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1. Introduction

Throughout the paper X denotes a real reflexive Banach space, X* its topological dual
and (-,-) the associated duality pairing on X x X*. We write “—” and “—” to denote
respectively the strong and the weak convergence on X. We denote by B(z,r) (respec-
tively by B(z,7)) the open ball (respectively closed ball) with center z and radius 7 > 0.
Following the standard notations used in convex analysis, I'o(X) stands for the set of all
convex lower semicontinuous proper (not identically equal to +00) extended-real-valued
functionals ® : X — R U { 4o0}.

By argmin ® we mean the (possibly empty) set of all z € X where ® attains its minimum
value, i.e.

O(z) < P(y), Yy € X.
Recall that a functional ® : X — R U {400} is said to be semicoercive if there exists a

*The research of the second author was supported during his stay in the Laboratoire d’Arithmétique,
Calcul Formel et Optimisation, UPRSESA 6090, University of Limoges, by the Région Limousin
under a PDZR European Grant.



closed subspace V' of X such that
O(z) =P(x+v), Ve e X, VveV,
and the quotient functional ® : X/V — R U { +o0}, defined by:

O(7) =P(x), Ve e, VT € X/V,

is coercive, in the sense that (5)_1 ((—o0, M]) is bounded for every M € R.

Let us remark that every coercive functional is semicoercive. Let us also mention two of
the most frequently encountered semicoercive functionals:

(i) The distance functional to a closed subspace F' of an arbitrary Banach space X,

Ji: X = R, Ji(z) =dist(x, F) = inlg |z — v
ye

(i) If © € R" is a bounded subset with a smooth boundary, and H'(Q) is the corre-
sponding Sobolev space,

Jo HH(Q) = R, Jy(u) = /Q |Vu(z)? dz.

By a uniform perturbation of ® we mean a functional ¥ which satisfies for some € > 0
O(z) —e <VU(x) < P(z) +¢,Vx e X.

Obviously, every convex uniform perturbation of a semicoercive functional remains semi-
coercive. It is a well-known fact that every I'g(X)-functional, which is semicoercive attains
its minimum on X. Consequently, in the class of I'g(X)-semicoercive functionals, the ex-
istence of a minimum on X is preserved under every uniform perturbation.

Our aim in this paper is to study if the converse of the preceding observation is true.
More precisely, we prove (Theorem 4.2) that if ® € I'y(X) and if every small uniform
perturbation of & within the class ['o(X) reaches its minimum value on X, then & is
necessarily semicoercive.

The paper is organized as follows. Section 2 contains some classical convex analysis results
which are needed throughout the paper, together with the proof of the technical Lemma
2.1. Section 3 is devoted to the proof of Theorem 3.1, which characterizes unbounded,
linearly bounded convex closed sets (that is unbounded sets with a recession cone reduced
to the singleton {0}). This theorem plays a central role in the proof of the main result
which is given in Section 4.

The final section contains the conclusions and some open problems.

2. Background material and preliminary results

Let us recall some basic definitions from convex analysis. For ® € I'y(X), we denote by
Dom @, the effective domain of ® which is defined by

Dom® ={z € X : &(z) < +o0}



and by epi ® the epigraph of ®. Let K be a nonempty convex and closed subset of X.
Following Rockafellar [9], the recession cone K, of K is defined by:

K. — ﬂt(K—x(]), zo € K.

t>0

Note that K is independent of ¢y € K and that K is a closed convex cone of X and
describes the global behavior of the convex set K.

For each ® € I'y(X), taking C' = epi ® we define the recession functional of ® as the
function ®,, such that epi &, = (epi P)... Equivalently, it amounts to saying that

Doo(x) = Tim O(xg + tx) — D(xp)

t——4o00 t ’

where x( is any point in Dom .
In the sequel, Ker &, will denote the closed convex cone defined by

Ker®,, ={z € X : O&,(x)=0}.
The following properties of ®,, will be used in the sequel. The proofs of (1)—(3) are

straightforward and were established in finite dimension in [9]; the reader is for instance
refered to [5] for (4).

Do € To(X) (1)

P(x+y) < P(x) + Poo(y), Vo,ye X (2)
Do (A2) = Al (z) Ve € X, VA >0 (3)
O (2) < hﬁlliogfw 7 (4)

where 1z is any point in Dom ®, (z,),en+ is any sequence in X converging to = and
(Sn)nen+ is any real sequence converging to +oo.

Throughout the paper, o € X and M € R are defined such that :
zo € argmin ® and M := ®(zg).

Denoting by co{(y, N),epi ®} the convex hull of (y, N) and epi @, for y € X and N < M,
we set
F(r)={seR: (z,s) € co{(y, N),epi ®}},

the closure being taken with respect to the natural strong topology on X x R. Obviously,
F(x) is a closed, convex, (possibly empty) subset of R; since

0 #cof{(y, N),epi®} C X x [N,+00) C X xR,

it follows that
F(x) C [N,00), Vz € X.

Therefore, the relation

_JminF(x) if F(x) #0
Punlz) = {+oo if Fz) =0



defines a proper extended-real-valued functional, whose epigraph is ¢o{(y, N), epi ®}.
Some of the most important properties of ®, x are stated in the following Lemma.
Lemma 2.1. For every functional ®, n, the following holds:

(i) @, N belongs to I'y(X);
(i) Py N is a minorant of ©: &, y(z) < O(z), Vo € X, If, in addition, ® attains its
minimum value at y, then

O(z)+ N -M <P, y(z), V2 € X;
(iii) for every x € X such that ®, y(z) < M we have
Dy (A + (1= N)2) = Ay x(y) + (1 - Ny (2), YAE(0,1),  (5)
(iv) argmin®, y =y + Ker O.

Proof of Lemma 2.1. (i) Since epi ®, y = co{(y, N),epi @} is a non-empty, closed and
convex set, ®, n € I'o(X).

(ii) As
epi ® C co{(y, N), epi @},

we have

Q, n(z) < P(x) Vo e X.
If, in addition, ®(y) = M, we have (y, N) € epi(P+ N — M) and epi ® C epi(P+ N — M),

SO
co{(y,N),epi @} C epi(® + N — M),

that is
Q(z)+ N -M <o, n(x), Vo e X.

(iii) We shall distinguish the cases @, n(z) < M, and ®, y(x) = M. Let us first suppose
that &, () < M. Set z = Ay + (1 — X)x; for every ¢ > 0 set

a:=min{d(1 - N),( M — @, n(x))(1 —A)}. (6)

Since (2, @, n(2)) € €o{(y, N),epi @}, there exist (w, ) € epi® and 0 < p < 1 (depending
on d), such that

distxxr (1(y, N) + (1 — p)(w,0), (2, @, n(2)))’
= |(y + (1 — p)w) — 2> + [(uN + (1 — @)§) — @y n(2)[?
< a?.

Therefore
uN + (1 — p)f < &, n(2) + a.

Since M < 6 and o < (M — &, y(2))(1 — A), the previous relation yields

pN + (1= p)M < @ y(2) + (M = @y n(2))(1 = A). (7)



Using the convexity of ®, n, we deduce that

Dy (2) + (M = Py n(2))(1 = A) (8)
< AP, N (y) + (1= N)®y n(x) + (1= N)(M — B, y(2))
= AN + (1= A)M.

By (7) and (8) we get
uN + (1 — )M < AN + (1 — \)M.

Consequently, A < p, and therefore 0 < Ay = (. — A)/(1 — A\) < 1. This yields

My, N)+ (1 — M) (w,0) € co{(y,N), epi }.

Thus, since the relation

dist (2, 75 () — oy (), Ml N) + (1= A1), )

= - i S dist ((z, Oy n(2), mly, N) + (1 = p)(w, 0))

1
<a——<9§
_al—)\_ )

holds for every ¢ > 0, we derive that

(520 (2) — 2 By (y)) € L, N, epi @),

Hence,
1
b < R
yn(T) < 3 )

This relation combined with the convexity of @, y implies (5).

Sy vy + (1= N)x) - D, N (y).

Let us now consider the case @, y(z) = M. Set z,, = %y + ”T_lx; since @, y is convex,

1 n—1 1 n—1
q)y,N(xn> < E(I)y,N(y) + CI)y,N(w) =-—N+

— M < M.
n n

Hence relation (5) holds for every x,. Therefore, for every A in (0,1) and every n in N*
we have

Oy n(Ay + (1= A)wn) = APy N (y) + (1 = A) @y v (). (9)

On [0, 1], the mappings p — @, v (py+(1—p)x) and p — @, y(Ay+(1=N)(py+(1—p)x))
are convex and lower semicontinuous , thus continuous. Consequently, we obtain relation
(5) by taking in (9) the limit as n goes to infinity.

(iv) Take z in X such that ®, y(z) = N. We may assume without loss of generality that
x # y. Since (z, N) belongs to co{(y, N),epi @}, for every n in N* there are (z,,0,) in
epi ® and g, in [0, 1) such that

(10)

S

dist (jua(y, N) + (1= 1) (0, 60), (2, V) <



By (10) we deduce, in particular, that y, N + (1 — ,,)6, < N + 1, and since 6,, > M, we

obtain

1= < m (11)

Relation (10) implies that lim |, N + (1 — p,)8, — N| = 0; as from (11) it follows that
lim p, = 1, we deduce that lim, .. (1 — p,)8, = 0. Since ®(z,) < 6,, the previous

n—oo

relation yields
limsup(1 — pp,)®(z,) < 0. (12)

n—oo

On the other hand, relation (10) implies that

lim ‘ HnY + (1 - Mn)xn - [EH = 0;

n—oo

since lim p, = 1, we obtain that

n—oo

n—oo

lim H(l — )Ty — (T — y)H =0,

which implies
lim H(l — ) (xy — 20) — (x — y)” =0,

n—oo

where zj is an arbitrary element of Dom ®. We may therefore apply (4) for z — y instead
of , 1/(1 — p,), and (1 — pp,)(x,, — 20) instead of x,, and s, := 1/(1 — u,) (note that
tn # 1), and as

Tp = 20 + [(1 = pin) (T — 20)],

n

we obtain

0 < P(r—y) <liminf(l — p,)P(z,). (13)

n—oo

By (12) and (13) it follows that x — y belongs to Ker @, that is z € y + Ker ®.

Since obviously ®, y reaches its minimum value at every point of y 4+ Ker ®,, the proof
of Lemma 2.1 is established. O

3. Unbounded linearly bounded closed convex sets

Recall that a closed convex set K is linearly bounded if K., = {0}.

Theorem 3.1 below states an important property of convex, closed, unbounded and linearly
bounded sets. This result shows that, contrary to the finite dimensional setting (see [9],
chapter 8), in a general linear space the recession cone does not characterize completely
the behavior “at infinity” of a convex set.

Theorem 3.1. Let K be a closed, convex, unbounded and linearly bounded subset of a
reflerive Banach space X. Then, there exists h € X* such that

inf (h,w) < (h,u) <1, Vu € K. (14)

weK



For every closed convex subset K of X we define the barrier cone B(K) of K as the
domain of the support functional ox of K defined by ox(f) := sup,cx(f,z). In other
words,

B(K)={f€X": ox(f) < +o0} =Domok.

The following lemma is an elementary consequence of a known result.

Lemma 3.2. Suppose K is a closed convex and linearly bounded set of X. Then B(K)
15 dense in X*.

Proof of Lemma 3.2. It is a well-known fact that the recession cone K., of K is the
polar of B(K) (see for instance [9] 14.2.1 in finite dimension and [3], Proposition 3.10 in
infinite dimension). Therefore, by the bipolar theorem we obtain X* = B(K)* = B(K)
(since X is reflexive) and the proof is complete.

U

Given R > 0 we define
Br(K) := {f € B(K) : 3z € Ksuch that (f,z) > R}.

Lemma 3.3. Suppose K is a convex closed, unbounded and linearly bounded subset of X .
If B(K) is a linear space, then for every R > 0, Br(K) is dense in X*.

Proof of Lemma 3.3. Let us suppose that, for some R > 0, Bg(K) is not dense in X*.
Then, take f in X* and € > 0 such that

(f + B(0,e)) N Br(K) = 0.

Using the previous Lemma, we observe that

f+B(0,e) € X" = B(K) = Br(K) UB(K) \ Br(K),

and therefore, as B(K)\ Br(K) = B(K)N ﬂ {f € X*: (f,x) < R} is convex and closed,

zeK

f+B(0,¢) € B(K) \ Br(K). (15)

Accordingly, the linear space B(K') has a nonempty interior, from where it follows that
B(K) = X* ,which by the principle of uniform boundedness implies that K is bounded, a
contradiction. O

We have proved that for every element f € X* and for every R > 0, there exists a
sequence (fy,)nen+ in Br(K) which converges to f and satisfies ok (f,) > R.

This result has an immediate consequence.

Lemma 3.4. Let f be in B(K). In the assumptions of Lemma 3.3, for every constant
R, satisfying R > o (f), and every v > 0, there is a sequence (g,)nen+~ converging to f,
such that

or(gn) = R, and (gn,7) < R, Vo € (KN B(0,7)), Vn € N*.



Proof of Lemma 3.4. According to Lemma 3.3, there is a sequence ( f,,)nen+converging to

fsuch that
R < UK(fn) < +00.

As, for every n, the function A\ — ox(Af + (1 — \)f,) is continuous on [0, 1], there is
An € [0, 1] such that ok (g,) = R, where

In = Mf + (1= Ao) fu:

Denoting by {\,}nen & converging subsequence of {\, },en, the sequence {g,}nen 0bvi-
ously converges to f.

Moreover, at least starting from a certain rank, this subsequence also satisfies the sec-
ond condition of the lemma. Indeed, otherwise we would find a subsequence (¢, )men+ of
(gn)nen+ such that z,,, € K, ||zn|| <7 and (gm, xm) = R. Consequently,

’R_ <f>xM>|:|<gm_f7$m>‘ §7||f_gm”a

and, letting m — +o00, we would obtain

R>ok(f) > lim (f x,) =R,

m—00

a contradiction and the result follows. O

We have now all the ingredients which are necessary to prove the main result of this
section.

Proof of Theorem 3.1. Let us first remark that, if B(K) is not a linear space, then
Theorem 3.1 is established. Indeed, in this case, there is f € B(K) such that —f ¢ B(K),
and h = f/og(f) verifies (14), as inf e (h, w) = —0c0.

Let us now consider the case where B(K) is a linear space. Without loss of generality we
may assume that 0 € K. In order to define the element h of X*, we define by induction
a sequence (R, Yn, En, Tn)nens C X X R X R x K as follows.

Forn =0,let usput hg =0, v =1, ¢9 = 1, ¢ € K arbitrary. For n = 1, take an element
hy of X* satisfying

sup (hy,z) = 3 and (hy,z) < §, Vo € KN B(0,1),
zeK 4 4

(Lemma 3.4 applied for f = 0, R = 3/4 and v = 1, ensures the existence of such an
element). Consequently, there is some z; € K such that (hy,z;) = 2/3; take y; =
max(2, ||z1||). Finally, set

€1 = min <Z — sup (hy,x) ! ) . (16)

z€KNB(0,1) " 671



Let us now suppose that the sequence was defined for each 7, 1 <7 < n —1 in such a way
that the following relations hold for every 1 <i <n — 1:

||hZ — hi_1|| < &1, (17)

1+2
sup (h;, x) = -
ze[I()'< > Z+3

1+ 2 _
d hi? T a0 K B y Ji—1),
and ( x)<l+3 Ve e KN B(0,vi-1)

(hi,z;) = (1 +1)/(i + 2),
vi = max(yi-1 + 1, [[z]),

E=miny ————— — sup y T ; ,E€i—1 — ||hl - hl‘_1|| .
Yie1(t+3)  sexnBOq ) Vi1 (E+1)(E+2)y

Lemma 3.4, applied for f = h,_1, R= (n+2)/(n+3) and 7 = ~,_1, yields the existence
of an element h,, of X* such that

“hn - hn—l” < Ep-1,

and
oo 7) = "2 and (B 2) < "2 Ve € KO B0,y 1)
sup (hy, z) = and (hp,z) < ——, Vz s Yr—1)-
xe]g n —+ 3 n —+ 3 -1
. . n+1
Consequently, there exists x, in K such that (h,,x,) = o
n
Set 7, = max(v,_1 + 1, ||x,||), and put &, for the following (strictly positive) expression:
p B, 1
min L - sup < x>> yEn—1 — ||hn - hn—l” :
’Ynfl(n + 3) 2€KNB(0,7n—1) Tn—1 (n + 1)(” + 2)771

The sequence (hy,, Y, En, Tn)nen defined inductively satisfies the relations (17).
The last relation in (17) implies that

hi —+ B(O, 61') C hi—l + B(O,é‘i_l), Vi > 2;
since ¥, > n + 1, we deduce from the previous relation that, for every m > n ,

n -+ 2 1

b — Byl <6 < ——————— < —.
” ” Yot (n+3) " n

(18)

Relation (18) means that the sequence (h,,),en+ is a Cauchy sequence in X* and therefore
converges to some ho, € X*.
By relation (18), we derive that

1 2
e — hoo] < &0 < (Zig— sup (hn,x>).

Tn—1 z€KNB(0,vn_1)



It follows that, for every x € KN B (0, v,_1),

< (i, @) =+ (|2 - |hoo — Fon|

1 n+2
S <hn,l’> +’Yn71 - SUP <hnax>
Ya—1 \ N+ 3 LcknBO,Ry_1)

n -+ 2

= + <<hn,x> — sup <hn,x>> < nt2

n+3 €KNB(0,7n—1) - n+ 3

Let = be in K; there exists n € N* such that ||z|| < 7,-;. Hence relation (19) implies

2
n+3<1,VxeK,

hoo, ) <
< x> n -+

and therefore

sup (Moo, ) < 1.
zeK

Again from relation (18) we deduce that

1
(n+1)(n+2)y,’

that is
n+1
> = [lhn = P[]z
n -+ 2
n+1 1 n
> — = .
~ n+2 (n+1)n+2) n+l
Consequently

0k (hoo) > lim (hoo, xp,) = 1.

n—oo

Combining (20), (21) and (23), it follows that, for any z € K,
(hoo, ) < 1 =0k (hoo)-
The mapping h defined by

hoo if inf (heo, w) = —00
weK

h:

-1
hoo - [mm{—l,;g}f{(hw,x)} 1fu%1€11f( (hoo, w) > —00

satisfies the conclusion of Theorem 3.1.

10

(20)

(21)

(22)

(23)

(24)



4. The main result

We state the following result; its proof will be presented afterwards.

Theorem 4.1. Let & be a T'o(X)-functional which achieves its minimum value on X.
Assume that either

(a) Ker®., is not a linear subspace;
or
(b) @ is non-semicoercive and Ker @, is a linear space.

Then, for every e > 0, there exists ¢ € I'g(X), such that
O(x) —e <O°(z) < P(x), VrelX,

and argmin ®° = ().

The result which follows is an immediate consequence of Theorem 4.1 and can be consid-
ered as the main result of the paper.

Theorem 4.2 (Main Result). Let ® be a T'g(X)-functional. Suppose that ® and every
small uniform perturbation of ® (in the class T'o(X)) achieve its minimum value on X.
Then, ® is necessarily semicoercive.

The proof given below is based on preceding results established in Sections 2 and 3.

Proof of Theorem 4.1.

Case (a): In this case, the functional ® cannot be semicoercive. Let zy € argmin ® and
M € R be such that ®(zy) = M. Since ® is bounded from below, @, (x) > 0 for every z
in X. It follows from (2) and (3) that for every v € Ker ®,, we have

O(z +tv) < P(z), Vt >0 and z € X. (25)

Since Ker @, is not a linear subspace of X, there exists v in X such that & (v) = 0 and
P (—v) > 0. Let 0 : [0,1) — R be a convex and increasing function satisfying o(0) = 0
and

lim o(t) = +o0. (26)

t—1—

t
For example take o(t) = T3 We then define ®¢ by

O°(z) = inf [@(z —o(t)v) —et]. (27)

0<t<1

11



XO X

Let us prove that ®° meets the requirements of Theorem 4.1.

Lemma 4.3. The functional ®° defined in (27) is a I'o(X)-functional.

Proof of Lemma 4.3. (i) The functional ®° is an extended real-valued functional. In
fact, since M is the minimum of ®, we have

Oz —o(t)v) —et>M—¢, Ve e X, Vte|0,1).
By taking the infimum, in the previous relation, over ¢ € [0, 1), we obtain
O°(z) > M —e > —o0, Yz e X. (28)

(ii) The functional ®° is convex. Let 1, 25 be in X, ¢, t5 € [0,1) and 0 < X < 1.
Using the convexity of o and relation (25) for

T=MNzy—o(ti)v) + (1 = XN)(z2 — o(t2)v),

and
t=Xo(t)) + (1 = No(ta) — oMy + (1 — Nta)

(remark that ¢ > 0), we obtain,
@@a+Mm—xﬂ—a@+ﬁ@r%gw>:©@+ﬂ) (29)
§@@%z@@@q—dhﬂf+ﬂ—Amm—a@M0.
Combining the convexity of ® and (29), we derive

@@&+Mm—xg—db+xh—@mgg (30)

AD (:pl — a(tl)v) +(1- )\)(I)<x2 — 0(252)1)).

12



Using (27) and (30), we derive for every t1, to € [0, 1):
O (Azy + (1 — Nag) < AP(z1 — a(ty)v) + (1 — N P(xe — o(t2)v) — e(Aty + (1 — A)ta).
Taking the infimum over t; and t5, in the previous relation yields
O (Azy + (1 — N)xg) < AP (1) + (1 — N)DP°(x9).

Hence ®°¢ is convex.

(iii) The functional ®° is lower semicontinuous. Let (x,)n,en+, be a sequence in X
such that x,, — xy as n — +oo. Consider also a sequence (f,)nen+ in [0, 1) such that

lim ¢, = t*.
If t* = 1, relation (26) implies that lim o(¢,) = +oo. Hence,
U+M—>vasn—>+oo.
o(tn)
(IO - xn) .
We may therefore apply (4) for —v, — [ v + T and o(t,), and obtain
o(ty
n tn
0 < oo (—v) < liminf 7(tn)0) (31)
o)
As the sequence (0 (ty)),cy- tends to infinity, from (31) it follows that
lim inf[®(z,, — o(t,)v) — t,,] = +o0.
Hence,
lim inf[®(x,, — o(t,)v) — et,] > P(x0). (32)
If t* < 1, as ® is lower semicontinuous , we have
liminf[®(x,, — o(t,)v) — et,] > P(zg — o(t™)v) — et™ > D (z). (33)
Relations (32) and (33) imply that for every sequence (t,)nen+, tn € [0,1)
lim inf[®(z,, — o(t,)v) — ety,] > D°(x0).
According to the definition of ®¢, for every n in N* there is ¢, in [0, 1) such that
1
0 < ®(x, —o(t,)v) —et, — P(x,) < —.
n
Consequently,
liminf ®°(z,,) = lim inf[®(x,, — o (t,)v) — t,,] > P (x0),
that is, ®° is lower semicontinuous. Hence, this completes the proof of Lemma 4.3. O
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Lemma 4.4. The functional ®° satisfies:

O —ec <P <D,
Proof of Lemma 4.4. Let x be in X. As 0(0) = 0, using (27) we observe that

P (z) < P(x — o(0)v) — 0 = P(x). (34)

Since o is positive, relation (25) implies
O(z) —e < P(x—o(t)v) —e < P(x —o(t)v) —et, Yt €[0,1).
By taking the infimum over ¢ we derive

O(z) —e < (). (35)

The conclusion of the Lemma 4.4 follows immediately by summing up (34) and (35). O

Lemma 4.5. argmin ®° = ().

Proof of Lemma 4.5. Let zy be in argmin ®. For every 0 < § < 1, we have
O (zg+0(1—=06)v) < P(zg+o(l—0)v—0(l=3d)v) —e(1—6§) =M — e+ de.
Hence,

inf &°(z) < M —e.
zeX

Relation (28) implies now that the infimum of ®° is M — . Suppose that this infimum is
reached, i.e. there is x in X such that

O (z) = inf [®(x —o(t)v) —et] = M —¢;

0<t<1
accordingly, there is a sequence (t,)nen+ in [0, 1) such that

lim [®(x — o(t,)v) —et,] = M —«.

Since ®(x — o(t,)v) > M, and et,, < ¢, the previous relation implies that

lim ¢, =1, and lim ®(z — o(t,)v) = M.

n—oo n—oo

Consequently,
O(x — ot
0< Poo(—v) = lim 2 = oltn)v) =0,
e o(ty)
a contradiction. Hence the functional ®¢ does not reach its infimum value. O

14



Lemmata 4.3—4.5 show that, if Ker &, is not a linear subspace of X, then the functional
defined by (27) fulfills the conditions of Theorem 4.1. This thereby completes the proof
of Case (a).

Case (b): The construction of functionals of type ®, n allows us to deal with the case
when Ker @, is a linear (and closed) subspace of X. Let us consider first a particular
case, namely when Ker ®,, = {0}. The desired functional ®¢ will be in this case of the
form

O°(x) = max{®;(z), Po(z)}, (36)
where @, is defined by

(I)l(fL') = (I)xo,M—a-

R
M
M- ¢
X X
By Lemma 2.1, ®; € I'y(X) and
O(z) —e < Py(z) < P(z), Vo e X. (37)

In order to define ®,, let us consider the closed and convex set
P={zxeX: & (xg+2z) <M} (38)
Lemma 4.6. The closed conver set P is unbounded, nevertheless it is linearly bounded.

Proof of Lemma 4.6. Suppose P is bounded, i.e. there is a positive constant k such
that ||z|| <k for all z € P. Pick  in Dom @ and set

£

B M e &)

Y =T+

since

5) (w0, M — 2),
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we have
(y, M) € co{(xog, M — €),epi P}.

Hence ®,(y) < M, that is (y — o) € P.

Thus .
C  e— ol =y — | <

Consequently,

k M —¢
20(2) 2 Jjal| — o]l + k=

which means that ® is coercive, a contradiction. Therefore P is unbounded.

Fix now u € P.; then for every positive constant s we have su € P. Relation (37)
combined with (38) yields

O(xg + su) < Py(zg+su)+e < M+e.

Hence due to (4) ®oo(u) = 0, that is u € Ker ®,. Therefore u = 0 and, consequently,
P, ={0}. O

According to Theorem 3.1, take an element f € X* such that

iI€1£<f,w><<f,u)§1, Vue P (39)
Define ;
By () = %(f,x—xo>+M—f. (40)

It easily follows from the definition of ®; and ®, that the functional ®¢ defined in (36)
belongs to I'og(X), and satisfies ®(x) — e < ®°(z). In order to prove that ®*(z) < d(z),
we use the following result.

Lemma 4.7. Let x in X. If ®y(x) > M then ®1(x) > Po(x).

M-
Proof of Lemma 4.7. Take \y = 2(%o) . We have
Py (x) — Pa(20)
)\O(I)Q(l’) + (]. — )\0)@2(1’0) = (1)2()\0$ + (1 — )\0).%‘0) = M. (41)
Since,
€ 3e
Dy(z) = 5 (f,x —20) + M — —
2 4
€ 3e €
< - S V/
-2 +M 4 4

<M, Ve (fL’O—f—P),
we deduce from (41) that

Moz + (1 — Xo)zo) & (z0+ P).

16



Therefore,
(1)1()\0ZE + (]_ — )\Q)l‘o) > M.

Since ®qo(z9) = M — (3/4)e < M (see (40)), we obtain 0 < \g < 1. As ®; is convex, we
have

)\O(I)l(l') + (1 — )\0)@1(1’0) > (Dl()\()l‘ + (1 — )\0)1’0) > M. (42)

Substracting (41) from (42) yields

e >0, (43)

and establishes Lemma 4.7. O

By Lemma 4.7, ®y(z) < ®(z) whenever ®5(x) > M; in other words,
Oy(x) < max{M, ®(z)} = ().

This allows us to conclude that ®¢(z) < ®(x).

We conclude the proof of the particular case Ker ®,, = {0} by proving the following
statement.

Lemma 4.8. The functional ®° does not attain its infimum value.

Proof of Lemma 4.8. Define B := {z € X : ®y(x) > &y(z)} and let us show that, if
®° attains its minimum value over X, then ®, also reaches its minimum value over B.

Lemma 4.9. For every x in X, there is b(x) in B such that ®°(x) > $y(b(x)).

Proof of Lemma 4.9. If x is such that ®*(x) > M, then b(z) := z, satisfies Lemma
4.9; and if x belongs to B, we set b(z) := x. It remains to define b(xz) when M > ®°(z)
and &4 (x) > Py(z). In this case, set

)\ _ (131(27) —(I)g(l') .
PS4 0y(a) — o)

Lemma 2.1 (iii) implies that

= /\0@2(1’0) -+ (]_ — /\0)‘132([E)
= Py Aoz + (1 — No)x),

and the conclusion of Lemma 4.9 follows by taking b(z) = Aoxg + (1 — Ag)z. O
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Lemma 4.8 will be established if we show that ®; does not reach its infimum value on B.
To this end, we prove that we can rewrite ®, on B as

€ 1
(132(1‘):M—€+§'m,

_ 4(x —
where T is defined by T'(z) = <I>2(€$(;c— ]9\20)_'— c 1+ 2(26]? ;’0—)%)‘

Lemma 4.10. The operator T : B — P is one-to-one and onto.

(44)

R

X

Proof of Lemma 4.10. Let us first prove that T is well-defined. As T'(z¢) =0 € P, it
suffices to show that 7T'(z) € P if = lies in B and x # x.
By Lemma 2.1 (iv), argmin®; = {0} and thus ®;(z) > ®1(xg) = M — e. Let us

o, (2) _SM e As @(z) < Py(x), according to Lemma 4.7 we deduce that

®y(x) < M. Therefore,

set sg =

€ 4
> = .
V= ow) - Mte 1+2(fix—a0)

Suppose 1 (zg + so(z — zg)) > M. As the function [0,s0] > s — Py(xg + s(x — o))
is convex and lower semicontinuous , hence continuous, there is s; in [0, sp) such that
Oy (zg + s1(x — x9)) = M. Applying Lemma 2.1 (iii) with @, p—. for @, z¢ + s1(x — z0)
for x and s;/(1 + s1) for A, and using the convexity of ®; we obtain
M = (I)l(l‘() -+ 81(27 — ZEo)) § @1(270) + 81(@1(27) — (I)l(l‘o)),
that is
81 2 2 =s
'S o() - M+e TV

a contradiction. Consequently,

D1 (zg + so(x — x0)) < M. (45)
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For simplicity, let us define

4 4

So — S0 —
1+2 — 1+2 —
ap = + S<f7x ZL’()) and ay = 1 — + S(fv x $0> )
0 0

The following relation
xo + T(2) = ay xg + as(zo + So(z — x0))
together with the convexity of ®; and (45) imply that
Oy (xg+T(2) < (M —e) + agsoM < M.
Hence, T'(x) belongs to P.
Now fix w in P and set y = x¢ + w,

A0_4_2<f7y_x0> 4_2<f7w>’

(remark that relation (14) implies 0 < X\g < 1), and & = Xgzg + (1 — Ag)y. After
straightforward calculations we deduce that

1
By(z) =M —c+ =

. 2_<f’y_$0>:M—s)\0. (46)

Since w € P, we have ®(y) < M. Lemma 2.1 (iii) implies that

(1)1(1’) = )\0@1(1‘0) + (1 - )\O)q)l(y> S M — 8)\0 = @2(1‘)

Thus x belongs to B, and since

_ 4(x — x0) _ 4(1 = X) w
1+2(f,z—xo) 14+2(f,z—x)

T(x)

:’U_]’

it follows that 7" is onto. Since the operator 7' is obviously one-to-one, this completes the
proof of Lemma 4.10. [

Let us return to the proof of Lemma 4.8. Relation (44) follows now from Lemma 4.10
and relation (46).
Relations (14) and (44) imply that, if inf,cp (f,w) > —o0, then

€ 1
@2($):M—€+§'m

e 1
M — c.
S R Y
= inf &5(v), Vo € B,

veEB

(47)
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and that, if inf,,c p( f, w) = —o0, then

Bo(z) =M —c+ <.

1 :
9 m >M—€:5££<I>2(v), Ve B.

In both cases, we have proved that ®, does not reach its infimum value on B, which allows
us to complete the proof of Theorem 4.1. O

Let us return to the general case, where Ker @, is an arbitrary closed subspace of X. As
a consequence of (25), we have

O(z+v) = D(x), for allz € X, and all v € Ker . (48)

We may therefore factorize X by Ker ®.; the quotient functional ® is a non- semicoercive
I'o(X/ Ker @, )-functional which attains its minimum value, and satisfies Ker ®o, = {0}.
We may thus define & as before, and set

®(z) = ®°(T), for allz € T, and allz € X.
This functional obviously satisfies the requirements of Theorem 4.1. m

Following the lines of Theorem 4.1 we can also derive the following result:

Theorem 4.11. Suppose that ® is a T'o(X)-functional which achieves its minimum value
on X. Moreover, assume that either

(a) Ker®,, is not a subspace;
or
(b) @ is non-semicoercive and Ker @, is a linear space.

Then, for every e >0 and R > 0, there exists ®>T € To(X) such that
° argmin &= £ ();

. for each v € X, ®(x) —e < &5R(x) < &(x);

o if u € argmin ®=7, then |lu| > R.

Proof of Theorem 4.11.

Case (a): If Ker @, is not a linear subspace of X, then there is v in Ker @, such that

R+ ||lzo
)

—v ¢ Ker®,,. Let 6 : = dist(—v,Ker®) and set y : = x¢ + v and define

P=F(x) : = D, pr—c(2); by virtue of Lemma 2.1, =% lies in I'g(X) and
d(r) —e < dF(x) < B(x), Vo € X,

Moreover, if z € argmin ®>7 then z € (y+Ker ®.,). Thus there is w € Ker @, such that

_ B+ [l
Z—SB()—{—TU—FIU
Since § = dist(—v, Ker ®,), we have
B+ [l B+ [z
———vtw|| > ———— |- = =————w|| > R+ ||x0]|;
=5 S R = 2 el
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accordingly,

B+ o
)

e H ““”H ~leoll = B.

Hence &% fulfills the conditions of Theorem 4.11.

Case (b): If Ker @, is a linear subspace of X, consider ® as constructed in the proof
of Theorem 4.1, and let (7,), .. be a minimizing sequence for ®°. Since the functional

®° does not attain its infimum value and the space X is reflexive, the sequence (T nent
is unbounded.

According to relation (47), it follows that

= 3
M—c<inf® <M-=.
zeX 4
Thus take ng such that ||Z,,|| > R and & (z,,) < M.
Consider now 5@0@5(%0). Lemma 2.1 implies that @no,@amo) is a [o(X/ Ker @ )-

T
functional which reaches its minimum value only on 7, and satisfies

(I)Eno ,5€(fn0)(f) < (I)(f) (49>

Since (Tpny, ® (Tn,)) € epi®”, and & < &, we obtain
epi®, () = CO{(Tng, ® (Tny)), epi @} C epi @

Therefore

@ — & S @ S @Enoyis(jno). (50)

The desired functional is now defined by setting

cbs,R(g;) = afnw@s(fno)(f)’ YV S E, VT c X/ Ker q)oo

By (49) and (50), it follows that =% € T'y(X) and satisfies:
() —e < (1) < ®(2), Vo € X.

The functional ®=# reaches its minimum value only on the set Z,,. Since ||Z,,| > R,
we have ||z|| > R for every x in T,,, which means that ®% fulfills all the conditions of
Theorem 4.11. O

5. Concluding remarks

In this paper we have studied the stability under uniform perturbations of the existence
of a solution for the simplest variational problem, namely the minimization of a proper,
convex and lower semicontinuous functional. In summary, we established that the problem
of finding a minimum point of a convex functional is stable under uniform perturbations
only within the class of semicoercive I'g(X)-functionals.

The same question may be raised in some other variational contexts, such as the theory
of variational inequalities.
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This case has already been considered and several results establishing sufficient existence
conditions for noncoercive problems have been obtained recently, using the so-called reces-
sion analysis (see for instance the work by Adly et al [1] and Attouch et al [2]). However,
even in the case of a positive operator, the question of the existence of solutions of the
perturbed initial variational inequality remains partially open.

Another interesting direction of research is the nonconvex case. We remark that this case
does not subsume the convex one, since, even if the class of functionals is broader, so
is the uniform neighborhood composed of functionals which must attain their minima.
Accordingly, no simple relation can be established between the two problems.

Sufficient stability conditions have been obtained in the non-convex setting (see [4] and
[5]), implying, inter alia, that semicoercive functionals are no longer the only functionals
with a stable minimum. The problem of characterizing all lower semicontinuous function-
als having a stable minimum is thus still open.
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