N

N

Efficient SIMD technique with parallel Max-Log-MAP

Algorithm for Turbo Decoders
David Gnaedig, Mathias Lapeyre, Florent Mouchou, Emmanuel Boutillon

» To cite this version:

David Gnaedig, Mathias Lapeyre, Florent Mouchou, Emmanuel Boutillon. Efficient SIMD technique
with parallel Max-Log-MAP Algorithm for Turbo Decoders. GSPx Embedded Applications Software
& Hardware, 2004, Santa Clara, United States. pp.27-30. hal-00068925

HAL Id: hal-00068925
https://hal.science/hal-00068925v1
Submitted on 15 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00068925v1
https://hal.archives-ouvertes.fr

Efficient SIMD technique with parallel Max-Log-MAP
Algorithm for Turbo Decoders

David Gnaedig Mathias Lapeyre
TurboConcept / ENST Bretagne / Université de Bretagne Sud
LESTER - UBS Centre de recherche

Technopole Brest-Iroise BP 92116
115, rue Claude Chappe

29280 Plouzané, France

david.gnaedig@turboconcept.com mathias.lapeyrel@etud.univ-ubs.fr

Emmanuel Boutillon

56321 Lorient Cedex, France

Florent Mouchoux

Université de Bretagne Sud
Centre de recherche

BP 92116

56321 Lorient Cedex, France

florent.mouchoux1@etud.univ-ubs.fr

Université de Bretagne Sud - Centre de recherche
BP 92116 - 56321 Lorient Cedex, France
emmanuel.boutillon@univ-ubs.fr

Abstract : This paper presents a new SIMD
technique to implement efficiently on a DSP a parallel
Max-Log-MAP algorithm for turbo decoders. It consists
in using SIMD instructions to perform several
independent  trellises in parallel. This trellis
parallelization is made possible by the use of an adapted
two-dimensional turbo code and its parallel interleaver
structure. After a brief description of the Max-Log-
MAP algorithm, the implementation of a fixed point
algorithm for 8-bit SIMD operations is discussed. The
parallel Max-Log-MAP algorithm and the associated
memory organization are described. Performance results
show the effectiveness of this technique that achieves 4
times the throughput of a classical sequential
implementation.

Keywords: turbo codes, slice turbo code, SIMD,
parallelization, Max-Log-MAP algorithm

1. INTRODUCTION

Since the introduction of turbo codes [1], there has
been considerable interest in those error correcting
codes. A turbo decoder consists of several concatenated
soft-output decoders, each of which decodes part of the
overall code and then passes “soft” reliability
information in an iterative scheme. The component soft-
output algorithm described in the original turbo code
paper [1] is usually known as the maximum a posteriori
(MAP), forward-backward (FB), or Bahl-Cocke-
Jelinek—Raviv (BCJR) algorithm [2]. Usually, for
implementation of a fast turbo-decoder on a Digital
Signal Processor (DSP), its simplified version called
the Max-Log-MAP algorithm working in the
logarithmic domain is implemented [3].

The Max-Log-MAP algorithm is the key component
of a turbo-decoder. It performs the soft decoding of a
convolutional code using two finite Viterbi recursions
on a trellis: the forward and the backward recursions.

The basic computations involved in a trellis stage
computation are Addition-Comparison-Selection (ACS)
operations. The throughput of a turbo-decoder is limited
by the recursions involved in the Max-Log-MAP
processing of each dimension, which cannot be
parallelized easily.

Loo et al. proposed to speed up the decoding
throughput of the Max-Log-MAP algorithm on a DSP
by using its Single Instruction Multiple Data (SIMD)
functionality [4]. For DSP offering SIMD operations,
parallel (vectorized) computations can be achieved
simultaneously, on a set of data called a vector. Their
SIMD technique performs, for a given trellis stage,
several ACS operations. This method improves the
decoding throughput but is not optimal. In fact, because
of the structure of the trellis, the data need to be
reordered into a single vector at the end of each trellis
stage. This operation requires 2 instructions and reduces
the efficiency of the SIMD technique. The use of this
technique is optimal when all operations can be
vectorized, i.e. when there is no need to pack/unpack
data into a single vector to execute a SIMD operation.

To overcome this problem, this paper proposes a new
technique to implement efficiently the Max-Log-MAP
algorithm on a DSP. The proposed method exploits the
SIMD architecture of a processor to achieve parallel
processing of several Max-Log-MAP algorithms by
vectorizing all operations involved in the Max-Log-
MAP decoding for turbo decoders. Hence, each variable
in the Max-Log-MAP algorithm is vectorized as a
vector of P components: each component of the vector
is associated to one of the P trellises decoded. This
trellis parallelization is made possible by the use of an
adapted two-dimensional turbo code proposed in [5] and
called Multiple Slice Turbo Codes.

In the present paper, the adapted turbo-code is
described with its interleaver properties. After a brief



description of the Max-Log-MAP algorithm, the key
architectural features for implementing the algorithm
with SIMD functionality are given (memory
organization and SIMD operations).

1. MULTIPLE SLICE TURBO CODES

The idea of Multiple Slice Turbo Codes (MSTC) was
proposed by Gnaedig et al. [5]. The motivation of
MSTCs construction was to design an adapted turbo
code suitable for an efficient parallel implementation. It
is made possible by an increase by a factor P (the
number of slices) of the decoding parallelism of the
turbo-decoder without memory duplication. This
technique leads to efficient parallel turbo decoder FPGA
or ASIC implementations.

An adapted turbo code can also be designed to
decode efficiently a turbo decoder on a DSP by using
SIMD techniques. It has been noticed that the properties
of Multiple Slice Turbo Codes are suitable for efficient
vector operations on a DSP. Indeed, this adapted turbo-
code is constructed, in each dimension, as the parallel
concatenation of P independent Circular Recursive
Systematic Convolutional (CRSC) codes, called slices.
These P slices can be decoded in parallel with a Max-
Log-MAP using vectorized operations.

Moreover, an appropriate parallel interleaver is also
proposed in [5]. This parallel property avoids conflicts
in parallel memory accesses. Therefore, no memory
duplication is required and a single memory can be
used. In addition, thanks to its structure, the interleaver
maintains the vector organization between the natural
and the interleaved order. This vectorization property
leads in an efficient implementation, because there is no
need to shuffle data by unpacking / repacking into
vectors between half-iterations.

In this section, the construction of Multiple Slice
Turbo Codes is described. Then, it will be shown how
the structure and the design of the parallel interleaver
enables a vectorization and a parallellization of the
decoding.

1.1. Code construction

Multiple Slice Turbo Codes are constructed as
follows. An information frame of N m-binary symbols
is divided into P blocks (called "slices") of M symbols,
where N =M - P. The resulting turbo code is denoted
(N,M,P). As with a classical convolutional turbo code,
the coding process is first performed in the natural order
to produce the coded symbols of the first dimension.
Each slice is encoded independently with a Circular
Recursive Systematic Convolutional (CRSC) code. The
information frame is then permuted by an N symbol
interleaver. The permuted frame is again divided into P
slices of size M and each of them is encoded
independently with a CRSC code to produce the coded
symbols of the second dimension. Puncturing is applied
to generate the desired code rate.

The interleaver is constructed jointly with the
memory organization to allow parallel decoding of the P

slices. In other words, at each symbol cycle k, the
interleaver structure allows the P decoders to read and
write the P necessary data symbols from the P Memory
Banks MB,, MB,,..., MBp.; without conflict. Indeed,
only one read can be made at any given time from a
single port memory: in order to access P data symbols
in parallel, P memory banks are necessary. With the
solution described in the present paper, the degree of
parallelism can be chosen according to the requirements
of the application.

The next section presents the parallel interleaver
construction, ensuring the parallelism constraint while
maintaining good performance.

1.2. Parallel interleaver design

The interleaver structure is mapped onto a hard-ware
architecture allowing a parallel decoding process.
Figure 1 presents the interleaver structure used to
construct a multiple slice turbo code constrained by
decoding parallelism.

~4—F memories (M=M'P symbols)—

Mi/lmiﬂﬂ | |MIE'1 | \ﬂ%ﬂ M?&LI

Lo | [0 | [0 | [0 |

$ $

Figure 1: Interleaver structure for the (N,M,P) code

Let / and k denote the indices of the symbols in the
natural and interleaved order, respectively. The coding
process is performed in the natural order on independent
consecutive blocks of M symbols. The symbol with
index / is used in slice [//M | at temporal index time /

mod M, where |.| denotes the integral part function.

Likewise, in the interleaved order, the symbol with
index k is used in slice r=|k/M | at temporal index

t =kmodM . Note that k=M -r+t, where < {0.p-1} and
te{o.m -1}. For each symbol with index & in the

interleaved order, the permutation II associates a
corresponding symbol in the natural order with index
1 =TI(k) =TI(¢,7) . The interleaver function can be split

into two levels: a spatial permutation [1 S(t’ r) (ranging
from 0 to P-1) and a temporal permutation 1, (z,r)

(ranging from 0 to M-1), as defined in (1) and described
in Figure 1.

I1(k) = [I(t,r) =T (t,7)- M +T1,(t,7) (1)

The symbol at index £ in the interleaved order is read
from the memory bank TI1g(s,r) at address 1 (t,r)-

While decoding the first dimension of the code, the
frame is processed in the natural order . The spatial and
temporal permutations are then simply replaced by
Identity functions. The spatial permutation allows the P
data read out to be transferred to the P SISO units



(denoted SISO in Figure 1). Decoder r receives the data
from memory bank T[] s(t,r) at instant z. This spatial

permutation guarantees the parallel property of the
interleaver.

1.3. Design of the permutations

The temporal HT(t, r) and II S(t,r) spatial
permutations are chosen to simplify the implementation
on a DSP (address computation, memory organization,
simple DSP operations, ...), while maintaining good
performance. To guarantee the vectorization property of
the interleaver, the same temporal permutation is chosen
for all memory banks. Hence, T1(z,7) =14 (¢) depends
only on the temporal index ¢. The temporal permutation
is then given by:

My()=a-t+ B(tmod4)mod M , 2)
where « is relatively prime with M, and (p(;)),.,., are

four coefficients inferior or equal to M, which verify
that their values modulo 4 are all different.

The spatial permutation is defined as a circular
rotation:

g (z,7)=(A(zmod P) +r)mod P, 3)

where 4 is a bijection of variable ¢ € {0,..., P—1} to
{0,...,P—1}. The choice of the temporal and spatial
permutation (2) and (3) can be easily implemented by
additions and circular shift operations, respectively.
Their optimization described in [6] in more details leads
to very good performance, where it has also been shown
that this adapted turbo code introduces no performance
degradation compared to a conventional turbo code.

1.4. A simple example of an interleaver

Let us construct a simple (18,6,3) code to clarify the
interleaver construction. Let the temporal permutation
be HT(t)z {1,4,3,2,5,0} and the spatial permutation a
circular shift of amplitude A(t mod3), i.e. the slice of
index r is associated to the memory bank of index
M (z,7)=(A4(t mod3)+r)mod3, with A(rmod3)=
{2,0,1}. The spatial permutation is then bijective and 3-
periodic.

The interleaver is illustrated on Figure 2, which
shows the permutations for the 3 temporal indexes =0
(2.a), =1 (2.b) and =5 (2.c). The 18 symbols in the
natural order are separated into 3 slices of 6 symbols
corresponding to the first dimension. In the second
dimension, at temporal index f, symbols IT,(s) are
selected from the 3 slices of the first dimension, and
then permuted by the spatial permutation ITg (t, r). For
example, at temporal index =0 (a), symbols at index
HT(0)=1 are selected. Then, they are shifted with an

amplitude A(0mod3)=2. Thus, symbols 1 from slices

0,1 and 2 of the first dimension go to slices 2, 0 and 1 of
the second dimension respectively.

Slice 0 Slice 1 Slice 2

I17(0) =1 ORI 090000
a) TI4(0,0)=2 s <

t=00 l\A
I, (1) = 4 B0 3G0080 000080
b)  m1,0)=0 ' ;
=1 e oY vt
II,(5)=0 I:EI;E\EI\ ogoooo
9 M,(50)=1

1 =5 it ae Jdtvom

Figure 2 : A basic example of a (18,6,3) code.

2. THE MAX-LOG-MAP ALGORITHM

In this section the Max-Log-MAP algorithm for a
binary MSTC used for decoding each slice of M bits is
described by using the same notations than in [11].

The CRSC code is represented by a circular trellis of
M stages. For each information bit u,, the

convolutional encoder produces the coded bits
X, =(x})o<icr » Where 7 is the number of bits produced

by the convolutional code. These coded bits are
transmitted over an additive white gaussian noise
channel (AWGN). The decoder receives the noisy bits

Y, = (¥} )o<i<, corresponding to the transmitted bits.

The Max-Log-MAP algorithm [3] provides for each
information bit u;, k=0,..., M — 1 a soft output L(u;),
which represents the a posteriori probability for the bit
uy . For iterative decoding, another soft output L, (uy )
called the extrinsic information is computed from
L(u, ) . This latter is computed by using the all received
values of the channel ¥, = (y)o<;.,» k=0,..., M-1 and
the a priori information L, (u,) provided by the other
decoder, which is its extrinsic soft output.

The output of the channel and the a priori decoder
inputs are used to compute the branch metrics (are used
to process the forward and backward recursions.)
between state s' at stage k and s at stage k+1 of the trellis

by a scalar product between the received vector ¥ at

time k:

cr(s',8) = DX (5',8) wic + Ly (1) 4
i=1
The soft estimate L(u,) is computed by
exhaustively exploring all possible paths in the trellis
using a forward recursion and a backward recursion.
This algorithm consists of three steps (Figure 3):

e Forward recursion: The forward state metrics
ay, are recursively calculated using the bits in

an increasing order from 0 to M-1:
ay (s) = max(ay_; (s) + ¢ (s',9)) 5 (5)
(s,5")



where s’ and s are the generic states at the (k-1)th and
kth nodes respectively.
The forward state metrics are stored in an internal
memory in order to be used to compute the soft output.
e Backward recursion: The backward state
metrics b; are recursively computed using the

bits in a decreasing order from M- to 0.
by (s) = max(b; 1 (s")+cpaq(s,s
k) = max(b () + € s.57) ©)

e  Soft-Output Computation. The soft output for
each bit at time k is computed by using the
backward state metric b; and the
corresponding forward state metric a;_; read
from the memory.

L(uy) = ga;;(ak—l (s")+cg (s',5) + by ()

uj =1 7

—max(ak_l(s')+ck (s',8)+by (s)) @
(s',s)
uj =0

The extrinsic soft output is computed from the soft
ouput L(u;) by subtracting the input of the decoder:

Lo(ui)=L(ug)—L,(ug) =2y, (8)

where y}c is the received bit corresponding to the

transmitted bit x}{ =uy.

Since the trellis of the code is circular, the initial
state metrics of the forward and backward recursions
agand b;,_; are provided by the final state metrics of
the previous iterations (see Figure 3). At the first
iteration, these initial state metrics are set to the all zero
vector.

symbols

Figure 3: Graphical representation of the Forward-
Backward Max-Log-MAP algorithm

3. TURBO DECODER
IMPLEMENTATION

In this section, the algorithm described in the
previous section is processed in parallel on several
trellises by using the SIMD technique of the DSP. After
a brief description of DSP architectures and SIMD
techniques, the implementation of the turbo decoder is
described.

3.1. VLIW and SIMD techniques for DSP

Current DSPs can achieve several thousands of
million of operations per seconds. This high number of
operations is achieved thanks to two architectural
concepts. The first concept consists in Very Long
Instruction Word (VLIW). It consists in processing
several operations simultaneously by several processing
units. Usually, high performance fixed point DSPs are
processing operations on 32 bits. The second
architectural concept to increase the parallelism in the
DSP is to use an Single Instruction Multiple Data
(SIMD) technique. This technique enables to process
two 16-bit or four 8-bit identical operations with a
single instruction on a single 32-bit processing unit. The
set of two or four data that are processed simultaneously
is called a vector. The operations processing a vector of
data is said to be "vectorized".

It is not an easy task to achieve an efficient
utilization of the VLIW technique, i.e. to write a code
that uses all processing units continuously. Hence, this
task is left to the compiler. The turbo decoder is thus
described with a fixed point C code. This C code uses
explicitly vector operations and has an adapted memory
organization suitable for efficient use of the SIMD
capability.

3.2. Fixed point Max-Log-MAP algorithm

When using vectorized operations, the number of bits
used to code internal variable has to be lower or equal to
the number of bit of a SIMD operation. For example, for
a 32-bit processor processing 4 operations of 8-bit on
one SIMD processing unit, the maximum number of bits
for the internal variables is 8. If one internal variable is
higher than 8, the corresponding operations can be done
in parallel only by two 16-bit operations and additional
cycles are needed to unpack and repack the data after
and before this operation. This solution decreases the
efficiency of the parallel implementation. The other
solution consists in using 16-bits operations for the
whole algorithm, but the parellelism and hence the
throughput are divided by two. This motivates the need
for techniques that reduce to 8 bits the internal precision
of the Max-Log-MAP algorithm.

The conversion of a floating point Max-Log-MAP
algorithm to a fixed point algorithm has been widely
described in the literature [8]. The key parameter is the
precision of the inputs of the decoder, i.e.. the number
of bit wd used to code the decoder inputs. This
parameter incluences the performances and also
determines the internal size w, of the state metrics.

The problem that arises when implementing a Viterbi
recursion, is the increase of the state metrics. This
problem has been intensively studied for the Viterbi
algorithm [9] and solutions using rescaling or modulo
2™ arithmetic are widely used [10]. These techniques
are based on the fact that, at every instant, the dynamic
range of a state metric (i.e., the difference between the
state metrics with the highest and lowest values), is
bounded. This upper bound is derived from the
constraint length of the code and the maximum value of



the branch metrics. It enables us to use a simple
rescaling technique. For our fixed point implementation,
the max operations in equations (5-7) are replaced by
min operations, by changing the sign of the branch
metrics (4). Thus, at each trellis state, the state metrics
are normalized by subtracting the minimal state metric.
This solution leads to the least number of bits wn to
store the state metrics.

For our application, the constituent code used is a
duo-binary code of rate 2/3 [7]. The equations of the
Max-Log-MAP algorithm for a duo-binary turbo code
are similar to (4)-(7). It produces 4 reliabilities for the 4
possible transmitted symbols and the number of
branches leaving each trellis state is equal to 4.

After demodulation, the ouput of the channel are
provided to the decoder as quantized unsigned values of
wd bits. The extrinsic information are also coded on
we=wd bits. Hence, from (4), the branch metric can be
coded on wd+2 bits. In addition, the dynamic range of
a state metrics is bounded by twice the maximum value
of the branch metrics. Thus, the state metrics are coded
on wd+3 bits for equations for (5) and (6). In equation
(7), the addition of the forward state metric and the
backward state metrics requires wd+4 bits to code the
soft output. After computation of the extrinsic
information using (8), the 4 values of extrinsic
information for each symbol are normalized by
subtracting the minimum value. Then these unsigned
values are thresholded to be stored on we=wd bits.
From this study, the maximum number of bits for an
internal value of the decoder is wd+4. This number
must be inferior or equal to the maximum number of
bits for a single SIMD operation, i.e. 8. This leads to
wd = 4 bits to code the inputs of the decoder. In section
4, the performance of the decoder with wd = 4 bits is
compared to those of an infinite precision decoder.

3.3. Parallel Max-Log-MAP algorithm and
memory organization

The fixed point Max-Log-MAP algorithm described
in the previous section is implemented with the SIMD
technique. For a DSP with a SIMD parallelism enabling
P-component vector operations, the adapted turbo code
is designed with a parallelism of P. Hence, P different
trellises corresponding to P slices can be decoded in
parallel. Each component of an internal vector
corresponds to an internal variable of the Max-Log-
MAP algorithm for one trellis. Hence, all operations of
the Max-Log-MAP algorithm are vectorized. Therefore,
a memory organization is needed for the input and
outputs of the Max-Log-MAP algorithm. This memory
organization allows us to simply use vectorized
operations for the parallel Max-Log-MAP algorithms,
without extra cycles for packing / unpacking of data. In
addition, this memory organization verifies the
vectorization property of the interleaver. The P inputs of
the Max-Log-MAP algorithm are regrouped in vectors
of P component, with one vector for P data that are used
at the same time, in the same vector operation.

Because of the vectorization property of the
interleaver, only one address computation and one
memory access in needed to read one vector from the
memory. Only a circular shift is needed in the
interleaved order to implement the spatial rotation of the
interleaver. This operation can be done in a single cycle.

4. RESULTS

The trellis parallelization technique has been
implemented on a DSP TMS320C6416: four parallel
Max-Log-MAP algorithms are performed on P = 4
independent trellises by using 8-bit SIMD operations.

4.1. Implementation

The fixed point Max-Log-MAP algorithm with wd =
4 bits is implemented in C language. The SIMD
instructions are specified by using intrinsic functions.
Program 1 gives the corresponding C code
implementing the forward recursion. To reduce the
complexity, the rescaling of the state metrics is not
performed at each trellis stage. They are only rescaled
when at least one of the state metrics exceed 2™/ .

The SIMD implementation of the backward recursion
and the extrinsic information computation are similar to
the one of the forward recursion. They are therefore not
described here.

test = 0x00000000;
/* ACS */
for(s = 0; s < number_state; s++) {
/* Addition */
for (b =0; b <4; b++){
met_br =_add4(br_met[s][b],ap_in[b]);
fwd_br[s][i] =_add4(fwd_in[s],met_br);

/* Comparison and Selection */
tmp0 = _minu4(
fwd_br{previous_state[s][0]][0],
fwd_br[previous_state[s][1]1[1]);
tmp1 = _minu4(
fwd_br{previous_state[s][2]][2],
fwd_br[previous_state[s][3]][3]);
fwd_out[s] = _minu4(tmp0,tmp1);
/* Test*/
if (Itest)
test |= fwd_out[s] & 0x80808080;
}

/* Rescaling */
if (test) {
fwd_min = fwd_out[0];
for(s = 1; s < number_state; s++) {
fwd_min = _min4(fwd_min, fwd_out[s]);
}
for(s = 0; s < number_state; s++) {
fwd_out[s] = _sub4(fwd_out[s], fwd_min);

}

Program 1: SIMD description of the forward algorithm.




4.2. Performance

The performance of the fixed point algorithm with
wd = 4 is compared to the performance of an infinite
precision floating point algorithm. The simulated
performance of turbo decoders using these algorithms
are shown in Figure 4 for the same duo-binary turbo
code of 512 bits constructed with P = 4 slices of 64
symbols. Eight iterations have been performed for the
two algorithms.

The performance degradation of the algorithm with
wd = 4 bits is only 0.1 dB compared to the infinite
precision algorithm, which is the same than for a fixed
point algorithm with wd = 8. This result shows that
increasing the number of input bits of the algorithm
does not provide a huge improvement. It has been
shown in section O that with wad > 4 bits, only 16-bit
SIMD operations can be used. This reduces the
thoughput of the Max-Log-MAP algorithm by a factor
of two.

wi=4 bits —=—
e %EEEMEE
0m
0.001
0.0001
1e-05
e ' Eb/ND

Figure 4: Performance comparison of the Max-Log-
MAP algorithm for a (256,64,4) duo-binary turbo-code:
the algorithm with wd = 4 inputs bits is compared to the

infinite precision algorithm.

4.3. Throughput

The Max-Log-MAP algorithm has been simulated on
the DSP for the duo-binary turbo code (256,64,4). The
number of cycles for performing the Max-Log-MAP
algorithm for one dimension and § iterations
respectively are given in Table 1. The number of cycles
does not increase linearly with the number of iterations,
because the branch metrics are computed only once at
the first iteration and stored into the memory.

Number of | Throughput
cycles @ 600 MHz

One dimension 292 554 1050 kbits/s

1927344 | 160 kbits/s

Turbo decoder @ 8 it.

Table 1: Number of cycles and throughput for the
Parallel Max-Log-MAP algorithm and the turbo-
decoder with 8 decoding iterations.

The implementation results shows that for a 600
MHz clock frequency, the parallel Max-Log-MAP
algorithm used in a turbo decoder with 8 decoding
iterations achieves a throughput of 160 kbits/s. It is

exactly 4 times the throughput of a sequential
implementation without using the SIMD technique.

5. CONCLUSION

A new SIMD technique for the Max-Log-MAP
algorithm has been presented in this paper. This
technique uses an adapted turbo, whose interleaver
structure enables us to use SIMD operations for all
computations and memory accesses. The degradation in
performance with 8-bit SIMD operations is only 0.1 dB
from an infinite precision algorithm with a throughput
of 160 kbits/s, 4 times that of a sequential
implementation. With 16-bit SIMD operations there is
no performance degradation, but the throughput is only
doubled. Futher work includes designing a complete
turbo decoder and optimizing its implementation to
further increase the thoughput.

6. REFERENCES

[1] C. Berrou, A. Glavieux and P. Thitimajshima,
"Near Shannon Limit Error-Correcting Coding and
Decoding: Turbo Codes", Proc. ICC’93, Geneva,
Switzerland, pp. 1064-1070, May 1993.

[2] L.R Bahl, J. Cocke, F. Jelinek, J. Raviv, " Optimal
decoding of linear codes for minimizing symbol
error rate", IEEE Transactions on Information
Theory, pp. 284-287, mars 1974.

[3] L. Papke and P. Robertson, "A Viterbi algorithm
with soft-decision outputs and its applications",
Proc. IEEE Int. Conf. Commun., Dallas, pp. 102-
106, June 1996.

[4] KXK. Loo, T. Alukaidey, S.A. Jimaa, K. Salman,
"SIMD Technique for Implementing the Max-Log-
MAP Algorithm", GSPx 2003.

[5] D. Gnaedig, E. Boutillon, V. C. Gaudet, M.
Jézéquel, P. G. Gulak, "On Multiple Slice Turbo
Codes", in Proc. International Symposium on
Turbo Codes and Related Topics, Brest, pp. 343-
346, Sept. 2003.

[6] _, "On Multiple Slice Turbo Codes",
submitted to Annales des Télécommunications

[7] DVB-RCS Standard, "Interaction channel for
satellite distribution systems", ETSI EN 301 790,
V1.2.2, pp. 21-24, Dec 2000.

[8] G. Montorsi and S. Benedetto, “Design of fixed-
point iterative decoders for concatenated codes
with interleavers,” I[EEE J. Select. Areas
Commun., vol. 19, pp. 871-882, May 2001.

[9] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H.
K. Thapar, “VLSI architectures for metric
normalization in the Viterbi algorithm,” in Proc.
IEEE Int. Conf. Communications (ICC *90), vol. 4,
Atlanta, GA, Apr. 16-19, 1990, pp. 1723—-1728.

[10] G. Masera, G. Piccinini, M. R. Roch, and M.
Zamboni, “VLSI architectures for turbo codes,”
IEEE Trans. VLSI Syst., vol. 7, pp. 369-379, Sept.
1999.

[11] A. J. Viterbi, “An intuitive justification and a
simplified implementation of the MAP decoder for
convolutional codes,” IEEE J. Select. Areas
Commun., vol. 16, pp. 260-264, Feb. 1998.



