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In this paper we prove that every proper convex and lower semicontinuous functional Φ defined on a real reflexive Banach space X is semicoercive if and only if every small uniform perturbation of Φ attains its minimum value on X.

Introduction

Throughout the paper X denotes a real reflexive Banach space, X * its topological dual and •, • the associated duality pairing on X × X * . We write "→ and "⇀ to denote respectively the strong and the weak convergence on X. We denote by B(x, r) (respectively by B(x, r)) the open ball (respectively closed ball) with center x and radius r > 0. Following the standard notations used in convex analysis, Γ 0 (X) stands for the set of all convex lower semicontinuous proper (not identically equal to +∞) extended-real-valued functionals Φ : X → R ∪ { +∞}.

By argmin Φ we mean the (possibly empty) set of all x ∈ X where Φ attains its minimum value, i.e. Φ(x) ≤ Φ(y), ∀ y ∈ X.

Recall that a functional Φ : X → R ∪ { +∞} is said to be semicoercive if there exists a closed subspace V of X such that Φ(x) = Φ(x + v), ∀x ∈ X, ∀ v ∈ V, and the quotient functional Φ : X/V → R ∪ { +∞}, defined by: Φ(x) = Φ(x), ∀x ∈ x, ∀ x ∈ X/V, is coercive, in the sense that Φ -1 ((-∞, M ]) is bounded for every M ∈ R.

Let us remark that every coercive functional is semicoercive. Let us also mention two of the most frequently encountered semicoercive functionals:

(i) The distance functional to a closed subspace F of an arbitrary Banach space X,

J 1 : X → R, J 1 (x) = dist(x, F ) = inf y∈F x -y .
(ii) If Ω ⊆ R n is a bounded subset with a smooth boundary, and H 1 (Ω) is the corresponding Sobolev space,

J 2 : H 1 (Ω) → R, J 2 (u) = Ω |∇u(x)| 2 dx.
By a uniform perturbation of Φ we mean a functional Ψ which satisfies for some ε > 0

Φ(x) -ε ≤ Ψ(x) ≤ Φ(x) + ε , ∀x ∈ X.
Obviously, every convex uniform perturbation of a semicoercive functional remains semicoercive. It is a well-known fact that every Γ 0 (X)-functional, which is semicoercive attains its minimum on X. Consequently, in the class of Γ 0 (X)-semicoercive functionals, the existence of a minimum on X is preserved under every uniform perturbation.

Our aim in this paper is to study if the converse of the preceding observation is true. More precisely, we prove (Theorem 4.2) that if Φ ∈ Γ 0 (X) and if every small uniform perturbation of Φ within the class Γ 0 (X) reaches its minimum value on X, then Φ is necessarily semicoercive.

The paper is organized as follows. Section 2 contains some classical convex analysis results which are needed throughout the paper, together with the proof of the technical Lemma 2.1. Section 3 is devoted to the proof of Theorem 3.1, which characterizes unbounded, linearly bounded convex closed sets (that is unbounded sets with a recession cone reduced to the singleton {0}). This theorem plays a central role in the proof of the main result which is given in Section 4.

The final section contains the conclusions and some open problems.

Background material and preliminary results

Let us recall some basic definitions from convex analysis. For Φ ∈ Γ 0 (X), we denote by Dom Φ, the effective domain of Φ which is defined by Dom Φ = {x ∈ X : Φ(x) < +∞} and by epi Φ the epigraph of Φ. Let K be a nonempty convex and closed subset of X.

Following Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF], the recession cone K ∞ of K is defined by:

K ∞ = t>0 t K -x 0 , x 0 ∈ K.
Note that K ∞ is independent of x 0 ∈ K and that K ∞ is a closed convex cone of X and describes the global behavior of the convex set K.

For each Φ ∈ Γ 0 (X), taking C = epi Φ we define the recession functional of Φ as the function Φ ∞ such that epi Φ ∞ = (epi Φ) ∞ . Equivalently, it amounts to saying that

Φ ∞ (x) := lim t→+∞ Φ(x 0 + tx) -Φ(x 0 ) t ,
where x 0 is any point in Dom Φ.

In the sequel, Ker Φ ∞ will denote the closed convex cone defined by

Ker Φ ∞ = {x ∈ X : Φ ∞ (x) = 0}.
The following properties of Φ ∞ will be used in the sequel. The proofs of ( 1)-( 3) are straightforward and were established in finite dimension in [START_REF] Rockafellar | Convex Analysis[END_REF]; the reader is for instance refered to [START_REF] Baiocchi | General existence results for unilateral problems in continuum mechanics[END_REF] for [START_REF] Auslender | Noncoercive optimization problems in reflexive Banach spaces[END_REF].

Φ ∞ ∈ Γ 0 (X) (1) Φ(x + y) ≤ Φ(x) + Φ ∞ (y), ∀x, y ∈ X (2) Φ ∞ (λx) = λΦ ∞ (x) ∀x ∈ X, ∀λ ≥ 0 (3) Φ ∞ (x) ≤ lim inf n→∞ Φ(x 0 + s n x n ) s n , (4) 
where x 0 is any point in Dom Φ, (x n ) n∈N * is any sequence in X converging to x and (s n ) n∈N * is any real sequence converging to +∞.

Throughout the paper, x 0 ∈ X and M ∈ R are defined such that :

x 0 ∈ argmin Φ and M := Φ(x 0 ).

Denoting by co {(y, N ), epi Φ} the convex hull of (y, N ) and epi Φ, for y ∈ X and N < M , we set

F(x) = {s ∈ R : (x, s) ∈ co{(y, N ), epi Φ}},
the closure being taken with respect to the natural strong topology on X × R. Obviously, F(x) is a closed, convex, (possibly empty) subset of R; since

∅ = co{(y, N ), epi Φ} ⊆ X × [N, +∞) ⊂ X × R, it follows that F(x) ⊂ [N, ∞), ∀ x ∈ X.
Therefore, the relation

Φ y,N (x) = min F(x) if F(x) = ∅ +∞ if F(x) = ∅
defines a proper extended-real-valued functional, whose epigraph is co{(y, N ), epi Φ}. Some of the most important properties of Φ y,N are stated in the following Lemma.

Lemma 2.1. For every functional Φ y,N , the following holds:

(i) Φ y,N belongs to Γ 0 (X); (ii) Φ y,N is a minorant of Φ: Φ y,N (x) ≤ Φ(x), ∀ x ∈ X;
If, in addition, Φ attains its minimum value at y, then

Φ(x) + N -M ≤ Φ y,N (x), ∀ x ∈ X;
(iii) for every x ∈ X such that Φ y,N (x) ≤ M we have

Φ y,N (λy + (1 -λ)x) = λΦ y,N (y) + (1 -λ)Φ y,N (x), ∀ λ ∈ (0, 1), (5) 
(iv) argmin Φ y,N = y + Ker Φ ∞ .

Proof of Lemma 2.1. (i) Since epi Φ y,N = co{(y, N ), epi Φ} is a non-empty, closed and convex set, Φ y,N ∈ Γ 0 (X).

(ii) As epi Φ ⊂ co{(y, N ), epi Φ},

we have Φ y,N (x) ≤ Φ(x) ∀ x ∈ X.
If, in addition, Φ(y) = M , we have (y,

N ) ∈ epi(Φ + N -M ) and epi Φ ⊂ epi(Φ + N -M ), so co{(y, N ), epi Φ} ⊂ epi(Φ + N -M ), that is Φ(x) + N -M ≤ Φ y,N (x), ∀ x ∈ X.
(iii) We shall distinguish the cases Φ y,N (x) < M , and Φ y,N (x) = M . Let us first suppose that Φ y,N (x) < M . Set z = λy + (1λ)x; for every δ > 0 set

α := min {δ(1 -λ), (M -Φ y,N (x))(1 -λ)} . (6) 
Since (z, Φ y,N (z)) ∈ co{(y, N ), epi Φ}, there exist (w, θ) ∈ epi Φ and 0 ≤ µ ≤ 1 (depending on δ), such that

dist X×R µ(y, N ) + (1 -µ)(w, θ), (z, Φ y,N (z)) 2 = (µy + (1 -µ)w) -z 2 + |(µN + (1 -µ)θ) -Φ y,N (z)| 2 ≤ α 2 . Therefore µN + (1 -µ)θ ≤ Φ y,N (z) + α.
Since M ≤ θ and α ≤ (M -Φ y,N (x))(1λ), the previous relation yields

µN + (1 -µ)M ≤ Φ y,N (z) + (M -Φ y,N (x))(1 -λ). (7) 
Using the convexity of Φ y,N , we deduce that

Φ y,N (z) + (M -Φ y,N (x))(1 -λ) (8) ≤ λΦ y,N (y) + (1 -λ)Φ y,N (x) + (1 -λ)(M -Φ y,N (x)) = λN + (1 -λ)M.
By [START_REF] Goeleven | On Noncoercive Variational Problems and Related Results[END_REF] and [START_REF] Laurent | Approximation et Optimisation[END_REF] 

we get µN + (1 -µ)M ≤ λN + (1 -λ)M.
Consequently, λ ≤ µ, and therefore 0 ≤ λ 1 = (µλ)/(1λ) ≤ 1. This yields

λ 1 (y, N ) + (1 -λ 1 )(w, θ) ∈ co {(y, N ), epi Φ}.
Thus, since the relation

dist (x, 1 1 -λ Φ y,N (z) - λ 1 -λ Φ y,N (y)), λ 1 (y, N ) + (1 -λ 1 )(w, θ) = 1 1 -λ dist (z, Φ y,N (z)), µ(y, N ) + (1 -µ)(w, θ) ≤ α 1 1 -λ ≤ δ,
holds for every δ > 0, we derive that

x, 1 1 -λ Φ y,N (z) - λ 1 -λ Φ y,N (y) ∈ co{(y, N ), epi Φ}. Hence, Φ y,N (x) ≤ 1 1 -λ Φ y,N (λy + (1 -λ)x) - λ 1 -λ Φ y,N (y).
This relation combined with the convexity of Φ y,N implies (5).

Let us now consider the case Φ y,N (x) = M . Set

x n = 1 n y + n-1 n x; since Φ y,N is convex, Φ y,N (x n ) ≤ 1 n Φ y,N (y) + n -1 n Φ y,N (x) = 1 n N + n -1 n M < M.
Hence relation (5) holds for every x n . Therefore, for every λ in (0, 1) and every n in N * we have Φ y,N (λy

+ (1 -λ)x n ) = λΦ y,N (y) + (1 -λ)Φ y,N (x n ). (9) 
On [0, 1], the mappings µ → Φ y,N (µy +(1-µ)x) and µ → Φ y,N (λy +(1-λ)(µy +(1-µ)x)) are convex and lower semicontinuous , thus continuous. Consequently, we obtain relation [START_REF] Baiocchi | General existence results for unilateral problems in continuum mechanics[END_REF] by taking in [START_REF] Rockafellar | Convex Analysis[END_REF] the limit as n goes to infinity.

(iv) Take x in X such that Φ y,N (x) = N . We may assume without loss of generality that x = y. Since (x, N ) belongs to co{(y, N ), epi Φ}, for every n in N * there are (x n , θ n ) in epi Φ and

µ n in [0, 1) such that dist µ n (y, N ) + (1 -µ n )(x n , θ n ), (x, N ) ≤ 1 n . (10) 
By [START_REF] Valentine | Convex Sets[END_REF] we deduce, in particular, that

µ n N + (1 -µ n )θ n ≤ N + 1 n , and since θ n ≥ M , we obtain 1 -µ n ≤ 1 n(M -N ) . (11) 
Relation [START_REF] Valentine | Convex Sets[END_REF] implies that lim

n→∞ µ n N + (1 -µ n )θ n -N = 0; as from (11) it follows that lim n→∞ µ n = 1, we deduce that lim n→∞ (1 -µ n )θ n = 0. Since Φ(x n ) ≤ θ n , the previous relation yields lim sup n→∞ (1 -µ n )Φ(x n ) ≤ 0. ( 12 
)
On the other hand, relation [START_REF] Valentine | Convex Sets[END_REF] implies that

lim n→∞ µ n y + (1 -µ n )x n -x = 0; since lim n→∞ µ n = 1, we obtain that lim n→∞ (1 -µ n )x n -(x -y) = 0, which implies lim n→∞ (1 -µ n )(x n -z 0 ) -(x -y) = 0,
where z 0 is an arbitrary element of Dom Φ. We may therefore apply (4) for x -

y instead of x, 1/(1 -µ n ), and (1 -µ n )(x n -z 0 ) instead of x n and s n := 1/(1 -µ n ) (note that µ n = 1)
, and as

x n = z 0 + 1 1 -µ n [(1 -µ n )(x n -z 0 )],
we obtain

0 ≤ Φ ∞ (x -y) ≤ lim inf n→∞ (1 -µ n )Φ(x n ). (13) 
By ( 12) and (13) it follows that xy belongs to Ker Φ ∞ , that is x ∈ y + Ker Φ ∞ .

Since obviously Φ y,N reaches its minimum value at every point of y + Ker Φ ∞ , the proof of Lemma 2.1 is established.

Unbounded linearly bounded closed convex sets

Recall that a closed convex set K is linearly bounded if K ∞ = {0}.

Theorem 3.1 below states an important property of convex, closed, unbounded and linearly bounded sets. This result shows that, contrary to the finite dimensional setting (see [START_REF] Rockafellar | Convex Analysis[END_REF], chapter 8), in a general linear space the recession cone does not characterize completely the behavior "at infinity of a convex set.

Theorem 3.1. Let K be a closed, convex, unbounded and linearly bounded subset of a reflexive Banach space X. Then, there exists h ∈ X * such that

inf w∈K h, w < h, u ≤ 1, ∀u ∈ K. ( 14 
)
For every closed convex subset K of X we define the barrier cone B(K) of K as the domain of the support functional σ K of K defined by σ K (f ) := sup x∈K f, x . In other words,

B(K) = {f ∈ X * : σ K (f ) < +∞} = Dom σ K .
The following lemma is an elementary consequence of a known result.

Lemma 3.2. Suppose K is a closed convex and linearly bounded set of X. Then B(K) is dense in X * .

Proof of Lemma 3.2. It is a well-known fact that the recession cone K ∞ of K is the polar of B(K) (see for instance [START_REF] Rockafellar | Convex Analysis[END_REF] 14.2.1 in finite dimension and [START_REF] Aubin | Optima and Equilibria. An introduction to Nonlinear Analysis[END_REF], Proposition 3.10 in infinite dimension). Therefore, by the bipolar theorem we obtain X * = B(K) oo = B(K) (since X is reflexive) and the proof is complete.

Given R > 0 we define

B R (K) := {f ∈ B(K) : ∃x ∈ Ksuch that f, x > R}.
Lemma 3.3. Suppose K is a convex closed, unbounded and linearly bounded subset of X.

If B(K) is a linear space, then for every R > 0, B R (K) is dense in X * .
Proof of Lemma 3.3. Let us suppose that, for some R > 0, B R (K) is not dense in X * . Then, take f in X * and ε > 0 such that

(f + B(0, ε)) ∩ B R (K) = ∅.
Using the previous Lemma, we observe that

f + B(0, ε) ⊂ X * = B(K) = B R (K) ∪ B(K) \ B R (K),
and therefore, as

B(K) \ B R (K) = B(K) ∩ x∈K {f ∈ X * : f, x ≤ R} is convex and closed, f + B(0, ε) ⊆ B(K) \ B R (K). (15) 
Accordingly, the linear space B(K) has a nonempty interior, from where it follows that B(K) = X * ,which by the principle of uniform boundedness implies that K is bounded, a contradiction.

We have proved that for every element f ∈ X * and for every R > 0, there exists a sequence (

f n ) n∈N * in B R (K) which converges to f and satisfies σ K (f n ) > R.
This result has an immediate consequence.

Lemma 3.4. Let f be in B(K). In the assumptions of Lemma 3.3, for every constant R, satisfying R > σ K (f ), and every γ > 0, there is a sequence

(g n ) n∈N * converging to f , such that σ K (g n ) = R, and g n , x < R, ∀x ∈ (K ∩ B(0, γ)), ∀n ∈ N * .
Proof of Lemma 3.4. According to Lemma 3.3, there is a sequence (f n ) n∈N * converging to

f such that R ≤ σ K (f n ) < +∞.
As, for every n, the function λ

→ σ K (λf + (1 -λ)f n ) is continuous on [0, 1], there is λ n ∈ [0, 1] such that σ K (g n ) = R,
where

g n = λ n f + (1 -λ n )f n .
Denoting by {λ n } n∈N a converging subsequence of {λ n } n∈N , the sequence {g n } n∈N obviously converges to f . Moreover, at least starting from a certain rank, this subsequence also satisfies the second condition of the lemma. Indeed, otherwise we would find a subsequence (g m

) m∈N * of (g n ) n∈N * such that x m ∈ K, x m ≤ γ and g m , x m = R. Consequently, |R -f, x m | = | g m -f, x m | ≤ γ f -g m ,
and, letting m → +∞, we would obtain

R > σ K (f ) ≥ lim m→∞ f, x m = R,
a contradiction and the result follows.

We have now all the ingredients which are necessary to prove the main result of this section.

Proof of Theorem 3.1. Let us first remark that, if B(K) is not a linear space, then Theorem 3.1 is established. Indeed, in this case, there is f ∈ B(K) such that -f / ∈ B(K), and h = f /σ K (f ) verifies (14), as inf w∈K h, w = -∞.

Let us now consider the case where B(K) is a linear space. Without loss of generality we may assume that 0 ∈ K. In order to define the element h of X * , we define by induction a sequence (h

n , γ n , ε n , x n ) n∈N * ⊂ X * × R × R × K as follows.
For n = 0, let us put

h 0 = 0, γ 0 = 1, ε 0 = 1, x 0 ∈ K arbitrary. For n = 1, take an element h 1 of X * satisfying sup x∈K h 1 , x = 3 4 and h 1 , x < 3 4 
, ∀x ∈ K ∩ B(0, 1), (Lemma 3.4 applied for f = 0, R = 3/4 and γ = 1, ensures the existence of such an element). Consequently, there is some x 1 ∈ K such that h 1 , x 1 = 2/3; take γ 1 = max(2, x 1 ). Finally, set

ε 1 = min 3 4 -sup x∈K∩ B(0,1) h 1 , x , 1 6γ 1 . (16) 
Let us now suppose that the sequence was defined for each i, 1 ≤ i ≤ n -1 in such a way that the following relations hold for every 1 ≤ i ≤ n -1:

h i -h i-1 < ε i-1 , (17) sup x∈K h i , x = i + 2 i + 3 and h i , x < i + 2 i + 3 , ∀x ∈ K ∩ B(0, γ i-1 ), h i , x i = (i + 1)/(i + 2), γ i = max(γ i-1 + 1, x i ), ε i = min i + 2 γ i-1 (i + 3) - sup x∈K∩ B(0,γ i-1 ) h i , x γ i-1 , 1 (i + 1)(i + 2)γ i , ε i-1 -h i -h i-1 .
Lemma 3.4, applied for f = h n-1 , R = (n + 2)/(n + 3) and γ = γ n-1 , yields the existence of an element h n of X * such that

h n -h n-1 < ε n-1 ,
and

sup x∈K h n , x = n + 2 n + 3 and h n , x < n + 2 n + 3 , ∀x ∈ K ∩ B(0, γ n-1 ).
Consequently, there exists

x n in K such that h n , x n = n + 1 n + 2 .
Set γ n = max(γ n-1 + 1, x n ), and put ε n for the following (strictly positive) expression:

min n + 2 γ n-1 (n + 3) - sup x∈K∩ B(0,γ n-1 ) h n , x γ n-1 , 1 (n + 1)(n + 2)γ n , ε n-1 -h n -h n-1 .
The sequence (h n , γ n , ε n , x n ) n∈N defined inductively satisfies the relations (17). The last relation in (17) implies that

h i + B(0, ε i ) ⊂ h i-1 + B(0, ε i-1 ), ∀i ≥ 2;
since γ n ≥ n + 1, we deduce from the previous relation that, for every m > n ,

h m -h n < ε n < n + 2 γ n-1 (n + 3) < 1 n . (18) 
Relation (18) means that the sequence (h n ) n∈N * is a Cauchy sequence in X * and therefore converges to some h ∞ ∈ X * . By relation (18), we derive that

h n -h ∞ ≤ ε n ≤ 1 γ n-1 n + 2 n + 3 - sup x∈K∩ B(0,γ n-1 )
h n , x .

It follows that, for every x ∈ K ∩ B ¯(0, γ n-1 ),

h ∞ , x = h n , x + h ∞ -h n , x ≤ (19) ≤ h n , x + x • h ∞ -h n ≤ h n , x + γ n-1 1 γ n-1 n + 2 n + 3 - sup x∈K∩ B(0,R n-1 ) h n , x = n + 2 n + 3 + h n , x - sup x∈K∩ B(0,γ n-1 ) h n , x ≤ n + 2 n + 3 . Let x be in K; there exists n ∈ N * such that x ≤ γ n-1 . Hence relation (19) implies h ∞ , x ≤ n + 2 n + 3 < 1, ∀x ∈ K, (20) 
and therefore sup

x∈K h ∞ , x ≤ 1. ( 21 
)
Again from relation (18) we deduce that

h n -h ∞ ≤ ε n ≤ 1 (n + 1)(n + 2)γ n , that is h ∞ , x n = h n , x n + h ∞ -h n , x n (22) 
≥ n + 1 n + 2 -h n -h ∞ x n ≥ n + 1 n + 2 - 1 (n + 1)(n + 2) = n n + 1 . Consequently σ K (h ∞ ) ≥ lim n→∞ h ∞ , x n = 1. (23) 
Combining ( 20), ( 21) and ( 23), it follows that, for any

x ∈ K, h ∞ , x < 1 = σ K (h ∞ ).
The mapping h defined by

h =    h ∞ if inf w∈K h ∞ , w = -∞ h ∞ • min{-1, inf x∈K h ∞ , x } -1 if inf w∈K h ∞ , w > -∞ (24) 
satisfies the conclusion of Theorem 3.1.

The main result

We state the following result; its proof will be presented afterwards.

Theorem 4.1. Let Φ be a Γ 0 (X)-functional which achieves its minimum value on X.

Assume that either (a) Ker Φ ∞ is not a linear subspace; or (b) Φ is non-semicoercive and Ker Φ ∞ is a linear space.

Then, for every ε > 0, there exists Φ ε ∈ Γ 0 (X), such that

Φ(x) -ε ≤ Φ ε (x) ≤ Φ(x), ∀x ∈ X,
and argmin Φ ε = ∅.

The result which follows is an immediate consequence of Theorem 4.1 and can be considered as the main result of the paper.

Theorem 4.2 (Main Result).

Let Φ be a Γ 0 (X)-functional. Suppose that Φ and every small uniform perturbation of Φ (in the class Γ 0 (X)) achieve its minimum value on X. Then, Φ is necessarily semicoercive.

The proof given below is based on preceding results established in Sections 2 and 3.

Proof of Theorem 4.1. Case (a): In this case, the functional Φ cannot be semicoercive. Let x 0 ∈ argmin Φ and M ∈ R be such that Φ(x 0 ) = M . Since Φ is bounded from below, Φ ∞ (x) ≥ 0 for every x in X. It follows from ( 2) and (3) that for every v ∈ Ker Φ ∞ , we have

Φ(x + tv) ≤ Φ(x), ∀ t ≥ 0 and x ∈ X. (25) 
Since Ker Φ ∞ is not a linear subspace of X, there exists v in X such that Φ ∞ (v) = 0 and Φ ∞ (-v) > 0. Let σ : [0,1) → R be a convex and increasing function satisfying σ(0) = 0 and

lim t→1 -σ(t) = +∞. ( 26 
)
For example take σ(t) = t 1t . We then define Φ ε by

Φ ε (x) = inf 0≤t<1 [Φ(x -σ(t)v) -εt] . ( 27 
) 0 x M X R Φ Φ M- ε ε Φ-ε
Let us prove that Φ ε meets the requirements of Theorem 4.1.

Lemma 4.3. The functional Φ ε defined in (27) is a Γ 0 (X)-functional.

Proof of Lemma 4.3. (i) The functional Φ ε is an extended real-valued functional. In fact, since M is the minimum of Φ, we have

Φ(x -σ(t)v) -εt > M -ε, ∀x ∈ X, ∀t ∈ [0, 1).
By taking the infimum, in the previous relation, over t ∈ [0, 1), we obtain

Φ ε (x) ≥ M -ε > -∞, ∀x ∈ X. (28) 
(ii) The functional Φ ε is convex. Let x 1 , x 2 be in X, t 1 , t 2 ∈ [0, 1) and 0 ≤ λ ≤ 1. Using the convexity of σ and relation (25) for

x = λ(x 1 -σ(t 1 )v) + (1 -λ)(x 2 -σ(t 2 )v), and t = λσ(t 1 ) + (1 -λ)σ(t 2 ) -σ(λt 1 + (1 -λ)t 2 )
(remark that t ≥ 0), we obtain,

Φ x 2 + λ(x 1 -x 2 ) -σ(t 2 + λ(t 1 -t 2 ))v = Φ(x + tv) (29) ≤ Φ(x) = Φ λ(x 1 -σ(t 1 )v) + (1 -λ)(x 2 -σ(t 2 )v) .
Combining the convexity of Φ and (29), we derive

Φ x 2 + λ(x 1 -x 2 ) -σ(t 2 + λ(t 1 -t 2 ))v ≤ (30) λΦ x 1 -σ(t 1 )v + (1 -λ)Φ x 2 -σ(t 2 )v .
Using ( 27) and (30), we derive for every t 1 , t 2 ∈ [0, 1):

Φ ε (λx 1 + (1 -λ)x 2 ) ≤ λΦ(x 1 -σ(t 1 )v) + (1 -λ)Φ(x 2 -σ(t 2 )v) -ε(λt 1 + (1 -λ)t 2 ).
Taking the infimum over t 1 and t 2 , in the previous relation yields

Φ ε (λx 1 + (1 -λ)x 2 ) ≤ λΦ ε (x 1 ) + (1 -λ)Φ ε (x 2 ).
Hence Φ ε is convex.

(iii) The functional Φ ε is lower semicontinuous. Let (x n ) n∈N * , be a sequence in X such that x n → x 0 as n → +∞. Consider also a sequence (t n ) n∈N * in [0, 1) such that lim

n→∞ t n = t * . If t * = 1, relation (26) implies that lim n→∞ σ(t n ) = +∞. Hence, v + (x 0 -x n ) σ(t n ) → v as n → +∞.
We may therefore apply (4) for -v,v + (x 0x n ) σ(t n ) and σ(t n ), and obtain

0 < Φ ∞ (-v) ≤ lim inf n→∞ Φ(x n -σ(t n )v) σ(t n ) . ( 31 
)
As the sequence (σ(t n )) n∈N * tends to infinity, from (31) it follows that

lim inf n→∞ [Φ(x n -σ(t n )v) -εt n ] = +∞. Hence, lim inf n→∞ [Φ(x n -σ(t n )v) -εt n ] ≥ Φ ε (x 0 ). ( 32 
)
If t * < 1, as Φ is lower semicontinuous , we have

lim inf n→∞ [Φ(x n -σ(t n )v) -εt n ] ≥ Φ(x 0 -σ(t * )v) -εt * ≥ Φ ε (x 0 ). ( 33 
)
Relations ( 32) and (33) imply that for every sequence

(t n ) n∈N * , t n ∈ [0, 1) lim inf n→∞ [Φ(x n -σ(t n )v) -εt n ] ≥ Φ ε (x 0 ).
According to the definition of Φ ε , for every n in N * there is

t n in [0, 1) such that 0 ≤ Φ(x n -σ(t n )v) -εt n -Φ ε (x n ) ≤ 1 n . Consequently, lim inf n→∞ Φ ε (x n ) = lim inf n→∞ [Φ(x n -σ(t n )v) -εt n ] ≥ Φ ε (x 0 ),
that is, Φ ε is lower semicontinuous. Hence, this completes the proof of Lemma 4.3.

Lemma 4.4. The functional Φ ε satisfies:

Φ -ε ≤ Φ ε ≤ Φ.
Proof of Lemma 4.4. Let x be in X. As σ(0) = 0, using (27) we observe that

Φ ε (x) ≤ Φ(x -σ(0)v) -ε 0 = Φ(x). ( 34 
)
Since σ is positive, relation (25) implies

Φ(x) -ε ≤ Φ(x -σ(t)v) -ε ≤ Φ(x -σ(t)v) -εt, ∀ t ∈ [0, 1).
By taking the infimum over t we derive

Φ(x) -ε ≤ Φ ε (x). ( 35 
)
The conclusion of the Lemma 4.4 follows immediately by summing up (34) and ( 35).

Lemma 4.5. argmin Φ ε = ∅.

Proof of Lemma 4.5. Let x 0 be in argmin Φ. For every 0 < δ < 1, we have

Φ ε (x 0 + σ(1 -δ)v) ≤ Φ(x 0 + σ(1 -δ)v -σ(1 -δ)v) -ε(1 -δ) = M -ε + δε. Hence, inf x∈X Φ ε (x) ≤ M -ε.
Relation (28) implies now that the infimum of Φ ε is Mε. Suppose that this infimum is reached, i.e. there is x in X such that 

Φ ε (x) = inf 0≤t<1 [Φ(x -σ(t)v) -εt] = M -ε; accordingly, there is a sequence (t n ) n∈N * in [0, 1) such that lim n→∞ [Φ(x -σ(t n )v) -εt n ] = M -ε. Since Φ(x -σ(t n )v) ≥ M ,
Φ(x -σ(t n )v) = M. Consequently, 0 < Φ ∞ (-v) = lim n→∞ Φ(x -σ(t n )v) σ(t n ) = 0,
a contradiction. Hence the functional Φ ε does not reach its infimum value.

Lemmata 4.3-4.5 show that, if Ker Φ ∞ is not a linear subspace of X, then the functional defined by (27) fulfills the conditions of Theorem 4.1. This thereby completes the proof of Case (a).

Case (b):

The construction of functionals of type Φ y,N allows us to deal with the case when Ker Φ ∞ is a linear (and closed) subspace of X. Let us consider first a particular case, namely when Ker Φ ∞ = {0}. The desired functional Φ ε will be in this case of the form

Φ ε (x) = max{Φ 1 (x), Φ 2 (x)}, (36) 
where Φ 1 is defined by

Φ 1 (x) = Φ x 0 ,M -ε . 0 Φ ε Φ 1 Φ 2 x Φ M R X M-ε By Lemma 2.1, Φ 1 ∈ Γ 0 (X) and Φ(x) -ε ≤ Φ 1 (x) ≤ Φ(x), ∀ x ∈ X. (37) 
In order to define Φ 2 , let us consider the closed and convex set

P = {x ∈ X : Φ 1 (x 0 + x) ≤ M }. (38) 
Lemma 4.6. The closed convex set P is unbounded, nevertheless it is linearly bounded.

Proof of Lemma 4.6. Suppose P is bounded, i.e. there is a positive constant k such that x ≤ k for all x ∈ P. Pick x in Dom Φ and set

y = x 0 + ε Φ(x) -M + ε (x -x 0 ); since (y, M ) = ε Φ(x) -M + ε (x, Φ(x)) + 1 - ε Φ(x) -M + ε (x 0 , M -ε), we have (y, M ) ∈ co{(x 0 , M -ε), epi Φ}. Hence Φ 1 (y) ≤ M , that is (y -x 0 ) ∈ P . Thus ε Φ(x) -M + ε x -x 0 = y -x 0 ≤ k. Consequently, k ε Φ(x) ≥ x -x 0 + k M -ε ε ,
which means that Φ is coercive, a contradiction. Therefore P is unbounded.

Fix now u ∈ P ∞ ; then for every positive constant s we have su ∈ P . Relation (37) combined with (38) yields

Φ(x 0 + su) ≤ Φ 1 (x 0 + su) + ε ≤ M + ε.
Hence due to (4) Φ ∞ (u) = 0, that is u ∈ Ker Φ ∞ . Therefore u = 0 and, consequently,

P ∞ = {0}.
According to Theorem 3.1, take an element f ∈ X * such that

inf w∈P f, w < f, u ≤ 1, ∀ u ∈ P. (39) Define 
Φ 2 (x) := ε 2 f, x -x 0 + M - 3ε 4 . (40) 
It easily follows from the definition of Φ 1 and Φ 2 that the functional Φ ε defined in (36) belongs to Γ 0 (X), and satisfies Φ(x)ε ≤ Φ ε (x). In order to prove that Φ ε (x) ≤ Φ(x), we use the following result.

Lemma 4.7. Let x in X. If Φ 2 (x) > M then Φ 1 (x) > Φ 2 (x).
Proof of Lemma 4.7. Take

λ 0 = M -Φ 2 (x 0 ) Φ 2 (x) -Φ 2 (x 0 )
. We have

λ 0 Φ 2 (x) + (1 -λ 0 )Φ 2 (x 0 ) = Φ 2 (λ 0 x + (1 -λ 0 )x 0 ) = M. (41) 
Since,

Φ 2 (x) = ε 2 f, x -x 0 + M - 3ε 4 ≤ ε 2 + M - 3ε 4 = M - ε 4 < M, ∀ x ∈ (x 0 + P ),
we deduce from (41) that

(λ 0 x + (1 -λ 0 )x 0 ) / ∈ (x 0 + P ).
Lemma 4.8 will be established if we show that Φ 2 does not reach its infimum value on B.

To this end, we prove that we can rewrite Φ 2 on B as

Φ 2 (x) = M -ε + ε 2 • 1 2 -f, T (x) , ( 44 
)
where T is defined by

T (x) = ε(x -x 0 ) Φ 2 (x) -M + ε = 4(x -x 0 ) 1 + 2 f, x -x 0 .
Lemma 4.10. The operator T : B → P is one-to-one and onto.

0 + P x 0 + T(x) Φ ε x . M R X M-ε B x .
Proof of Lemma 4.10. Let us first prove that T is well-defined. As T (x 0 ) = 0 ∈ P, it suffices to show that T (x) ∈ P if x lies in B and x = x 0 .

By Lemma 2.1 (iv), argmin Φ 1 = {x 0 } and thus Φ

1 (x) > Φ 1 (x 0 ) = M -ε. Let us set s 0 = ε Φ 1 (x) -M + ε . As Φ 1 (x) ≤ Φ 2 (x)
, according to Lemma 4.7 we deduce that Φ 2 (x) ≤ M . Therefore,

s 0 ≥ ε Φ 2 (x) -M + ε = 4 1 + 2 f, x -x 0 . Suppose Φ 1 (x 0 + s 0 (x -x 0 )) > M . As the function [0, s 0 ] ∋ s → Φ 1 (x 0 + s(x -x 0 ))
is convex and lower semicontinuous , hence continuous, there is s 1 in [0, s 0 ) such that Φ 1 (x 0 + s 1 (xx 0 )) = M . Applying Lemma 2.1 (iii) with Φ x 0 ,M -ε for Φ, x 0 + s 1 (xx 0 ) for x and s 1 /(1 + s 1 ) for λ, and using the convexity of Φ 1 we obtain

M = Φ 1 (x 0 + s 1 (x -x 0 )) ≤ Φ 1 (x 0 ) + s 1 (Φ 1 (x) -Φ 1 (x 0 )), that is s 1 ≥ ε Φ 1 (x) -M + ε = s 0 , a contradiction. Consequently, Φ 1 (x 0 + s 0 (x -x 0 )) ≤ M. (45) 
For simplicity, let us define

α 1 = s 0 - 4 1 + 2 f, x -x 0 s 0 and α 2 = 1 - s 0 - 4 1 + 2 f, x -x 0 s 0 .
The following relation

x 0 + T (x) = α 1 x 0 + α 2 (x 0 + s 0 (x -x 0 ))
together with the convexity of Φ 1 and (45) imply that

Φ 1 (x 0 + T (x)) ≤ α 1 (M -ε) + α 2 s 0 M ≤ M.
Hence, T (x) belongs to P . Now fix w in P and set y = x 0 + w,

λ 0 = 3 -2 f, y -x 0 4 -2 f, y -x 0 = 3 -2 f, w 4 -2 f, w ,
(remark that relation (14) implies 0 < λ 0 < 1), and x = λ 0 x 0 + (1λ 0 )y. After straightforward calculations we deduce that

Φ 2 (x) = M -ε + ε 2 • 1 2 -f, y -x 0 = M -ελ 0 . (46) 
Since w ∈ P , we have Φ 1 (y) ≤ M . Lemma 2.1 (iii) implies that

Φ 1 (x) = λ 0 Φ 1 (x 0 ) + (1 -λ 0 )Φ 1 (y) ≤ M -ελ 0 = Φ 2 (x).
Thus x belongs to B, and since

T (x) = 4(x -x 0 ) 1 + 2 f, x -x 0 = 4(1 -λ 0 ) 1 + 2 f, x -x 0 w = w,
it follows that T is onto. Since the operator T is obviously one-to-one, this completes the proof of Lemma 4.10.

Let us return to the proof of Lemma 4. 

f, w > -∞, then Φ 2 (x) = M -ε + ε 2 • 1 2 -f, T (x) (47) > M -ε + ε 2 • 1 2 -inf w∈P f, w = inf v∈B Φ 2 (v), ∀ x ∈ B, and that, if inf w∈P f, w = -∞, then Φ 2 (x) = M -ε + ε 2 • 1 2 -f, T (x) > M -ε = inf v∈B Φ 2 (v), ∀ x ∈ B.
In both cases, we have proved that Φ 2 does not reach its infimum value on B, which allows us to complete the proof of Theorem 4.1.

Let us return to the general case, where Ker Φ ∞ is an arbitrary closed subspace of X. As a consequence of (25), we have Φ(x + v) = Φ(x), for all x ∈ X, and all v ∈ Ker Φ ∞ .

We may therefore factorize X by Ker Φ ∞ ; the quotient functional Φ is a non-semicoercive Γ 0 (X/ Ker Φ ∞ )-functional which attains its minimum value, and satisfies Ker Φ ∞ = {0}. We may thus define Φ ε as before, and set Φ ε (x) = Φ ε (x), for all x ∈ x, and all x ∈ X.

This functional obviously satisfies the requirements of Theorem 4.1.

Following the lines of Theorem 4.1 we can also derive the following result:

Theorem 4.11. Suppose that Φ is a Γ 0 (X)-functional which achieves its minimum value on X. Moreover, assume that either (a) Ker Φ ∞ is not a subspace; or (b) Φ is non-semicoercive and Ker Φ ∞ is a linear space.

Then, for every ε > 0 and R > 0, there exists Φ ε,R ∈ Γ 0 (X) such that

• argmin Φ ε,R = ∅; • for each x ∈ X, Φ(x) -ε ≤ Φ ε,R (x) ≤ Φ(x); • if u ∈ argmin Φ ε,R , then u ≥ R.
Proof of Theorem 4.11. Case (a): If Ker Φ ∞ is not a linear subspace of X, then there is v in Ker Φ ∞ such that

-v / ∈ Ker Φ ∞ . Let δ : = dist(-v, Ker Φ ∞ ) and set y : = x 0 + R + x 0 δ v and define Φ ε,R (x) : = Φ y,M -ε (x); by virtue of Lemma 2.1, Φ ε,R lies in Γ 0 (X) and Φ(x) -ε ≤ Φ ε,R (x) ≤ Φ(x), ∀ x ∈ X. Moreover, if z ∈ argmin Φ ε,R , then z ∈ (y + Ker Φ ∞ ). Thus there is w ∈ Ker Φ ∞ such that z = x 0 + R + x 0 δ v + w Since δ = dist(-v, Ker Φ ∞ ), we have R + x 0 δ v + w ≥ R + x 0 δ -v - δ R + x 0 w ≥ R + x 0 ; accordingly, z ≥ R + x 0 δ v + w -x 0 ≥ R.
Hence Φ ε,R fulfills the conditions of Theorem 4.11.

Case (b): If Ker Φ ∞ is a linear subspace of X, consider Φ ε as constructed in the proof of Theorem 4.1, and let (x n ) n∈N * be a minimizing sequence for Φ ε . Since the functional Φ ε does not attain its infimum value and the space X is reflexive, the sequence (x n ) n∈N * is unbounded.

According to relation (47), it follows that

M -ε ≤ inf x∈X Φ ε ≤ M - 3ε 4 .
Thus take n 0 such that x n 0 ≥ R and Φ ε (x n 0 ) < M .

Consider now Φ xn 0 ,Φ ε (xn 0 ) . Lemma 2.1 implies that Φ xn 0 ,Φ ε (xn 0 ) is a Γ 0 (X/ Ker Φ ∞ )functional which reaches its minimum value only on x n 0 and satisfies

Φ xn 0 ,Φ ε (xn 0 ) (x) ≤ Φ(x). (49) 
Since (x n 0 , Φ ε (x n 0 )) ∈ epi Φ ε , and Φ ε ≤ Φ, we obtain epi Φ xn 0 ,Φ ε (xn 0 ) = co{(x n 0 , Φ ε (x n 0 )), epi Φ} ⊂ epi Φ ε .

Therefore Φ -ε ≤ Φ ε ≤ Φ xn 0 ,Φ ε (xn 0 ) . (50) 
The desired functional is now defined by setting Φ ε,R (x) = Φ xn 0 ,Φ ε (xn 0 ) (x), ∀ x ∈ x, ∀ x ∈ X/ Ker Φ ∞ .

By (49) and (50), it follows that Φ ε,R ∈ Γ 0 (X) and satisfies:

Φ(x) -ε ≤ Φ ε,R (x) ≤ Φ(x), ∀ x ∈ X.
The functional Φ ε,R reaches its minimum value only on the set x n 0 . Since x n 0 ≥ R, we have x ≥ R for every x in x n 0 , which means that Φ ε,R fulfills all the conditions of Theorem 4.11.

Concluding remarks

In this paper we have studied the stability under uniform perturbations of the existence of a solution for the simplest variational problem, namely the minimization of a proper, convex and lower semicontinuous functional. In summary, we established that the problem of finding a minimum point of a convex functional is stable under uniform perturbations only within the class of semicoercive Γ 0 (X)-functionals.

The same question may be raised in some other variational contexts, such as the theory of variational inequalities.

This case has already been considered and several results establishing sufficient existence conditions for noncoercive problems have been obtained recently, using the so-called recession analysis (see for instance the work by Adly et al [START_REF] Adly | Recession mappings and noncoercive variational inequality[END_REF] and Attouch et al [START_REF] Attouch | Recession operators and solvability of variational problems[END_REF]). However, even in the case of a positive operator, the question of the existence of solutions of the perturbed initial variational inequality remains partially open.

Another interesting direction of research is the nonconvex case. We remark that this case does not subsume the convex one, since, even if the class of functionals is broader, so is the uniform neighborhood composed of functionals which must attain their minima. Accordingly, no simple relation can be established between the two problems.

Sufficient stability conditions have been obtained in the non-convex setting (see [START_REF] Auslender | Noncoercive optimization problems in reflexive Banach spaces[END_REF] and [START_REF] Baiocchi | General existence results for unilateral problems in continuum mechanics[END_REF]), implying, inter alia, that semicoercive functionals are no longer the only functionals with a stable minimum. The problem of characterizing all lower semicontinuous functionals having a stable minimum is thus still open.

  and εt n ≤ ε, the previous relation implies that

	lim n→∞	t n = 1, and lim n→∞

by the Région Limousin under a PDZR European Grant.

Therefore, Φ 1 (λ 0 x + (1λ 0 )x 0 ) > M.

Since Φ 2 (x 0 ) = M -(3/4)ε < M (see (40)), we obtain 0 < λ 0 ≤ 1. As Φ 1 is convex, we have

Substracting (41) from (42) yields

and establishes Lemma 4.7.

By Lemma 4.7, Φ 2 (x) ≤ Φ(x) whenever Φ 2 (x) > M ; in other words,

This allows us to conclude that Φ ε (x) ≤ Φ(x).

We conclude the proof of the particular case Ker Φ ∞ = {0} by proving the following statement.

Lemma 4.8. The functional Φ ε does not attain its infimum value.

Proof of Lemma 4.8. Define B := {x ∈ X : Φ 2 (x) ≥ Φ 1 (x)} and let us show that, if Φ ε attains its minimum value over X, then Φ 2 also reaches its minimum value over B.

Lemma 4.9. For every x in X, there is b(x) in B such that Φ ε (x) ≥ Φ 2 (b(x)).

Proof of Lemma 4.9. If x is such that Φ ε (x) ≥ M , then b(x) := x 0 satisfies Lemma 4.9; and if x belongs to B, we set b(x) := x. It remains to define b(x) when M > Φ ε (x) and Φ 1 (x) > Φ 2 (x). In this case, set

and the conclusion of Lemma 4.9 follows by taking b(x) = λ 0 x 0 + (1λ 0 )x.