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F. Léonforte,1 A. Tanguy,1 J.P. Wittmer,2 and J.-L. Barrat1
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Using large scale molecular dynamics simulations we investigate the properties of the non-affine

displacement field induced by macroscopic uniaxial deformation of amorphous silica, a strong glass
according to Angell’s classification. We demonstrate the existence of a length scale ξ characterizing
the correlations of this field (corresponding to a volume of about 1000 atoms), and compare its
structure to the one observed in a standard fragile model glass. The “Boson-peak” anomaly of the
density of states can be traced back in both cases to elastic inhomogeneities on wavelengths smaller
than ξ where classical continuum elasticity becomes simply unapplicable.

PACS numbers: 46.25.-y, 61.43.Fs, 62.20.Dc, 63.50.+x, 72.80.Ng

The vibrational dynamics of glasses and in particular
the vibrational anomaly known as the “Boson Peak”, i.e.
an excess of the low-energy density of state in glasses
relative to the Debye model, have attracted consider-
able attention in condensed matter physics [1, 2, 3].
This anomaly is observed in Raman and Brillouin spec-
troscopy [4] and inelastic neutron scattering [5] exper-
iments in many different systems (polymer glasses [6],
silica [7], metallic glasses [8]) and the corresponding ex-
citations are often associated with heat capacity or heat
conductivity low temperature anomalies. Many interpre-
tations of these vibrational anomalies have been put for-
ward, and generally involve some kind of disorder gen-
erated inhomogeneous behavior [1], whose exact nature,
however, is the subject of a lively debate [2, 3, 4, 9].

In this work, we argue that the natural origin of these
anomalies in “fragile” as well as “strong” glasses lies
in the inhomogeneities of the elastic response at small
scales, which can be characterized through the correla-
tion length ξ of the inhomogeneous or “non-affine” part
of the displacement field generated in response to an elas-
tic deformation imposed at the macroscopic scale. The
existence of such a length has been suggested in a se-
ries of previous numerical studies [10, 11, 12] on two and
three dimensional Lennard-Jones (LJ) systems, and is
experimentally demonstrated in macroscopic amorphous
solids (foams [13], emulsions [14], granulars [15], . . . ). At
a more microscopic level, evidence has been provided re-
cently by UV Brillouin scattering experiments on amor-
phous silica [16]. Being a natural consequence of the dis-
order of microscopic interactions [11] the non-affine dis-
placement field is responsible in particular for the break-
down of Born-Huang’s formulation [17] for the prediction
of elastic moduli [10, 18, 19], and has recently been stud-
ied theoretically by Lemâitre et al. [19] and DiDonna et

al. [20].
In practice, however, it appears that the only practical

way to quantify this effect for a given material consists in
direct molecular simulations [10, 11]. The present con-

tribution extends, for the first time, the numerical anal-
ysis to a realistic model of an amorphous silca melt —
a “strong” glass according to Angell’s classification [21].
Our results are compared to a previously studied “frag-
ile” reference glass formed by weakly polydisperse LJ par-
ticles in 3D [12]. Strong and fragile systems have very
different molecular organisation and bonding. Although
the intensity of vibrational anomalies is less important
in fragile systems, it is well documented in experiments
[6] on polymer glasses or in simulations of Lennard-Jones
systems [22]. The observation of common features points
to a universal framework for the description of low fre-
quency vibrations in glassy systems. One recent finding
of particular interest, is the fact that, in these LJ sys-
tems, the Boson Peak anomaly appears to be located at
the edge of the non-affine displacement regime, its posi-
tion given by the pulsation associated with ξ [11]. This
begs the question whether this is a generic result applying
also to other glasses, specifically to strong glass forming
materials such as amorphous silica, which is character-
ized by an intricate local packing [22] — believed widely
to be the specific origin of the vibrational anomaly [2].
As in our earlier contributions, we will focus on the anal-
ysis of the non-affine displacement field obtained in the
linear elastic strain regime and the eigenmode density of
states for systems at zero temperature or well below the
glass transition.

The amorphous silica is modelled using the force field
proposed by van Beest et al. [23]. (For details about this
“BKS” potential, see Refs. [24].) We performed clas-
sical NVT Molecular Dynamics simulations of systems
containing N = 8016, 24048 and 42000 atoms with den-
sity ρ = 2.37 g/cm

3
, in fully periodic cubic cells with

sizes L = 48.3 Å, 69.6 Å and 83.8Å, respectively. The
short ranged part of the BKS potential was truncated
and shifted at a distance of 5.5 Å. For the Coulomb part
we use the Ewald method with a real-space sum trun-
cated and shifted at 9 Å [25]. To obtain the silica glass,
we first equilibrate all systems at T = 5000 K during
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FIG. 1: Inhomogeneous part δu(r) of the displacement field
u(r) for the imposed macroscopic uniaxial strain in elonga-
tion ǫxx = 5.10−3 for a silica glass containing N = 42000
particles (L = 83.8 Å). Projection of the field is done on the
(x−z)-plane for all particles with position r close to the plane,
the arrow length being proportional to δu(r). The field re-
sides in the linear elastic regime, i.e. has a magnitude varying
linearly and reversibly with the applied deformation. As vi-
sual inspection shows, it is strongly spatially correlated and
involves a substantial fraction of all atoms.

0.8 ns. An ensemble of three independent configurations
was studied for each system size [27]. Next, we perform
a quench from T = 5000 K to T = 0 K by decreasing
linearly the temperature of the external heat bath with a
quench rate of 1.8 K/ps [24]. Finally, a Conjugate Gradi-
ent algorithm was used to minimize the potential energy
of the systems yielding T = 0 K configurations with hy-
drostatic pressure 〈P 〉 ≈ 0.4 GPa. The static properties
were checked against published results obtained with the
same amorphous silica model [24].

We now describe briefly the protocol used in order
to investigate the elastic behavior at zero temperature of
the model glasses under uniaxial deformation (for more
details, see Refs. [10, 11]). The procedure consists in
applying a global deformation of strain ||ǫxx|| ≪ 1 to
the sample by rescaling all coordinates in an affine man-
ner. Starting from this affinely deformed configuration,
the system is relaxed to the nearest energy minimum,
keeping the shape of the simulation box constant. The
relaxation step releases about half of the elastic energy of
the initial affine deformation and results in the displace-
ment δu(r) of the atoms relative to the affinely deformed
state, defining the non-affine displacement field. A typ-
ical field for a silica glass is presented in Fig. 1, where
a 2D projection of δu(r) in the plane containing the ap-
plied deformation direction is shown.

This procedure allows us to measure directly the elas-
tic coefficients from Hooke’s law [10], i.e. from the

stress differences ∆σαβ = σend
αβ − σref

αβ , σref
αβ being the

total stress tensor of the reference state configuration
(quenched stresses), and σend

αβ the one measured in the
deformed configuration after relaxation. From the re-
sulting values of the Lamé coefficients λ = ∆σyy/ǫxx

and µ = (∆σxx − ∆σyy)/2ǫxx one obtains the associ-
ated transverse and longitudinal sound wave velocities,
CT =

√

µ/ρ, CL =
√

(λ + 2µ)/ρ. In the case of the sil-
ica glass (λ ≈ 34.4 GPa, µ ≈ 37.2 GPa, CT ≈ 3961.4
m/s, CL ≈ 6774.5 m/s), these quantities are in good
agreement with data from Horbach et al. [24] and Zha

et al. [26] (for silica under a density of 2.2g/cm
3
, taking

into account the scaling factor (2.37/2.2)1/2 [24] inherent
to the choice of a higher density).

The linearity of the strain dependence of both the
displacement field and the stress difference ∆σαα have
been verified explicitly following Ref. [11]. The elas-

tic (reversible) character of the applied deformation is
checked by computing the remaining residual displace-
ment field after removing the external strain [11]. An
alternative quantification of the plastic deformation is
obtained by considering the participation ratio Pr =

N−1
(
∑

i δu2
i

)2
/

∑

i

(

δu2
i

)2
of the noise δu(r) [11]. As

long as Pr ≈ 1, all atoms are involved in the non-
affine field, while irreversible plastic rearrangements are
marked by Pr → 0, with only a few particles involved. A
choice of ǫxx = 10−7 for the LJ glass with L = 56σ and
of ǫxx = 5.10−3 for the silica glass were found to ensure
reversible and linear behavior, with 20% < Pr < 30%
and 25% < Pr < 40%, respectively [29].

Visual inspection of the snapshot suggests that the
field is strongly correlated over large distances, with the
presence of rotational structures previously observed in
Ref. [11] for LJ systems [28]. In order to characterize
this kind of structure, we normalize the field by its sec-
ond moment, i.e. δu(r) 7→ δu(r)/〈δu(r)2〉1/2. In this
way, in the linear elastic regime, it becomes independent
of the applied strain and the system size [20].

Next, we study the Fourier power spectrum of the
fluctuations of this normalized field. This spectrum
can be described by two structure factors, SL(k) ≡ 〈‖
∑N

j=1 k̂ ·δu(rj) exp (ik · rj) ‖
2〉/N relative to the longitu-

dinal and ST (k) ≡ 〈‖
∑N

j=1 k̂ ∧ δu(rj) exp (ik · rj) ‖
2〉/N

relative to the transverse field component [11]. These
quantities are plotted in Fig. 2 as function of the wave-
length λ = 2π/k, where k = k k̂ = (2π/L)(l, m, n) with k̂
being the normalized wavevector. Brackets 〈·〉 denote an
average over the degeneracy set associated with λ, and
over an ensemble of configurations. As expected from
our study of LJ glasses [11], the longitudinal power spec-
trum of silica is always smaller than the transverse one.
The main difference between the two materials resides
in the hierarchical progression of the decoupling between
transverse and longitudinal contributions at short wave-
lengths that appears in the case of the silica glass (the
spectra of LJ systems being only weakly wavelength de-
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FIG. 2: (Color online) Squared amplitudes of the Fourier
transforms SL(k) and ST (k) for the longitudinal (bottom)
and transverse contributions to the normalized non-affine field
δu(r) of silica glass at T = 0 K under macroscopic elongation,
plotted vs. the wavelength λ = 2π/k (in Å). The various
system sizes included demonstrate a prefect data collapse.
The transverse contribution is more important for all wave-
lengths. The spectra become constant for large wavelengths
with a relative amplitude of about 10. The spectra for a LJ
glass (spheres, length given in sphere diameters) have been
included for comparison [30]

pendent). This can be traced back to the local structure
of silica which is represented by arrows giving the posi-

tions of the n first neighbor shells r
(n)
{α−β}, where n ∈ [1, 4]

and (α, β) ∈ {Si, O}. Structural effects disappear at
distances greater than 4-5 tetrahedral units SiO4, i.e.

r
(4−5)
{α−α} with α ∈ {Si, O}, and the longitudinal contri-

bution to the non-affine displacement field becomes then
about 10 times smaller than the transverse one — similar
to our finding for LJ systems [11, 30].

We conclude that the non-affine displacement field
is of predominantly rotational nature in both “fragile”
and “strong” glasses, and proceed to extract a char-
acteristic length representative of this rotational struc-
ture. Considering the coarse-grained field U j(b) ≡

N−1
j

∑

i∈Vj
δu(ri) of all Nj particles contained within a

cubic volume element Vj of linear size b, we compute the

coarse-graining function B(b) ≡ 〈U j(b)
2〉

1/2
j . As shown

by Fig. 3, we find for both glasses an exponential decay,
well fitted by the characteristic scales ξ ≈ 23σ for the

“fragile” glass, and ξ ≈ 33 Å, i.e. near 23 × r
(1)
{Si−O}

for the “strong” glass. The latter length scale has also
been indicated in Fig. 2. The exponential behavior be-
comes more pronounced with increasing system size (not
shown) which reduces the regime of the cut-off observed
at large b/L ≈ 1 which is expected from the symmetry
of the total non-affine field. (B(b) → 1 for b → 0 due to
the normalization of the field.)

The existence of such a characteristic length scale
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FIG. 3: Amplitude of the coarse-graining function B(b) of
the normalized non-affine field averaged over a volume ele-
ment of lateral size b, versus the ratio b/L, for LJ and silica
(squares) systems under uniaxial elongation. Since the total
displacement is zero by symmetry B(b) must necessarily van-
ish for large b ≈ L (“sum rule”). For sufficiently large system
sizes, allowing to probe a broad σ/L ≪ b/L ≪ 1 region, our
data demonstrates an exponential decay with characteristic
length scale ξ ≈ 23σ for LJ and ξ ≈ 33 Å for silica glasses.

has already been underlined in Ref. [11] for the LJ sys-
tem, and has been related to the position of the Boson
Peak in the density of vibrational states. In order to
test this assumption in the case of the silica glass, we
computed the vibrational density of states (VDOS) g(ν)
using the Fourier transform of the velocity autocorrela-
tion function [24], calculated during 1.6 ns at T = 300
K (followed after a run of 8 ns to assure equipartition of
the kinetic energy at this temperature). The VDOS is
shown in the inset of the Fig. 4, and is in good agree-
ment with results from [24]. In the main part of Fig. 4,
reduced units x = ν × ξ/CT are used in order to plot the
excess of vibrational states according to Debye’s contin-
uum prediction, i.e. g(x)/gDebye(x), with ξ the previous
characteristic length scales and CT the sound velocities
for transverse waves, for LJ and silica glasses. (The De-
bye prediction must obviously become correct for small
eigenfrequencies. To access this frequency range even
larger simulation boxes are needed.) This plot confirms
the fact that the Boson Peak position can be well approx-
imated by the frequency associated with the correlation
length ξ of elastic heterogeneities in both LJ and silica
glasses.

In summary, we have demonstrated the existence
of inhomogeneous and mainly rotational rearrangements
in the elastic response to a macroscopic deformation of
amorphous silica. Our results are similar to the ones ob-
tained previously for LJ glasses. The characterization of
the non-affine displacement field demonstrates the exis-
tence of correlated displacements of about 1000 particles
corresponding to elastic heterogeneities of characteristic
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FIG. 4: Inset: VDOS g(ν) for the silica glass at T = 300
K. Main figure: Excess of vibrational states g(x) compared
to Debye’s continuum model gDebye(x), using reduced units
x = νξ/CT , with CT ≈ 4.2 (in LJ units) and CT ≈ 3961.4m/s
for LJ and silica respectively and ξ as indicated in the figure.
The Boson Peak position at x ≈ 1 is well approximated by
the frequency associated with the wavelength of order ξ. As
expected, the peak is more pronounced for the strong glass.

size ξ of 20 interatomic distances. The estimate of the
frequency associated with this length is in good agree-
ment with the Boson Peak position. The existence of
such a characteristic length in glasses should encourage
to view the Boson Peak as a length — rather than a fre-
quency — marking the crossover between a regime where
vibrations in glasses with wavelengths larger than ξ can
be well described by a classical continuum theory of elas-
ticity, and a small wavelength regime where vibrations
are strongly affected by elastic heterogeneities.

In a nutshell, the vibrational anomaly is therefore sim-
ply due to physics on scales where classical continuum
elastic theories (such as the Debye model) must necessar-
ily break down. This leaves unanswered the important
question what additional excitations are probed that pro-
duce the peak but suggests a similar description for differ-
ent glass formers. Interestingly, the existence of a length
scale of comparable magnitude accompanying the glass
transition of liquids as been demonstrated very recently
[9]. This (dynamical) length characterizes the number of
atoms which have to move simultaneously to allow flow
just as our (static) length ξ describes the correlated parti-
cle displacements. Since the glass structure is essentially
frozen at the glass transition both correlations may be
closely related, possibly such that the non-affine displace-
ments might be shown in future work to be reminiscent
of the dynamical correlations at the glass transition.

Computer time was provided by IDRIS, CINES and
FLCHP.
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