Amor Nafkha, Christian Roland, Emmanuel Boutillon<br>Firstname.name@univ-ubs.fr

FRE 2734

## How to decode the NP-complex problem $\mathbf{Y}=\mathbf{H X}+\mathbf{B}$ ?

$>$ State of the art: Zero forcing, MMSE (simple but low performances), PIC, SDP, Sphere Decoding (good performance but iterative and complex $=>$ not well suited for a VLSI implementation).

## New proposition HIS Decoder:

Geometrical approach to resolve problem (1).
Nearly optimum performance.
Low computational complexity.
An inherent parallelism structure.
Application case: Multi-user detection for MC-CDMA system.

## Problem formulation:

- Let's find:

$$
\begin{equation*}
\hat{x}=\min _{x \in \xi \in Z^{\prime \prime}}\|y-H x\|_{2} \tag{1}
\end{equation*}
$$

Where : $\quad y \in \mathfrak{R}^{m}, \quad H \in \mathfrak{R}^{m \times n}, \quad x \in\{-1,1\}^{n}$

- Search space is discrete $\{-1,1\}^{n}$
- Given a channel real matrix $H$
- Given a received vector defined as (2) where $v$ is an $M$-dimensional Additive Gaussian Noise vector with variance $\sigma^{2}$ :

$$
\begin{equation*}
y=H x+v \tag{2}
\end{equation*}
$$

- Find a vector $\hat{x}$ which minimize the following cost function over the discrete space.

$$
\begin{equation*}
f(x)=\|y-H x\|_{2}^{2} \tag{3}
\end{equation*}
$$

## Known to be a NP-hard problem

## Hyperplane Intersection Selection Algorithm

$\checkmark$ Input : The real channel matrix $\boldsymbol{H}$, the real received vector $\boldsymbol{Y}$ and $\sigma^{2}$.
$\checkmark$ Output : Quasi-optimal solution $\boldsymbol{x}$ _hisd for problem (1).
$\checkmark$ Pre-processing : Extract the $\boldsymbol{D}$ right singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{D}}$ associated to the
$\boldsymbol{D}$ smallest singular values of the channel matrix $\boldsymbol{H}$.
$\checkmark$ Step 1: Calculate an initial sub-optimal solution $\rho . \rho=\rho_{z f}$ or $\rho=\rho_{\text {mmse }}$
$\checkmark$ Step 2 : Generate the $\boldsymbol{D}$ references lines $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{\mathrm{D}}$ defined by the offset $\rho$ and the $\boldsymbol{D}$ right singular vectors $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{D}}$.

$$
\begin{equation*}
\Delta_{k}=\left\{z \in \mathfrak{R}^{n} / z=\rho+\alpha \cdot \mathbf{v}_{k}, \quad \alpha \in \mathfrak{R}\right\} \tag{4}
\end{equation*}
$$

$\checkmark$ Step 3: for each lines $\Delta_{k}$, find all intersection points between this line and all hyper-plane $P$ defined as (5). There are 2 n points to be calculated. Finally project all intersection point on $\{-1,1\}^{\mathrm{n}}$, suppress redundant points and generate candidates points $\mathbf{I} \mathbf{p}_{\mathbf{k}}$.
$P=\bigcup_{i=1}^{n}\left[\left\{z \in \mathfrak{R}^{n} / z(i)=1\right\} \cup\left\{z \in \mathfrak{R}^{n} / z(i)=-1\right\}\right]$
Example: : for $n=2, D=1$

$\checkmark$ Step 4 : For each direction $\mathrm{k}(k=1 \ldots . D)$, evaluate the cost function for all $\mathbf{I} \mathbf{p}_{\mathbf{k}}$.
$\checkmark$ Step 5 : For each $\mathbf{I} \mathbf{p}_{\mathbf{k}}$, extract the $M$ candidates points having the lowest cost function.
$\checkmark$ Step 6 : use each candidate point $\mathbf{b}_{\mathbf{k}, \mathrm{t}}(k=1 \ldots . . D$ and $t=1 \ldots . . M)$ as a starting point of a greedy function (local search function)
$\checkmark$ Step 7 : Extract Quasi-optimal solution $\boldsymbol{x}$ _hisd for problem (1).

## Multi-user detection MC-CDMA model


$>$ The received signal can be written as :

$$
y=A C x+v=H x+v
$$

Where :

- $A:$ is a $N p \times N p$ diagonal matrix. The channel effect on $\mathrm{i}^{\text {th }}$ is given by $a_{i i}$ and $a i j=0$ if $i \neq$.
- $\boldsymbol{C}$ : is a $L c \times N u$ spreading matrix. We suppose that $N u=N p=L c$
- $\boldsymbol{X}:$ is the transmitted vector. The $\mathrm{i}^{\text {th }}$ coordinates correspond to the $\mathrm{i}^{\text {th }}$ user.
- $\boldsymbol{V}:$ is an AWGN vector.

Note : $N u$ : number of users, $N p$ number of sub-carriers and $L c$ is the length of spreading code.
Simulation result: Fully loaded MC-CDMA system , 4-QAM and 16 users


## Conclusion and futur work:

$>$ Low computational complexity :

- Mult : $\left(\frac{3}{2}+l+2 M \theta\right) D n^{2}+\left(\frac{1}{2}+l+2 M \theta\right) D n$
- Add/sub:

$$
2 D n^{3}+(4+l+4 M \theta) D n^{2}+(5+2 l+2 M \theta) D n
$$

where $l$ is the number of distinct points (step3) and $\theta=2$ number of iterations in the greedy function (Step6).
$>$ HISD is suitable to an hardware implementation : inherent parallelism structure.
$>$ Can be generalized to different systems : BLAST, CDMA, MIMO and also image treatment.

