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Abstract

We analyze in details the atomistic response of a model amorphous material submitted to plastic

shear in the athermal, quasistatic limit. After a linear stress-strain behavior, the system undergoes

a noisy plastic flow. We show that the plastic flow is spatially heterogeneous. Two kinds of plastic

events occur in the system: quadrupolar localized rearrangements, and shear bands. The analysis

of the individual motion of a particle shows also two regimes: a hyper-diffusive regime followed by

a diffusive regime, even at zero temperature.
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I. INTRODUCTION

During the last two decades, a large number of numerical studies [1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] has been devoted to

the peculiar mechanical response of amorphous (disordered) materials. This keen interest

can be related to the recent synthesis of metallic amorphous glasses [26] whose mechanical

properties compare very favorably to those of crystals with similar compositions [1, 26, 43,

44, 45, 46]. More generally, many “soft” materials (foams [28, 29, 30, 31, 32, 33, 34, 35],

granular packings [39, 40, 41, 42], pastes [36, 37, 38]), are also characterized by a disordered

microscopic structure, and their mechanical and rheological properties are associated with

deformations of this structure. They can be studied either as mesoscopic analogs of “hard”

glasses, or in many cases for the intrinsic interest of their rheological properties.

Both the elastic and plastic response of amorphous materials are currently studied, numer-

ically and experimentally. In the elastic limit, numerical investigations on model materials

(Lennard-Jones glasses) have shown the essential role of a non-affine contribution to the

displacement field. This contribution, which vanishes in a standard, homogeneous elastic

material, is organized in rotational structures on a mesoscopic scale [2, 3, 4, 5, 6, 7, 8].

These rotational structures store a substantial part of the elastic energy, and are responsible

for the low value of the measured shear modulus [3, 6, 8].

On the onset of plastic, irreversible deformation, important changes are observed in the

non-affine displacement field. In contrast to the case of plasticity in crystals, the microscopic

description of plasticity in amorphous materials is still incomplete and controversial [1, 11,

12, 27]. Some points are now well established. When the behavior becomes irreversible, that

is after a “spinodal” (in the mechanical sense) limit has been reached by the system [13], the

deviation from the affine response becomes localized [5, 7, 9]. This deviation was identified

first by Argon [28] and described by Falk et al. [12] in terms of “Shear Transformation

Zones” (STZ). These “STZ” have been considered for a long time as elementary processes

for a mean-field treatment of the visco-plastic behavior of foams and emulsions. In the case

of foams, these local rearrangements are associated with T1 events [28, 29, 30, 31, 32,

33, 34], while a precise identification of these rearrangements in molecular glasses (like the

metallic glasses for example) is still a matter of debate [45]. Experimentally, at a larger

scale, the plastic flow of these disordered dense systems gives rise to a heterogeneous flow
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behavior, where a large shear band coexists often with a frozen region [36, 37, 38, 39, 43, 44].

Theoretically, it has been shown, using mesoscopic numerical models [23, 24, 25] with long

range elasticity, that individual plastic events (like the STZ) can concentrate statistically to

create large scale fragile zones where the deformation of the system takes place. However,

a multiscale description including a realistic description of the local plastic events is still

lacking, and the present mesoscopic models are based on empirical assumptions for the

occurrence and the shape of the local plastic rearrangements.

In this paper, we study in details the local plastic rearrangements occurring in a model

Lennard-Jones glass submitted to a quasi-static shear, at zero-temperature. We first identify

the elementary plastic processes, and there spatio-temporal statistical correlations. This part

of our work is closely related to a recent study by Lemâitre and Maloney [6, 7], and our

results are consistent with their observations, while not described in the same way. We then

study the diffusive behavior of an individual particle immersed in this plastic flow.

II. SAMPLE PREPARATION AND QUASI-STATIC DEFORMATION PROCE-

DURE

The systems we study are slightly polydisperse two-dimensional Lennard-Jones glasses,

described in detail in Ref. [3]. Initial configurations at zero temperature are obtained using

the quenching procedure described in Ref. [3]. A liquid of N = 10000 spherical particles in-

teracting via simple Lennard-Jones pair potentials (characterized by an interaction diameter

σ) is quenched, using a conjugate gradient method, into the nearest energy minimum. The

average density and the starting temperature are, in Lennard-Jones units, ρ = 0.925σ−2 and

T∗ = 2.

After the quench, two layers of particles, with thickness 2σ, are singled out and assumed

to constitute parallel solid “walls” that will impose the deformation to the system. The

resulting “shear cell” has a thickness Ly = 100σ (distance between walls) and a width

Lx = 104σ. Other system sizes (but with the same density ρ) have also been checked when

necessary: namely (Lx, Ly) = (20, 196), (30, 296), (40, 396), (50, 496). The configurations are

then submitted to a quasi-static imposed shear, by applying constant displacement steps δux

to the particles of the upper wall, parallel to this wall, and keeping the lower wall fixed. After

the displacement δux has been imposed to the upper wall, the entire system is relaxed, with
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fixed walls, into its new closest equilibrium position. The equilibrium position is defined here

as a minimum in the total potential energy, hence the evolution of the system is studied at

zero temperature. Strictly speaking, an “athermal, quasi-static” deformation [6] corresponds

to the procedure described above, in the limit δux → 0.

It is important to understand the physical situation associated with such a “quasi-static”

procedure. If we consider a glassy material (soft or hard) at finite temperature, we can define

two different characteristic times. The first one, τdiss, is the time it takes for a localized

energy input to spread over the whole system and be dissipated as heat. The corresponding

mechanisms can be viscous (in a soft material) or associated with phonon propagation in

a metallic glass. The quasi-static procedure corresponds to a shear rate, γ̇, much smaller

than τ−1
diss. A second, much longer time is the structural relaxation time of the system,

τrelax, associated with spontaneous aging processes that take place within the system in the

absence of any external drive. By quenching after every displacement step, we prevent any

such processes from taking place, meaning that the equivalent shear rate is larger than τ−1
relax.

In this simplified picture, the plastic response of a glassy system driven at a shear rate smaller

than the inverse relaxation time, which corresponds to many experimental situations both

for hard and soft systems, should be reasonably well described by the quasi-static approach.

This picture, however, is oversimplified. The relaxation of the system is in general stretched,

meaning that relaxation processes take place over a broad spectrum of times. The quasi-

static approach ignore the “fast” wing of this relaxation spectrum, which would take place

in real experiments at a finite value of γ̇. Nevertheless, all these relaxation times are very

large at small temperature.

In our case, the “quasi-static” procedure depends more significantly on the choice of the

finite elementary displacement step. The next issue is thus to determine the value of the

elementary displacement step, δux, that can be considered to be a reasonable approxima-

tion of the limit δux → 0. ¿From our previous simulations [3, 4, 5], we know that for

systems of size L = 100σ, prepared with the same quench protocol, the elastic character

of the response is preserved in average for shear strains smaller than 10−4. By choosing

an elementary displacement of the wall δux = 10−2σ, we obtain an elementary strain step

δǫxy ≡ δux/(2.Ly) ≈ 5.10−5, clearly below this threshold. In order to allow the system relax

between two successive elementary steps, the time ellapsed must be ∆t ≫ τdiss, and the

corresponding shear rate is thus limited by the additional condition γ̇ ≪ δǫxy/τdiss.
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Finally, we note that the quasi-static procedure ensures that, after a local “bond” breaks,

new bonds can form instantaneously. In a simple van der Waals system such as the one

under study, this makes it very unlikely that the material could fracture, at least under the

type of volume preserving deformation we are studying.

In the following, we will discuss the numerical results obtained for the onset of plastic

deformation by averaging over 20 configurations. Each of these configurations has been

subjected to 5000 elementary deformation steps, corresponding to a total strain of 25%. In

order to study the “stationary” regime obtained for large plastic deformation, we will also

discuss results obtained for a system deformed during 34000 steps, corresponding to a total

shear strain of 170%.

III. STRESS-STRAIN RELATION: ELASTIC THRESHOLDS AND PLASTIC

FLOW.

We start by discussing the “macroscopic” (i.e. computed for the whole sample) stress-

strain relation. We show in Fig.1 the shear stress σxy as a function of the total shear strain ǫxy,

computed from the boundary displacement. The stress is obtained from the usual microscopic

Irving-Kirkwood definition [3, 47], and averaged over the whole system. Results are shown

for a single realization, and for an average over 20 realizations. From this figure, we identify

two different regimes. A linear increase of the stress as a function of strain, followed by a

very noisy plastic flow, with constant average shear stress.

Although it appears to be elastic in the usual, averaged sense, the linear part of the

stress-strain curve is not strictly reversible at the microscopic level. In fact, the elastic

reversible part is restricted for our systems to ǫxy ≤ 10−4, as already shown in a previous

paper [3]. For 10−4 ≤ ǫxy ≤ ǫ
(p)
xy , the shear stress evolves mainly linearly with increasing

strain, but displays small jumps, giving evidence of irreversible energy losses. Then the

stress-strain curve saturates. The upper threshold (ǫ
(p)
xy ≈ 0.015) does not seem to depend

on the system size at least for the configurations we have checked. Its value is not far from

the one deduced from experiments in metallic glasses [44]. It corresponds approximately in

our case to a displacement of one particle diameter σ at the border of a vortex-like structure

of size ξ ≈ 30σ as shown in the elastic inhomogeneous response of these systems [2, 3, 4, 5]

(ǫ
(p)
xy ≈ σ/2.ξ = 0.017). After the linear increase, the stress thus reaches a very noisy plateau,
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characteristic of plastic flow. In this second part of the stress-strain relation, the fluctuations

of the measured shear stress are enhanced (see figure 2).

The distribution of the stress jumps is shown in figure 2. We show in this figure that the

stress jumps in the linear part (straight line in the figure) are much smaller than the stress

jumps in the noisy “plateau” region. The average energy loss (that can be obtained as the

average stress jump times the elementary imposed deformation) is thus by at least one order

of magnitude larger in the plateau than in the previous part. This suggests rather different

types of microscopic response in the two different regions. Note that the distribution of the

stress jumps is not strictly exponential as in Ref. [7], but shows a marked deviation from

the exponential decay that could be due to the difference of boundary conditions. Indeed,

it is known that the presence of walls affects strongly the plastic behavior of glasses (see for

example Ref. [10]). However, the size dependence of the stress jumps (figure 2-b) seems to

be in agreement with the scaling ∆σxy ∝ 1/Ly already proposed in Ref. [7] and related to

the existence of a characteristic displacement ≈ σ resulting from the instability. Note finally

that the situation is quite different from the one observed in crystalline plasticity [58], in

which the characteristic size of stress drops in the linear and in the plateau region is rather

similar, although the shape of the distribution may differ in both parts.

Before we start analyzing the response of the system at the atomic scale in these two

different regimes, it is interesting to look at the cumulative displacement in the direction

of the imposed shear. This is shown in figure 3, where the cumulative displacement of the

particles has been averaged for each distance y from the shearing wall on a layer with a

thickness of few particle diameters (typically 4.0σ), for a total deformation here of 25%. In

general, the cumulative shear appears to be very heterogeneous, even for such large strains.

In some cases (like in figure 3) a broad shear band appears in the center of the sample,

while the particles close to the boundaries are dragged by the wall motion. In other cases

several parallel sheared regions coexist, separated by unstrained regions. Note that, in all

our samples, the cumulative shear zones are observed to occur away from the boundaries,

unlike in experiments and simulations on foams in a 2D Couette Geometry [29, 30], or

on concentrated emulsions [37], where the shear is localized at a boundary, but closer to

experiments on metallic glasses [43, 44, 45, 46], or on granular systems [39, 40, 41, 42]. This

is one of the marked differences appearing in different amorphous systems.

We now turn to the detailed analysis of the atomistic response of the system.
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IV. DETAILED ANALYSIS OF THE LOCAL PLASTIC REARRANGEMENTS

In the previous section, we inferred from the distribution of stress drops in the linear and

plateau regions, respectively, that different microscopic events were taking place in these

two regions. Following the distinction made previously between the dissipative behavior in

the linear regime, and the one in the regime of plastic flow, we can distinguish two kinds

of plastic events. In the following, we will distinguish between these events based on the

participation ratio τ for the non-affine displacement field associated with the event. τ is

defined as

τ ≡
1

N
.
(
∑

i δun.a.(i))
2

∑

i un.a.(i)4

where un.a.(i) is the non-affine displacement of the particle i, that is the displacement after

its usual affine shear component (corresponding to a uniform shear strain) has been removed.

Obviously, τ ∼ 1 for events involving the whole system, and τ → 0 in case of a localized

event. From figure 5 it appears that the linear part of the stress strain curve is dominated

by events with a much smaller value of τ than the plateau region. Visual inspection allows

a clear distinction between two types of events associated with small ( < 0.05) and large

values of τ , which we now describe in more detail.

A. Localized, quadrupolar rearrangements

A typical example of localized event is shown in figure 4. All dissipative events in the

linear part of the stress-strain curve are of this type. In contrast, only very few stress drops

in the “flowing” regime (plateau region) are associated with such localized events. These

events give rise to the small stress drops in figure 2, at various yield stresses. They do not,

however, contribute substantially to the horizontal displacement field shown in figure 3.

Figure 4 displays the non-affine displacement of each particle in a typical localized event.

The large displacements indicate the location of the irreversible deformation. The few par-

ticles involved in the rearrangement are localized at the boundary between two adjacent

vortices of the non-affine field, that are reminiscent of the non-dissipative (elastic) non-affine

response of the system [3]. It is possible to identify the center of the plastic rearrangement

by selecting the particle undergoing the largest non-affine displacement. This particle is at

the center of a redistribution of shear stresses with an apparent symmetry characteristic of
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a quadrupole (figure 4). In this figure, the change in the local shear stress is obtained from

the usual Irving-Kirkwood definition, as described in [3, 47]. In order to identify more pre-

cisely as in Ref. [7] the symmetry of these rearrangements, we move to a coordinate system

(r, θ) centered on this point, and project the corresponding radial and azimuthal part of the

displacement field onto circular harmonics ei.n.θ (see figure 6). For the (n = 2) (quadrupole)

contribution, we get the well known 1/r dependence of the radial projection, corresponding

to an homogeneous, linear and isotropic elastic medium [25]. For unknown reasons however,

the r−dependence of the azimuthal projection is much more noisy in this case. Note also

that the (n = 3) contribution is far from being negligible (not shown here), indicating that

the displacement field is not strictly quadrupolar, a deviation that may originate from the

boundary conditions we are using.

When the flowing plateau is approached, many such local rearrangements tends to appear

simultaneously and to concentrate spatially during a single plastic event. Eventually, when

the plastic flow regime is reached, another kind of event appears, involving a much larger

amount of dissipated energy (or stress drop). These larger events are made of an alignment

of rotational rearrangements (see figure 7) along the direction of the imposed external shear.

This second kind of event constitutes the “elementary shear bands”, that we now describe

in more detail.

B. Collective, large scale events: elementary shear bands

The collective events that dominate the flow behavior in the plateau region involve a

large displacement that spans the whole length of the sample in the x direction, and are

localized in the y direction. It is easy to identify the center line of such an elementary

shear band, because the displacements of the particles are so high that they lead to an

inversion of the instantaneous “velocity field” (i.e. the displacement within a single strain

step) in the direction of the sollicitation, above and below the elementary shear band (figure

8-a). The largest displacement inside the sample (located at the edge of a shear band) can

reach more than 100 times the displacement imposed at the wall, i.e. it is close to one

particle size in our case. It is interesting to note that the distribution of the global shear

stresses at which this kind of event occur (yield stress distribution), is unrelated to the

spatial amplitude of the subsequent event (figure 9). However, the largest events (that is
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with the largest displacements) constitutes the enveloppe of the noisy stress-strain relation

(not shown here).

We see in figure 8-b that these elementary shear bands can take place anywhere in the

sample, and not only at the boundaries. In fact, the distribution of the distances between

the centers of successive shear bands (figure 10-a) is exponential, with a characteristic length

ξB ≈ 30σ, independent on the system size, that corresponds to the size ξ of the rotational

structures that have been identified in the elastic response of the system [2, 3, 4, 5]. The

characteristic distance between successive elementary shear bands in our system is thus

equal to the width of the elementary shear band itself. Moreover, the Fourier transform (not

shown here) of the temporal evolution of the positions of the centers of the bands (figure

8-b) shows a 1/f 0.5 behavior characteristic of a random, sub-diffusive signal. All these results

mean that the elementary shear bands propagate essentially in a random walk manner, with

a step size of approximately 30σ, confined by the two boundaries.

The distribution of distances covered by the upper wall between successive occurrence of

elementary shear bands (figure 10-b) is also exponential. It shows a characteristic length lc

(lc ≈ 0.13 in our case), equivalent to a characteristic number of quasistatic steps (here 13

steps of amplitude δux = 10−2 on the upper wall). This length does not depend significantly

on system size. We can find an explanation for the order of magnitude of this length lc, by

dividing it by the radius ξ/2 of a vortex. If we assume that the deformation is localized

within a “weak” region of thickness ξ/2, and that the system outside this shear band is

essentially unstrained, the characteristic distance lc covered by the wall between successive

occurrence of elementary shear bands corresponds to a deformation of 2lc/ξ ≃ 1% within

the weak region. This order of magnitude is approximately the one that corresponds to the

elastic threshold ǫ
(p)
xy for the strain within the elementary shear band. The elementary shear

bands can thus be seen as weak locations where all the deformation concentrates, giving rise

- from a given local strain threshold - to a large plastic event that relaxes all the accumulated

elastic energy. The next shear band event is spatially strongly correlated, within a distance

ξ.

Within this picture, we can simply describe the construction of the plastic flow “velocity”

profile as a diffusive process. For a sample with transverse size Ly, the number of bands that

are created by a total strain ǫ is ǫLy/lc = (ǫLy)/(ǫ
(p)
xy ξ). If the bands are created in a spatially

correlated manner, with typical distance ξ, this will result in an effective diffusion coefficient
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for these plastic events of the form Deff = ξ2 × (Ly/ǫ
(p)
xy ξ) (here the strain ǫ plays the

role of time). The shear will diffuse through the sample over a “time” scale Lyǫ
(p)
xy /ξ. For

our samples (Ly = 100, ξ = 30) the corresponding strain is small, and the boundaries will

almost immediately limit shear band diffusion. The shear profile then is created by essentially

independent bands. An essentially homogeneous profile will be obtained when the shear band

density becomes of the order of the inverse of the particle size, i.e. ǫ ∼ ǫ
(p)
xy ξ/σ. In a larger

sample, on the other hand, this picture suggests that the time (or strain) scale for establishing

an homogeneous profile may be very large, in fact proportional to system size, which could

explain the commonly observed tendency towards shear localization in such systems.

In the next section, we explore the effect of the two kinds of dissipative events described

here (quadrupolar events and elementary shear band), on the local dynamics of the particles.

V. DIFFUSIVE TRAJECTORY OF AN INDIVIDUAL PARTICLE.

Due to the average shear flow, the motion of each individual particle is highly anisotropic.

The motion in the direction of the sollicitation will mainly indicate the presence of a central

sheared zone, while the motion in the transverse direction is zero on average. A diffusive

contribution to the motion of an individual particle can be defined by removing the convec-

tive part of the motion (affine displacement) in the x direction. A typical example of the

resulting motion is shown in figure 11-a. In the following, in order to avoid potential ambi-

guities associated with the inhomogeneous character of the convective displacement along

the shear direction, we concentrate on a statistical analysis of the motion in the transverse,

y direction.

The random motion of a particle can be described by the distribution of the size of

its elementary jumps, and by the temporal correlations between jumps [49]. We find (see

figure 12-a for ∆n = 1) that the distribution of the size of the transverse components of

the elementary jumps is symmetric, with zero average and finite variance < δy2 >1/2≈

10−2.σ. This finite variance results from an upper exponential cutoff. It implies that, in

the hypothetic absence of temporal correlations between jumps, the motion of the particle

should be diffusive at large enough times.

This seems to be confirmed by the study of the mean squared displacement < ∆y2 >=<

(y(ǫ)− y(0))2 > of the particles in the transverse direction, which grows essentially linearly
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with the strain ǫ (see figure 11-b), and allows one to define a diffusion coefficient. But

although the motion seems to be diffusive by looking only at the second moment of the

distribution, the study of the non gaussian parameter < ∆y4 > /3 < ∆y2 >2 −1 (inset in

figure 11-b) shows that the situation is much more complex, particularly at short times, with

a markedly non-gaussian distribution for displacements smaller than typically one particle

size.

This deviation from gaussianity can be explored further through the distribution P (∆y, ǫ)

of the transverse distances ∆y between the positions of a particle, after a total strain ǫ has

been imposed to the sample [50]. The distribution P (∆y, ǫ) is shown in figure 12-a. It can

be seen as a quasistatic equivalent of the van Hove distribution correlation function, which

is a standard tool to characterize diffusion in glasses and supercooled liquids [51]. For a

given ǫ, the function starts with a plateau, followed by a power-law decay, and ends with

an exponential cutoff. The width of the power-law decay depends on the total strain ǫ. The

function is clearly very different from the Gaussian propagator of simple diffusion.

In fact, the beginning and the end of this power-law behavior are not self-similar (i.e.

cannot be rescaled in a form f(∆y/ǫβ)). For small ǫ, the long distance contribution evolves

less rapidly with ǫ than the short distance part. This is also why the amplitude of the initial

plateau, P (0, ǫ), shows two different behaviors as a function of ǫ (see figure 12-a): a rapid

decrease at small ǫ, followed by a slower decrease for larger ǫ after the power-law decay has

disappeared.

This behavior is also shown in figure 12-b where the function ∆y.P (∆y, ǫ) is plotted as a

function of ∆y. In this representation, the values of ∆y that contribute most to the average

displacement appear as peaks. It is clear that two main peaks are present. The first one

corresponds to very small displacements, and its positions evolves as ǫ1.4. The second one,

which corresponds to the actual diffusive process, appears at distances of order σ, and its

position increases as ǫ0.5. As the deformation is increases, the intensity shifts progressively

from the first peak to the second one. This result supports the idea of two different relaxation

mechanisms in amorphous glasses, even at zero temperature [52, 53, 54, 55].

To quantify the difference between the two regimes, we show in figure 12-b the position

of the main peak in ∆y.P (∆y, ǫ). Note that the increase observed in the position of this

peak is essentially the counterpart of the decay of P (0, ǫ) as a function of ǫ. We see here

two distinct power-law behaviors, separated by a characteristic shear strain ǫxy ≈ 0.75%.
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This characteristic shear strain is of the same order of magnitude as the shear strain ǫ
(p)
xy

separating the linear behavior and the plastic flow (see section 1). It is interesting to note

that this characteristic shear strain appears as well when the linear part of the shear-stress

relation is not considered, that is in the pure plastic flow, while the same figure, restricted

to the linear part of the stress-strain relation, gives only the first power-law decay. This

means that the plastic flow contains a succession of elastic and plastic events with a small

strain behavior different from the large strain behavior, in agreement with previous results

obtained on the mechanical study of flowing foams [48].

The hyper-diffusive motion of the first bump shown in figure 12-b, increasing as ǫ1.4,

implies hyper-diffusive motion of the particles at small shear strain. It is in perfect agreement

with the variation P (0, ǫ) ∝ ǫ−1.4 for small ǫ and is related to a strong non-gaussian behavior.

This non-gaussian behavior at small imposed strain has already been observed in other

amorphous systems like foams [54], or granular materials [55, 56]. In these systems however,

the corresponding exponents, as measured in [56] for example, can be different. The exponent

characterizing the hyper-diffusive motion of the particles dragged by the vortex motion in

the linear regime seems thus to be material dependent, while the non-gaussian character of

the motion could be a characteristic of the small strain deformation at zero temperature, in

disordered systems.

Finally, we have seen here that, even at zero temperature, the disorder inherent to amor-

phous systems is sufficient to create, under sufficiently large external sollicitations with a

marked dissipative behavior (i.e. in the plastic flow regime), a diffusive motion for the in-

dividual particles. Further investigation of this diffusion process and other nonequilibrium

transport processes -e.g. mobility under an external force- could allow us to explore the idea

of effective temperature in these systems [54, 57].

VI. CONCLUSION

We have shown that the quasi-static dissipative behavior of a two dimensional model

glass is due to two different kinds of microscopic events. First, mainly quadrupolar local

rearrangements involving only very few particles are present in the linear part of the stress-

strain relation. These events involve only small energy release. Second, in the plastic flow

regime (plateau of the stress strain curve), the plasticity is dominated by large scale events
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that involve rearrangements along lines parallel to the average shear direction. These events

have a very broad distribution of energy losses, which overlaps with the one associated with

the more localized events. These elementary shear bands are correlated in space over dis-

tances that are typical of the elastic inhomogeneity in the medium, and appear to propagate

randomly throughout the system. We suggested that this behavior could be a source of shear

localization in extended systems. Note that the boundary conditions are crucial to determine

the orientation of the elementary shear bands, as already pointed out in [7]; and they affect

also the random propagation of shear bands in the system. In our case, the elementary shear

bands reach very quickly the boundaries of our system, giving rise to confined motion, and a

possible memory free behavior of the elementary shear bands was not observable for systems

of this size. We must finally insist on the differences between the two kinds of dissipative

events we have clearly pointed out here: particularly the spatial distribution of localized

events is far from the one-dimensional alignement shown in the elementary shear bands.

This is one of the crucial points of this paper to distinguish between the two.

We also analyzed the motion of individual particles, driven by the plastic deformation.

We only consider the motion in the direction perpendicular to the average shear velocity.

This motion also is, even at zero temperature, a two step process. In a first step, the motion

is hyper-diffusive and non-gaussian; such displacements are the only ones that are observed

in the linear part of the stress strain curve. Purely diffusive behavior is however observed

on larger length scales, of the order of a particle size. This diffusive motion dominates the

plastic flow regime, for sufficiently large imposed strain. Further exploration of the transport

properties within this plastic flow regime will be the object of future work.
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FIG. 1: (Color online) Averaged shear stress σxy as a function of the shear strain ǫxy applied at

the borders. Two different regimes are shown: a linear regime and a regime of plastic flow. Note

that the elastic (reversible) part of the linear regime is restricted to strains up to 10−4. The rest of

the linear regime is noisy, with irrevesible plastic rearrangements. Inset: Same stress-strain relation

(grey) and average over 20 configurations. The plastic flow displays a plateau.
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FIG. 2: (Color online) (a) Distribution of stress drops in the linear regime (line without symbols,

averaged over 10 configurations), and in the regime of plastic flow (one configuration with 34000

steps). In the linear regime, only small size events are present. The various curves correspond to

different values of the maximum umax of the non-affine displacements. The distributions are not

normalized: the total number of stress drops is shown, in order to compare the contribution of

events of various amplitude.

(b) Distribution of stress drops for different system sizes. The value of the stress drops is multiplied

by the lateral size Ly in order to show the 1/Ly behaviour discussed in the text.
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FIG. 3: (Color online) Cumulative displacement in the x-direction (direction of shearing), at various

distances y from the shearing wall, and for a total applied strain ǫxy ≈ 15%. A large shear band

appears here in the center.
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FIG. 4: (Color online) Changes in the local shear stresses during a localized plastic event (left), and

associated displacement field (right). In this case, the plastic event involves a local rearrangement

at the border of two vortices.
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FIG. 5: (Color online) Normalized distribution of the participation ratios τ of the non-affine field,

for all steps (line), for all events associated to the stress drops (circles), and for the events associated

with a stress drop but only in the linear regime (stars).
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FIG. 6: (Color online) Magnitude of the quadrupolar projections of the radial (Ar) and orthoradial

(Aθ) components of the non-affine displacement during a local plastic rearrangement in the linear

part of the stress-strain relation. Periodic boundary conditions are responsible for the bump shown

at large distances.
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FIG. 7: (Color online) Displacement field associated to an elementary shear band. As it can be

seen here, the shear band is due to an alignement of vortices, along the direction of shearing.
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FIG. 8: (Color online) (a) Averaged horizontal displacement associated to a single but large event.

The y position, where the non-affine displacement field is equal to zero, allows to determine the

center of the elementary shear band.

(b) Position yB of the centers of elementary shear bands (determined as described previously), here

for the 5000 first steps. No localization appears, even for very large deformation (170% - not shown

here).
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FIG. 9: (Color online) Distribution of plastic thresholds just before a plastic event occurs. This

distribution does not depend significantly on the amplitude of the maximum umax of the non-affine

displacement during the event (contrary to the distribution of the energy drops).
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FIG. 10: (Color online) (a) Distribution of the distances δyB between successive elementary shear

bands. The characteristic distance of the exponential fit is ξ ≈ 30σ.

(b) Distribution of the distances δlwall covered by the shearing wall, between successive elementary

shear bands. The distribution is exponential, with a characteristic distance covered by the upper

wall lc = 0.13σ (that corresponds to 13 increments of the strain imposed at a wall, or ǫxy = 0.065%).
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FIG. 11: (Color online) (a) Diffusive trajectory of one particle with respect to the affine displace-

ment expressed in the units of mean particle diamater σ for a cumulative shear strain of 25%. The

displacement may be compared with the approximate cell dimensions Lx = 104σ and Ly = 100σ.

(b) Variance
〈

(∆y(ǫxy + ∆ǫxy) − ∆y(ǫxy))
2
〉1/2

of the transverse coordinate of the individual par-

ticles, with the initial position y(0) = 10 ± 4, as a function of the incremental strain ∆xy. Inset:

non-Gaussian parameter of the transverse coordinate ∆y(ǫxy). The non-Gaussian parameter is far
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FIG. 12: (Color online) (a) Distribution P (∆y,∆n) of distances ∆y between the y positions of a

particle of initial position y(0) = 10±4, after a certain number ∆n of incremental strains has been

imposed at a wall. The corresponding global strain is thus ∆ǫxy = ∆n.δux/2.Ly = 5.10−5.∆n.

Inset: Log-Linear plot of the distribution of elementary jumps of the particles in the y-direction.

This distribution is a power law at small distances, with an exponential cut.

(b) Same distribution of distances ∆y, but multiplied by the distance ∆y itself. The position ∆ymax

of the peak appearing at small ∆ǫxy (small ∆n) evolves like (∆ǫxy)
1.4 (hyper-diffusive behaviour),

while the peak appearing at large ∆ǫxy evolves diffusively (like (∆ǫxy)
0.5). See inset.
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