the existing methods, we will
introduce the genetic algorithms by showing how they
can be used to solve the invers kinematic problem. In
the second part of the paper, we show that the path
planning problem can be expressed as an optimization
problem and thus solved with a genetic algorithm. We
illustrate the approach by building a path planner for
a planar arm with two degree of freedom, then we
demonstrate the validity- of the method by planning
paths for an holonomic mobile robot. Finally we des-
cribe an implementation of the selected genetic algo-
rithm on a massively parallel machine and show that
fast planning response is made possible by using this
approach. Keywords: robot motion planning, genetic
algorithms, parallel algorithms.

1 Introduction

Today most of the robot motion planners are used
offline: the planner is invoked with a model of the
environment, it produces a path which is passed to the
robot controller which, in turn, execute it. In general,
the time necessary to achieve this loop is not short
enough to allow the robot to move in a dynamical
environment. Our goal is to try to reduce this time to
be able to move a six degree of freedom arm among
moving obstacles. In order to achieve this goal we have
chosen genetic algorithms for the following reasons:

o They are well adapted to search for solutions in
high dimensionality search space.

*(i) Laboratoire d'Informatique Fondamentale et
d’'Intelligence Artificielle Grenoble, France.
**(ii) Laboratoire de Genie Informatique, IMAG, Greno-
ble, France.
***This work has been made possible by: Le Centre Na-
tional de la Recherche Scientifique, Consejo Nacional de
Ciencia y Tecnologia (Mexico) and ESPRIT “Supernode
2" project.

o They are very tolerant to the form of the function
to optimize, for instance these functions do not
need to be neither differentiable or continuous.

e They can easily be implemented on a massively
parallel machine and they achieve super-linear
speed up with the number of processors [8].

In addition we have tried to take advantage of tools
already existing in classical algorithms used in path
planning, such as range computation, slice represen-
tation of the configuration space and on demand com-
putation of the configuration space.

2 Previous work’
i

Designing a new path planner is a classical exercise
in robotic research and it remains a very active field
in robotics. A review of the existing approaches can
be found in Latombe’s book [1]. Recently a real time
path planner system has been demonstrated by [2].
The method works for a three degree of freedom robot
assuming the three dimensional configuration space
has been precomputed. The system described in [3]
i1s probably one of the fastest 'system if one consider
the time necessary to compute the configuration space
and the time necessary to s¢arch through it. It uses
an efficient way of computing the configuration space
and it is implemented on a Connection Machine.

3 Genetic algorithms

Genetic algorithms are stochastic search techniques,
introduced by Holland [4] twenty years ago, they are
inspired by adaptation in evolving natural systems.
Development of massively parallel architectures made
them very popular in the very last years. To introduce
the genetic algorithms and their application in path
planning, we will first solve a simple robotic problem:
the invers kinematic problem.

™
O

Figure 1: A planar arm with two degrees of freedom.
3.1 Solving the invers kinematic problem

Lets consider an arm with two degree of freedom an
lets denote 8 = (61,6:) a particular configuration of
the arm. One version of the invers kinematic problem
can be stated as a minimization problem:

if @ ¢ C-obstacles
otherwise

: - _) @) — x|
min F(0) with f(8) = { oo

Where d(8) denotes the direct kinematic function
and X the desired cartesian location for the extremity
of the arm. i

In general, it is very hard to get an analytical ex-
pression of f given a set of obstacles, but computing
its value for a given & can be done easily.

In the rest of this section we show how to use GA
to solve the invers kinematic problem with obstacles.

1. Coding the problem. The search space (here
[0,27] x [0,2x]) is discretized: In our case a con-
figuration is represented by two integers (¢1,42),
where 41 and i belong to 0,...,255 . We de-
note as b the string of bits resulting from the
concatenation of the binary representation of 7;
and i3, for example if 33 = 1 and i3, = 2 :
b = 00000010000010. b codes a point of the dis-
cretized search space. In the GA terminology b is
referred as a “individual”.

2. Generating an initial population. A random
set of n “individuals” B = {b;}i=1,» is generated.
For example figure 1 represents our small robot in
a clustered environment and figure 2 the associ-
ated configuration space. The small e indicates a
particular b; € B, the o sign indicates the desired
locations to place the extremity of the arm in the
desired cartesian position.

3. Operating a selection. The function f is ap-
plied to each member of the population and the

“individuals” are ranked accordingly to their as-
sociated value of f. After this step, the closer a
configuration brings the extremity of the arm to
the desired goal without collision, the better its
rank will be.

4. Creating couples and combining individu-
als. A set of n couples {(bi,b;)},b:i,0; € B is
generated. For each couple, b; and b; are ob-
tained by randomly picking an element of B with
a probability proportional to their rank.

For each couple the “cross-over” operation is used
to produce two new individuals nb1 and nbz.
This operation consists of generating at random a
place to “cut” the binary strings which codes the
two configurations defining the couple, to “glue”
the left part of b; with the right part of b; to ob-
tain nb; and to “glue” the right part of b; with
the left part of b; to obtain nb;. The new indi-
vidual of the population is the individual of the
set {bi,b;, nb;,nb;} which minimize f. After this
step a new population is generated. It can be
shown [5] that the average value of f is lower
than the previous population.

5. Generating “mutants” (optional) One stra-
tegy to escape from local minima is to introduce
noise in the algorithm. This can be done by flip-
ping at a given bit aigiven individual of the popu-
lation. The individual and the bit bit are chosen
at random. 1

6. Termination conditions There are two termi-
nation conditions:

(a) The absolute minima is obtained for one ele-
ment of the population and a solution is
found. i

(b) The population stabilized and the algorithm
is stuck in a local minimum.

If neither conditions is true the step # 3 is applied
to the new population.

In our example the population converge quickly to-
wards the two solutions (see figure 3). It can be
shown [5],(6] that the GA work by interratively se-
lecting an increasingly smaller subspace of the config-
uration space with a good average value for the fitness
function.

4 A simple path planner

In this section we describe a simple path planner for
a planar arm with two degrees of freedom. By re-
stricting ourself to two dimensions we can graphically
represent the configuration space and give the reader
a better feeling of the method. However the proposed
method does not make any hypothesis about the num-
ber of degree of freedom and can be used without
modification for arms with having a larger number of
degree of freedom.

Figure 2: Initial distribution of the populationin the con-
figuration space .

Figure 3: The population converges twoards the two so-
lutions of the invers kinematic problem.

To plan a path with a GA we use a quite unex-
pected search space. Instead of searching for path in
the configuration space, we consider a discretized sub-
set of all the possible paths (with or without collision)
starting from the initial configuration. For example,
in the case of our planar robot we consider the follow-
ing subset of possible motions: “move from 69, move
from 63, move from 6?, move from 63, ... move from
6:, move from 9;"’1, ..., 8%% move from 6’2“1” where
each ¢! is discretized on ¢ bits.

We call such a motior a Manhattan motion of length
k and we denote the set of all these paths as M (%, q).

Figure 4: A Manhatan motion in the configuration space.

Figure 4 shows such a motion in the configuration
space.

They are four main reasons to consider Manhattan
motions:

1. They define a naturally redundant search space
which is well suited for stochastic methods.

2. They are easy to test: When a Manhattan motion
is executed only one link move at a time, and thus
the test can be done by successively computing
the legal ranges of motion for a single degree of
freedom [7]. Note that this last property remains
true for three dimensional objects and for robot
with many degree of freedom.

3. Each time a Manhattan motion is tested it is pos-
sible to fill a part of the configuration space if it
is represented with slices(see [7]). Note that this
representation of the configuration space can be
use to speed up further evaluations of new Man-
hattan motions. This technique permits the lazy
evaluation of the configuration space while trying
to reach the goal. '

1

4. They can be easily stret@}:}\led((2D

We can now define the two ingredients necessary for

our GA:

Coding the element of the search space Let

P € M(k,q) we can code P with k& x g bits
(in practice k¥ and g are experimentally chosen):
0?70%79%:0gy”'aeiio;+1:-":0%k,9§k+l

Defining the fitness function The fitness func-
tion make use of a special accessibility predicate M P
defined as follow.

Let I and G two points of the configuration space:

MP(I,G) is true if and only it is possible to find
a simple collision free path from I to G (ie: if it is
possible to move freely from (61,67) to (8F,6%) and
from (8F,83) to (67,65).

Note that the definition of this predicate can easily
be evaluated and generalized. Now, we can define how
to compute the fitness function:

Let G be the goal and S; be the extremity of the it*
segment of the Manhattan path P:

begin
for ¢ from 0 to 2k
if M P(S5;,G) return 0
else if = M P(S;, Siy1) return ||S; — G|
endif
endif
endfor
return ||Szx+1 — G|
end

o &
=9

Er—

Figure 5: A motion planning problem and the solution in
the operational and configuration spaces.

This function simply scan the intermediary points
of the candidate path to find if a “direct” move to-
wards the goal, it stops when an obstacle is found and
return the distance from the extremity of the last free
segment to the goal.

Figure 5 shows the initial and the final position of
the robot in the operational space. At the botton of
the figure we show a path found with this method
in the two spaces. The right top of the figure is the
portion of the configuration space which has been eva-
luated during the planning process, in this particular

case only 1/10 of the total configuration space has
been evaluated.

5 Planning a path for an holonomic
mobile robot

In this section we describe the application of our algo-
rithm to the problem of planning a collision free path
for an holonomic mobile robot. The search space is
still a subspace of all the possible paths starting from
the origin, however the paths are directly coded as a
list of “rotate ” and “move” commands. The fitness
function is also slightly different but uses the same
principle of “visibility to the goal ” used in the pre-
vious case. The Figure 6 shows two successful paths
planned with the method. This planner has been im-
plemented on the architecture described bellow. On
this architecture (128 Transputers) the planning time
was under one second. Since this planner does not
make use of a precomputed representation of the con-
figuration space it may be suitable to plan paths in a
dynamical environments.

Figure 6: Examples for the holonomic robot.

6 Parallel Genetic Algorithm

1

Besides the “intrinsic pa.ra.ll}:lism” of genetic Algo-
rithms {4][5], we designed and‘implemented a parallel
genetic algorithm which showé a remarkable super-
linear speed-up in the number of processors [8]. The
principle of this algorithm is to distribute the individ-
nals of the population on a set of processors, limiting
the reproduction (step 3 and 5 of the standard algo-
rithm) to the nearby individuals. The implementation
has been done on a SuperNode [8]c.

The SuperNode is a loosely coupled and highly pa-
rallel machine based on transputers. One of its most
important characteristics is its ability to dynamica-
lly reconfigure the network topology by using a pro-
grammable VLSI switch device. This architecture of-
fers a range of 16 to 1024 processors, delivering from

24 to 1500 Mflops performance. The adopted configu-
ration of the machine is a torus. Given the four links
of the transputer, each individual has four neighbors
(see figure 7). The distribution of the population on
the set of processors has been done on a one individual
by processor basis. Consequently, at each generation
on individual is susceptible reproduce only with its
four direct neighbors. The parallel genetic algorithm
is as follow:

e Step 1 Distribute and generate the initial popu-
lation on the set of processors (one individual by
PrOCESSOr).

o Step 2 Evaluate the initial population IN PA-
RALLEL.

o Step 3 Until the stop conditions are reached do
IN PARALLEL:

— Exchange with the four neighbors the indi-
viduals (chain of bits) .

— Do the four possible individual combina-
tions (Cross over), between the local indi-
vidual and each of the four just acquired
neighboring individuals.

—~ Do (optionally) the mutation.

— Select the best of the generated offspring
and replace the current local individual.

Note that, unlike for the sequential Genetic Algo-
rithm, we are not able to get the best solution in the
network. The communication involved in determining
such a solution would be considerable. we only pick up
the solution routing through a “spy process” placed at
the root processor (see figure 7).

This parallel genetic algorithm and its associated
implementation have several important qualities:

e The needed configuration of the network of pro-
cessors (a torus) is very simple and easy to obtain.

¢ Communication between processors are only local
(limited to the four neighbors) and thus supposes
only a very simple message routing capability.

e Due to the strictly local form of the message
passing strategy, the amount of communications
grows linearly with the number of processors.
This proves that huge configuration counting hun-
dreds of processors will still permit a valid imple-
mentation of the proposed algorithm.

‘Hoat PrOCESSOR

/

Root processor

T
S
T

L+

QROFpHD
-]

N

Individusis

\

Figure 7: A torus of 16 processors

7 Future work

We plan to integrate this planner in a larger robotic
experimentation tested. Our goal is to use real CAD
models to evaluate the fitness function. The CAD
models of the arms and of the obstacles will be ob-
tained from the ACT [9] simulation package. The
range computation used to evaluate the fitness func-
tion will use the same algorithm found in the global
path planner of ACT. Our, goal is to be able to execute
the computed trajectory via KALI [10} and to use the
second arm as a dynamical obstacle.

References

[1] Jean-Claude Latombe: Robot Motion Planning, Ed.
Kluwer Academic Publisher, 1991.

[2] Sean Quinlan, Oussama Khatib: Towards Real-Time
Ezecution of Motion Tasks, Second International Sym-
posium on Experimental Robotics, Toulouse, June 1991.

[3] Tomas Lozano-Pérez, Patrick A. O’Donnell: Parallel
Robot Motion Planning, IEEE Int. Conf. on Robotics and
Automation, Sacramento, April 1991.

{4] J.H. Holland: Adaptation in Natural and Artificial Sys-
tems, Ann Arbor: University of Michigan Pres, 1975.

[5] David E. Goldberg: Genetic algorithms in search, op-
timization and machine learning, The University of Al-
abama, Addison-Wesley publishing company, inc. 1989,

[6] Davis E. Goldberg: Genetic glgorithms and machine
learning, University of Alabama, Tuscaloosa, University
of Michigan, Ann Arbor, in Ma\chjne Learning, Kluwer
Academic Publishers, 1988. “

[7] T. Lozano-Pérez: A4 simple ;notion-planning algorithm
for general robot manipulators., IEEE Int. Jour. on
Robotics and Automation, RA-3, June 1987,

[8] E.G. Talbi, P. Bessiere: A4 parallel Genetic Algorithm
for the graph partioning problem, ACM International
Conference on Supercomputing, Cologne, June 1991.

[9] Emmanuel Mazer and al. : ACT a robot programming
environment, IEEE Int. Conf. on Robotics and Automa-
tion, Sacramento, April 1991.

[10] V. Hayward, L. Daneshmend, S. Hayati. An overview
of KALI: A system to program and conirol coopera-
tive manipulators, Fourth international conference on ad-
vanced robotics, 1988.

