N
N

N

HAL

open science

Parallel Motion Planning with the Ariadne’s Clew
Algorithm
Emmanuel Mazer, Juan-Manuel Ahuactzin, El-Ghazali Talbi, Pierre Bessiere,
T. Chatroux

» To cite this version:

Emmanuel Mazer, Juan-Manuel Ahuactzin, El-Ghazali Talbi, Pierre Bessiere, T. Chatroux. Parallel
Motion Planning with the Ariadne’s Clew Algorithm. 1993, 10 p. hal-00069055

HAL Id: hal-00069055
https://hal.science/hal-00069055
Submitted on 10 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00069055
https://hal.archives-ouvertes.fr

Parallel Motion Planning with the Ariadne’s
Clew Algorithm

E. Mazer, J.M. Ahuactzin, E. Talbi, P. Bessiere and T. Chatroux

Laboratoire d’Informatique Fondamentale et d’Intelligence
Artificielle

46 Avenue Felix Viallet
38000 Grenoble, France

Abstract— We describe an implementation of a real time path planner for a robot
arm with six degrees of freedom moving among dynamical obstacles. The planner is
based on a novel technique called the Ariadne’s Clew Algorithm. A brief description
of this algorithm and parallel implementation of it are presented. Finally we analyze
experiments made with this planner.

1. Introduction

Our experimental testbed includes two robot’s arms each having six degrees of
freedom. Our goal was to plan the motions of one of these robots (the Controled
Robot) with a path planner fast enought to “re-plan” in line new trajectories
when the other arm (the Dynamical Obstacle Robot) was placed on its way
towards the goal. The idea was to demonstrate the possibility of including a
global path planner into an incremental trajectory generator. This idea was
first successfully experimented with a 2D version of our planner. A simulated
mobile robot uses this planner to plan its trajectories among obstacles. Using
the simulator the user was able to change the positions of the obstacles while
the mobile robot was moving towards the goal, in that case, the planner reacts
immediately by re-computing a new trajectory from its current position to the
goal. For example if the door represented figure 1 was closed before the robot
reached it, the planner was quickly (in less than 0.05s) able to devise a new
path . As a result the robot was continuously progressing towards the goal
despite the tentatives of the operator to move obstacles on its way. This report
describes an attempt to reach the same level of reactivity with a six degree of
freedom arm moving in a three dimensional environment.

2. Previous Work

A recent survey of robot motion planning techniques can be found in [2]. A
detailed presentation of the field exists also in [3]. Many attempts have been
made to obtain “real-time” path planners. For example, in the proceedings
of the last conference on Robotic and Automation one can find: a method to
implement the planner of Latombe and Baranquant on a parallel machine [4],
a method which uses an optically computed potential fields [5] and three “fast

L~
A

Figure 1. Re - planning when a door is closed

path planners” (7, 8, 6]. However, while we try to reach the same goal, the
work described in this paper is more related to the approach taken by Overmars
in [9] and to the Sandros [10] motion planner. Both methods use a set of
landmarks to represent the free space and a local planner which is used to
connect the landmarks as well as the initial and final positions. In the work
described by Overmars, the landmarks are placed randomly in the search space,
when a landmark is place into a C-Obstacle it is moved to a close free location.
In the Sandros motion planner the landmarks are placed in “slices” of the
configuration space. The completeness of boths method have been proved, and
fast response time have been reported. The main advantage of our planner is
it’s ability to place landmarks more efficiently than the previous methods and,
thanks to an implementation on a massively parallel machine, it is also much
faster.

3. The Ariadne’s clew algorithm

A detailed description of the Ariadne’s clew algorithm can be found in [11,
13], here we only sketch its principle. The ultimate goal of a path planner
is to find a path in the configuration space from the initial position to the
target. However, while searching for this path, an interesting sub-goal may
be to try to collect information about the free space and about the possible
paths to go about that space. The ARIADNE’S CLEW algorithm tries to
do both at the same time and it is made of two sub-algorithms: SEARCH
and EXPLORE. The EXPLORE algorithm collects information about the free
space with an increasingly fine resolution, while, in parallel, the SEARCH
algorithm opportunistically checks if the target can be reached. The EXPLORE
algorithm works by placing landmarks in the search space in such a way that
a path from the initial position to any landmark is known. In order to learn as
much as possible about the free space the EXPLORE algorithm tries to spread
the landmarks all over the space. To do so, it tries to put the landmarks as
far as possible from one another. For each new landmark produced by the
EXPLORE algorithm the SEARCH algorithm checks with a local method if
the target may be reached from that landmark. Both the EXPLORE and the
SEARCH algorithms may be seen as solving optimization problems on a special

ESPACE DES CONFIGURATIONS

j

? 51 R N

CHAINE

Figure 2. A Manhattan path in the configuration space

set: namely the set of Manhattan paths of fixed length.

3.1. The Manhattan paths

Let (61, ..., 0,) denotes the configuration of a system with n degrees of freedom.
We define a Manhattan path of length 1 as the path consisting of moving each
degree of freedom once. We denote such a path as:

Pt ={A0} ABL, ... A6}, ... AGL}

More generally we define a Manhattan path of length k as the concatenation
of £k Manhattan paths of length 1.

pERFM = {Ag}, ... A0, ... AGk}

Given a Manhattan path p of length & we denote by E(p) the point of
the configuration space corresponding to the extremity of the last collision free
segment of p (see figure 2). Basic geometric computations [1] permit to compute

E(p).

3.2. SEARCH

Given a goal configuration ©¢ we define a function F : $**» ERtoas:

F(p) = |E(p) - ©7|

If a Manhattan path py towards the goal exists then F(pg) = 0. As a result,
finding a Manhattan path p of length % can be seen as a minimization problem:

oin F (p)

While we do not have any analytical expression for F' we can easily compute
its value at any point of R¥*?. Many methods exist to minimize such a function,
we use a genetic algorithm. Even in the presence of local minima, we can
implicitly define a region of #%*” called the “back-projection” of ©¢ on which
the minimization method find a global minimum for F'. The goal of EXPLORE
is to place a reachable point in that region.

3.3. EXPLORE

One can visualize the EXPLORE algorithm by imagining a robot placing land-
marks in the free space starting from its initial position. Each time it places a
new landmark it tries to place it as far as possible from landmarks previously
placed. Each of the landmarks is connected by a free path to at least one of the
other landmarks. We denote by E L, the set of existing landmarks at step g.
The explore-algorithm begins with EL; = {L,} were L; is the initial location
then, in next step, F'L is incremented with the new landmark. If the search
space is bounded, then the robot will fill the free space connected to its initial
position with landmarks. These landmarks will become closer and closer as
the search time is becoming-larger. At a given point in time the last generated
landmark will necessarily fall into the back-projection region of the goal and a
solution will be found !

We denote by PL the set of all Manhattan paths starting from the land-
marks L; € EL,, PL is indexed by [0,1,...g] x R¥*". We denote E(p) the
extremity of the last non-colliding segment of a particular path p € PL.

Let ps the path of PL which maximize

p2: max || Ly — E(p) |

According to our-definitions, the point Ly = E(p2) is the most further
location of the search space reachable from the initial location L,, we choose
it as the second landmark. Now, we have have FLy = {Li,L2}. Given a
path p starting either from L, or Ls we consider the minimum value between
| E(p) — L1 || and || E(p) — L || and we try to maximize this value over ELjy
in order to find a new reachable landmark which is as far as possible from L1
and from Lj. In other word:

ps : max min{|| Ly — B(p) ||, || L — E(p) [I}

More generally if we have already n landmarks we can find the n + 1 land-
mark by maximizing the following expression:

Pt max min || L; — E(p) | (1)
By taking Ln4+1 = E(pn+1) we get our new n+1** landmark. Lets consider
the function:

>2: = 1 i —
Vn22:V(n)= max min || L; - Ep) |l

If the search space is bounded then:
' lim V(n) =0

or
Vedn :Vi>n V(j)<e

Then, if G is a point of the accessible free space (ie: it exists a path from L;
to () then we have:

Ve:3In|| L, -GCGl<e (2)

We call this property : epsilon-reachability. The epsilon-reachability has a
strong consequence for planning a path in a continuous space : if one can find
€ such that there is a function which solve the path planning problem in any
ball of diameter ¢ (the search function), then by combining it with the explore
algorithm we get a deterministic method to plan a path between any two points
of the configuration space.

3.4. A Parallel Implementation

We have implemented this algorithm on a parallel machine with 128 transput-
ers. The figure 3 represents the configuration we choose to implement the Ari-
adne’s clew algorithm. The numbers inside the rectangles indicate the physical
number of each processor, the edges correspond to the physical links between
two transputers. It is possible to use a programmable switch board to config-
ure the machine with this particular topology. In this architecture one has to
consider three levels of parallelism.

1. The parallel execution of “Search” and “Explore”. At the first
level the EXPLORE algorithm, which uses the processor 1 to 60, runs
in parallel with the SEARCH algorithm (processors 61 to 120). The
processor 128 is used by EXPLORE to communicate the landmarks to
SEARCH.

2. The parallel execution of the genetic algorithm. Both EXPLORE
and SEARCH uses a genetic algorithm as an optimization technique.
A description of parallel genetic algorithms can be found in [12]. In
our case the population used by the genetic algorithm is reduced to six

123

-
e e

(e

Sl o

——I_m

S e
w0

=]
He=H

5 eHHa G
Hl
<]
HH
H=H

T
T
H
5t
HEH

LE_I'E'

Figure 3. Actual implemetation on 128 Transputers

individual. Each individual evaluates in parallel the cost function with its
own “farm” of processors. For examples the “individuals” of SEARCH
are located on processors 1-11-21-31-41-51 and are organized in a single
ring (see figure 4).

. The parallel evaluation of the cost function. In both cases, the
evaluation of the cost function boiled down to many serial computations
of the legal range of motion for a single link. In turn, the computation
of each legal range can be split into three types of elementary range
computation denote as A,B and C. For each individual the computational
load is spread over its farm of processors by having each processor of the
farm responsible for a given elementary computation. For example the
processor 21 uses the processors 22-23-24 to perform the computation of
type A, the processors 25-26-27 for the computation of type B and the

Ferme de processeurs pour un individu

ODooooobdd

Structure en anneau pour Algorithme Genetique

Figure 4. Ring structure and processor farm

processors 28-29-30 for the type C. .

4. Experiments

The figure 5 represents the architecture of our experiment setup.

The robot I is under the control of the Mega-Node (via Kali) running a par-
allel implementation of the Ariadne’s Clew algorithm. The robot II is used as
a dynamical obstacle: it is controlled (via Kali) by a random motion generator.

First we use our robot simulation package ACT to describe the scene with
the two robots. We compile this representation into a special geometrical rep-
resentation which enclosed each obstacle and each link of the robots into a box
to minimize the number of geometric computation.

This model is downloaded to all the processors as well as the goal position
for robot I, then the following algorithm is executed :

1. Step 1 : The curent position of the two robots is diffused to all the
Processors.

2. Step 2 : The Mega-node produces a plan which assumes robot II is
standing still.

3. Step 3 : Kali executes only the first part of the plan (a manhattan pass
of length one).

.

a

v -

Robor | Robot I
68030 68030
KALY Bus VME KALL | Bus VME
(VxWorks) (VxWorks)
Sun 4
(Unix)
aoo0poooo
; aooopoooan
Genetic Algorithm nooooooog server 5‘
(SEARCH) ngaooano VxWorks z
ao0doooaoo 3
0oDo0poooo
Dooooooo Sun3
conpooocnDo (Unix)
Genatic Algoritm oppQoocooo
aogoooooo
{EXPLORE} nooDoooo server
noopoooo Mega-Node
‘Moga-Node
128 Transputers
(Parix)
ACT Stlicon
Robot simulation package {Unix)

Figure 5. A pa.l_‘a,llei Architecture for Robot Motion Planning

4. Step 4 : The random motion planner is called and produces a random
motion which is executed by robot II (with robot I standing still).

5. Go to Step 1

5. Experimental Results

To speed up the computation of the evaluation function we only use the enclos-
ing boxes of the obstzcles and of the links. The controlled robot is made of 6
boxes and there are 10 boxes used as obstacles including the moving obstacles
(see figure 6).

In that particular environment, a Manhattan path of length one requires
% * 10 = 210 computations for the rotational ranges. Each computation of
the range requires 240 elementary contact computations. So, to evaluate a path
of length 5, 252,000 elementary contact computations are necessary. To perform
the evaluation of a single generation of the genetic algorithm with 6 individuals
we reach a total 1,512,000 contact computations. It would not be possible

Figure 6. The experimeﬁtal scene with enclosing boxes

to handle such a large amount of computation without the use of geometric
filters which permit to discard quickly the link-obstacles pairs which cannot
interact. In practice the use of geometric filters permit to reduce the amount
of “real” geometric computation by a factor 10. However the computational
load remains very heavy, even for a simple scene such as the one we use in
our example. Only the use of a massively parallel machine permits to keep the
planning time reasonably small : between 0.5 to 3 seconds for a six degrees of
freedom arm with 10 obstacles. It is also important to note that the number of
generations used by the genetic algorithm to produce a solution is very small
: 5. As a consequence we believe that very little optimization is made with
the genetic algorithm, it seems that the genetic algorithm is only useful to find
the most promising landmark which is “closer” from the free space not already
explored. Nevertheless we have successfully tried the Ariadne’s clew algorithm
on very complex scene necessitating non-trivial motion to reach the goal. This
suggest that it may be possible to randomly find a path in a scene considered
as “difficult” (note that placing landmarks is still a very useful process). We
conjecture that many planners found in the literature are tested on scene where
many randomly generated paths will lead to a point in the back-projection of
the goal.

For an industrial application of path planning the number of potentially
colliding (link-obstacle) pairs is several order of magnitude bigger than the one
used in our experiment (210). In industry the models of the robot and the
models of the obstacles are very detailed and contains hundreds of geometri-
cal entities. In that case, the evaluation of a single Manhattan path will be
impossible even on massively parallel machine.

6. Conclusion

We have presented a new motion planner for a six degrees of freedom arm. The
planner achieves fast response time compare to existing planner but remains
slow and cannot be used as part of a trajectory generator. Given a fixed number
of obstacles the planning time is proportional to the difficulty of the task. The
planning time is also proportional to the number of link-obstacles pairs found
in the scene. We are currently working on a new version of the ARIADNE’S
CLEW algorithm which will use a classical optimization algorithm as well as a
hierarchy of geometrical models for the environment.

References

[1] T. Lozano-Pérez : A simple motion-planning algorithm for general robot manipu-
lators., IEEE Int. Jour. on Robotics and Automation, RA-3, June 1987.

[2] Yong K. Hwang and Narendra Ahuja : Gross Motion Planning - A Survey., ACM
computing Surveys, Vol 24, No 3, pages 119-289, September 92.

[3] Jean-Claude Latombe: Robot Motion Planning, Ed. Kluwer Academic Publisher,
1991.

[4] D.J Challou, M. Gini, and V. Kumar : Parallel Search Algorithms for robot Motion
Planning IEEE Int. Conf. On Robotics an Automation, Atlanta, May 93.

[5] M.B Reid : Paih planning Using Optically Computed Potential Fields IEEE Int.
Conf. On Robotics an Automation, Atlanta, May 93.

[6] C.W Warren Fust path Planning Using Modified A* Method IEEE Int. Conf. On
Robotics an Automation, Atlanta, May 93.

[7] P.K Pal and K. Jayarajan : Fast Path planning for Robot Manipulators Using
Spatial Relations in the Configuration Space IEEE Int. Conf. On Robotics an Au-
tomation, Atlanta, May 93.

[8] P.Fiorini and Z.Shiller : Motion Planning in Dynamic Environments Using the
Relative Velocity Paradigm FEEE Int. Conf. On Robotics an Automation, Atlanta,
May 93. .

[9] M.H. Overmars : A Random approach to motion planning Spring School on Robot
motion planning, Rodez(France), March 93.

[10] P.C Chen and Y.K Hwang : SANDROS: 4 motion planner with performance
proportional to task difficulty IEEE Int. Conf. On Robotics an Automation, Nice,
May 92.

[11] J. Ahuactzin, G. Talbi, P. Bessi¢re and E.Mazer : “Using Genetic Algorithm for
robot motion planning”. ECAI 92 Vienne 1992.

[12] G. Talbi, J. Ahuactzin,P. Bessitre and E.Mazer : “A parallel implementation of
a robot motion planner”. CONPAR92, Lyon, 1992. :

[13] E.Mazer, G. Talbi, J. Ahuactzin, P. Bessi¢re : “The Ariadne’s Clew Algorithm”,
SAB92 Honolulu 1992.

10

A d
-

